
Chris Wyman

Principal Research Scientist, NVIDIA

RTXDI: Details on Achieving
Real-time Performance

RECENTLY LAUNCHED RTX DIRECT ILLUMINATION (RTXDI)

Render with millions of dynamic lights

Primitives of all sorts (triangles, spheres, cylinders, etc.), with or without IES profiles

Also textured and environment map emissives

https://developer.nvidia.com/rtxdi

https://developer.nvidia.com/rtxdi

SDK INCLUDES WHITE-BOX SOURCE

Sample app demonstrates integration

Led by Alexey Panteleev

Go take a look!

TODAY: EXPLORE ALGORITHM DETAILS

Currently, RTXDI largely based on “ReSTIR”

Reservoir spatiotemporal importance resampling

Presented basics a few times last year:

At SIGGRAPH 2020, “Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting”

At GTC 2020, “Rendering games with millions of ray-traced lights”

At HPG 2020, “Reframing light transport for real-time”

Will do a quick high-level review

Today’s focus: improvements to achieve real-time performance

A technical deep dive into how we made RTXDI fast

https://research.nvidia.com/publication/2020-07_Spatiotemporal-reservoir-resampling
https://www.nvidia.com/en-us/gtc/session-catalog/?search=A21210&tab.day=20201006&ncid=em-anno-50187
https://youtu.be/hhUUb5Op1-4?t=1483

Quick Overview

What is RIS, ReSTIR, resampling? How does it help rendering?

Memory Coherence Issues

Coherence → big impact in ReSTIR; tackle with unusual approach

Intelligent Compute Refactoring

Leveraging or removing redundant compute in original research

AGENDA

PHYSICALLY-BASED RENDERING
Let’s start with basics: What is it?

PHYSICALLY-BASED RENDERING

Solve mathematical equations describing light interactions

Different renderers may focus on different aspects

Typically, the rendering equation is involved

𝐿 𝑥, 𝜔𝑜 = න
Ω

𝜌 𝑥, 𝜔𝑖, 𝜔𝑜 𝐿 𝑥, 𝜔𝑖 𝑤𝑖 ∙ 𝑁 𝑑𝜔𝑖

Let’s start with basics: What is it?

PHYSICALLY-BASED RENDERING

Solve mathematical equations describing light interactions

Different renderers may focus on different aspects

Typically, the rendering equation is involved

𝐿 𝑥, 𝜔𝑜 = න
Ω

𝜌 𝑥, 𝜔𝑖, 𝜔𝑜 𝐿 𝑥, 𝜔𝑖 𝑤𝑖 ∙ 𝑁 𝑑𝜔𝑖

Let’s start with basics: What is it?

The two hard parts in raster

PHYSICALLY-BASED RENDERING

Solve mathematical equations describing light interactions

Different renderers may focus on different aspects

Typically, the rendering equation is involved

𝐿 𝑥, 𝜔𝑜 = න
Ω

𝜌 𝑥, 𝜔𝑖, 𝜔𝑜 𝐿 𝑥, 𝜔𝑖 𝑤𝑖 ∙ 𝑁 𝑑𝜔𝑖

Let’s start with basics: What is it?

The two hard parts in raster

In DXR, just call TraceRay()Not easier for ray tracing; incoming

light still comes from everywhere

HANDLING HIGH-COMPLEXITY
How do you solve a tough integral?

HANDLING HIGH-COMPLEXITY

𝐹 = න𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

1≤𝑖≤𝑁

𝑓 𝑥𝑖
𝑝 𝑥𝑖

Use Monte Carlo integration with importance sampling

Monte Carlo = numerically sampling the integral

Importance sampling = minimizing N with good choice of distribution 𝑝 𝑥

How do you solve a tough integral?

HANDLING HIGH-COMPLEXITY

𝐹 = න𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

1≤𝑖≤𝑁

𝑓 𝑥𝑖
𝑝 𝑥𝑖

Use Monte Carlo integration with importance sampling

Monte Carlo = numerically sampling the integral

Importance sampling = minimizing N with good choice of distribution 𝑝 𝑥

Can we do perfect importance sampling? I.e., get N=1

How do you solve a tough integral?

(APPROXIMATELY) PERFECT IMPORTANCE SAMPLING

Perfect sampling means 𝑝 𝑥 ∝ 𝑓 𝑥 , specifically:

𝑝 𝑥 =
𝑓 𝑥

׬ 𝑓 𝑥 𝑑𝑥

To perfectly sample ׬𝑓 𝑥 𝑑𝑥, first need solution to ׬𝑓 𝑥 𝑑𝑥…

(APPROXIMATELY) PERFECT IMPORTANCE SAMPLING

Perfect sampling means 𝑝 𝑥 ∝ 𝑓 𝑥 , specifically:

𝑝 𝑥 =
𝑓 𝑥

׬ 𝑓 𝑥 𝑑𝑥

Can approximate it, using more Monte Carlo integration:

𝐹 = න𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
Ƹ𝑝 𝑥𝑖

1

𝑀
෍

Ƹ𝑝 𝑥𝑗

𝑝 𝑥𝑗

To perfectly sample ׬𝑓 𝑥 𝑑𝑥, first need solution to ׬𝑓 𝑥 𝑑𝑥…

resampled importance sampling; see Talbot et al.

http://dx.doi.org/10.2312/EGWR/EGSR05/139-146

WHY USE RESAMPLED IMPORTANCE SAMPLING

𝐹 = න𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
ො𝑝 𝑥𝑖

1

𝑀
෍

ො𝑝 𝑥𝑗

𝑝 𝑥𝑗

And what is ReSTIR?

We need a color at our pixel

WHY USE RESAMPLED IMPORTANCE SAMPLING

𝐹 = න𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
ො𝑝 𝑥𝑖

1

𝑀
෍

ො𝑝 𝑥𝑗

𝑝 𝑥𝑗

And what is ReSTIR?

We need a color at our pixel

Desire minimal ray count N

WHY USE RESAMPLED IMPORTANCE SAMPLING

𝐹 = න𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
ො𝑝 𝑥𝑖

1

𝑀
෍

ො𝑝 𝑥𝑗

𝑝 𝑥𝑗

And what is ReSTIR?

We need a color at our pixel

Desire minimal ray count N

Reuse neighbor pixel samples to improve

sampling at current pixel

WHY USE RESAMPLED IMPORTANCE SAMPLING

𝐹 = න𝑓 𝑥 𝑑𝑥 ≈
1

𝑀0
෍

𝑓 𝑥𝑖0
ෞ𝑝0 𝑥𝑖0

1

𝑀1
෍

ෞ𝑝0 𝑥𝑖1
ෞ𝑝1 𝑥𝑖1

1

𝑀2
෍

ෞ𝑝1 𝑥𝑖2
ෞ𝑝2 𝑥𝑖2

⋯

And what is ReSTIR?

Resampling chain can continue indefinitely!

WHY USE RESAMPLED IMPORTANCE SAMPLING

𝐹 = න𝑓 𝑥 𝑑𝑥 ≈
1

𝑀0
෍

𝑓 𝑥𝑖0
ෞ𝑝0 𝑥𝑖0

1

𝑀1
෍

ෞ𝑝0 𝑥𝑖1
ෞ𝑝1 𝑥𝑖1

1

𝑀2
෍

ෞ𝑝1 𝑥𝑖2
ෞ𝑝2 𝑥𝑖2

⋯

And what is ReSTIR?

Resampling chain can continue indefinitely!

Feed spatial samples, temporal samples, etc., to improve current pixel samples

ReSTIR Pipeline:

WHAT DOES THIS GET US?

WHAT DOES THIS GET US?

Paper shows:

3 million emissive triangles

~50 ms

https://research.nvidia.com/publication/2020-07_Spatiotemporal-reservoir-resampling

THAT’S NOT QUITE GAME PERFORMANCE…

SDK TARGET: IMPROVE PERFORMANCE

3 million emissives

Lighting: 4.6 ms

Quick Overview

What is RIS, ReSTIR, resampling? How does it help rendering?

Memory Coherence Issues

Coherence → big impact in ReSTIR; tackle with unusual approach

Intelligent Compute Refactoring

Leveraging or removing redundant compute in original research

AGENDA

MEMORY COHERENCE AND BANDWIDTH
Initial performance analysis showed this as the key bottleneck

MEMORY COHERENCE AND BANDWIDTH

Three main ways ReSTIR consumes memory

Randomly selecting lights

Initial performance analysis showed this as the key bottleneck

MEMORY COHERENCE AND BANDWIDTH

Three main ways ReSTIR consumes memory

Randomly selecting lights

Reading G-buffer data

Initial performance analysis showed this as the key bottleneck

MEMORY COHERENCE AND BANDWIDTH

Three main ways ReSTIR consumes memory

Randomly selecting lights

Reading G-buffer data

Reservoir I/O

Initial performance analysis showed this as the key bottleneck

MEMORY COHERENCE AND BANDWIDTH

Three main ways ReSTIR consumes memory

Randomly selecting lights

Reading G-buffer data

Reservoir I/O

Initial performance analysis showed this as the key bottleneck

Improve in standard ways:

Compress to minimize bandwidth

Merge kernels to minimize intermediate read/writes

Minimize size of reservoir (i.e., number samples)

MEMORY COHERENCE AND BANDWIDTH

Three main ways ReSTIR consumes memory

Randomly selecting lights

Reading G-buffer data

Reservoir I/O

Initial performance analysis showed this as the key bottleneck

Some of our perf team:

W w y ’ uc

 … L ’ v

SAMPLING LIGHTS COHERENTLY
What’s the problem?

SAMPLING LIGHTS COHERENTLY

Need randomization for resampling (i.e., for correctness)

Choosing small random subset from very large list ≡ incoherency

Each pixel chooses a different random subset ≡ cache thrash

Constant # lookups; costs vary >20x scene to scene

What’s the problem?

SAMPLING LIGHTS COHERENTLY

Need randomization for resampling (i.e., for correctness)

Choosing small random subset from very large list ≡ incoherency

Each pixel chooses a different random subset ≡ cache thrash

Constant # lookups; costs vary >20x scene to scene

Q: Can we “pre-randomize” to move incoherency out of inner loop?

What’s the problem?

PRE-RANDOMIZING LIGHT SAMPLES
Key observation: Degenerate RIS steps allow reshaping computation

PRE-RANDOMIZING LIGHT SAMPLES

න𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
Ƹ𝑝 𝑥𝑖

1

𝑀
෍

Ƹ𝑝 𝑥𝑗

𝑝 𝑥𝑗

What if we let 𝑝 𝑥 = Ƹ𝑝 𝑥 ?

Key observation: Degenerate RIS steps allow reshaping computation

PRE-RANDOMIZING LIGHT SAMPLES

න𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
Ƹ𝑝 𝑥𝑖

1

𝑀
෍

Ƹ𝑝 𝑥𝑗

𝑝 𝑥𝑗

What if we let 𝑝 𝑥 = Ƹ𝑝 𝑥 ?

න𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
𝑝 𝑥𝑖

1

𝑀
෍

𝑝 𝑥𝑗

𝑝 𝑥𝑗
=
1

𝑁
෍

𝑓 𝑥𝑖
𝑝 𝑥𝑖

1

𝑀
෍1

This is the standard Monte Carlo estimator…

Key observation: Degenerate RIS steps allow reshaping computation

But in two steps: first select M samples, then pick N of those!

PRE-RANDOMIZING LIGHT SAMPLES

Pre-process (once per frame):

Create 𝑆𝑖 sets of lights, each containing 𝑆𝑀 lights

Select 𝑆𝑀 lights using source pdf 𝑝 𝑥 (previously) used per-pixel

Key observation: Degenerate RIS steps allow reshaping computation

PRE-RANDOMIZING LIGHT SAMPLES

Pre-process (once per frame):

Create 𝑆𝑖 sets of lights, each containing 𝑆𝑀 lights

Select 𝑆𝑀 lights using source pdf 𝑝 𝑥 (previously) used per-pixel

Per-pixel:

Randomly select one of the 𝑆𝑖 sets of lights

(Uniformly) sample M initial candidates from the 𝑆𝑀 lights in the set

Continue ReSTIR as if you had selected M random candidates

Key observation: Degenerate RIS steps allow reshaping computation

PRE-RANDOMIZING LIGHT SAMPLES

Pre-process (once per frame):

Create 𝑆𝑖 sets of lights, each containing 𝑆𝑀 lights

Select 𝑆𝑀 lights using source pdf 𝑝 𝑥 (previously) used per-pixel

Per-pixel:

Randomly select one of the 𝑆𝑖 sets of lights

(Uniformly) sample M initial candidates from the 𝑆𝑀 lights in the set

Continue ReSTIR as if you had selected M random candidates

Further cache improvement:

Pixel blocks randomly sample the same set 𝑆𝑖 of lights (i.e., pick random 𝑆𝑖 per pixel block)

8x8 blocks seem the sweet spot

Key observation: Degenerate RIS steps allow reshaping computation

PRE-RANDOMIZING LIGHT SAMPLES

Pre-process (once per frame):

Create 𝑆𝑖 sets of lights, each containing 𝑆𝑀 lights

Select 𝑆𝑀 lights using source pdf 𝑝 𝑥 (previously) used per-pixel

Per-pixel:

Randomly select one of the 𝑆𝑖 sets of lights

(Uniformly) sample M initial candidates from the 𝑆𝑀 lights in the set

Continue ReSTIR as if you had selected M random candidates

Further cache improvement:

Pixel blocks randomly sample the same set 𝑆𝑖 of lights (i.e., pick random 𝑆𝑖 per pixel block)

8x8 blocks seem the sweet spot

Key observation: Degenerate RIS steps allow reshaping computation

Found 128 sets of 1024 lights

works across most or all scenes

ADDITIONAL ADVANTAGE OF PRE-RANDOMIZATION
Seamlessly handles multiple light types (e.g., light probes, triangles, spheres, points)

ADDITIONAL ADVANTAGE OF PRE-RANDOMIZATION

Picking one random light sample → quite complex:

First pick which light type

Then pick which light of that type

Finally pick a point on that light

Leads to execution divergence

Pre-randomization moves this divergence out of inner loop

Seamlessly handles multiple light types (e.g., light probes, triangles, spheres, points)

ADDITIONAL ADVANTAGE OF PRE-RANDOMIZATION

Picking one random light sample → quite complex:

First pick which light type

Then pick which light of that type

Finally pick a point on that light

Leads to execution divergence

Pre-randomization moves this divergence out of inner loop

Can reshape sampling multiple times

Sample per light type; then resample into our 𝑆𝑖 light pools

Seamlessly handles multiple light types (e.g., light probes, triangles, spheres, points)

IMPROVEMENT?
Going back to the Amusement Park

~20 ms initial light sampling

50 ms total lighting cost

~0.8 ms for initial light sampling

4.6 ms for total lighting cost

Before: After:

Quick Overview

What is RIS, ReSTIR, resampling? How does it help rendering?

Memory Coherence Issues

Coherence → big impact in ReSTIR; tackle with unusual approach

Intelligent Compute Refactoring

Leveraging or removing redundant compute in original research

AGENDA

ONE GOAL: MINIMIZE RAY COUNTS
ReSTIR paper uses 5 rays per pixel

ONE GOAL: MINIMIZE RAY COUNTS
ReSTIR paper uses 5 rays per pixel

1 shadow ray

guides resampling

4 shadow rays

for final shading

ONE GOAL: MINIMIZE RAY COUNTS
ReSTIR paper uses 5 rays per pixel

1 shadow ray

guides resampling

4 shadow rays

for final shading

Ponder: How important are all these rays? Particularly the last four…

WHAT DO THOSE RAYS DO?
Remember: Final shade rays are the N value in RIS

WHAT DO THOSE RAYS DO?

න𝑓 𝑥 𝑑𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
Ƹ𝑝 𝑥𝑖

1

𝑀
෍

Ƹ𝑝 𝑥𝑗

𝑝 𝑥𝑗

Controls variance of ൗ𝑓 𝑥𝑖
ො𝑝 𝑥𝑖

. Is N = 4 really much better?

Remember: Final shade rays are the N value in RIS

With final shadow rays No final shadow rays N controls variance of this

LET DENOISER HANDLE THAT

N = 1 is fine with a good denoiser

Cuts budget to 2 rays per pixel

Standard ways to cut further

Checkerboarding

Lower resolution reservoirs

Plus some additional tricks

REUSING SAMPLES MORE INTELLIGENTLY

REUSING SAMPLES MORE INTELLIGENTLY
Consider the ReSTIR pipeline

Per-pixel sampling Temporal reuse Spatial reuse

REUSING SAMPLES MORE INTELLIGENTLY
Consider the ReSTIR pipeline

Interesting observation:

Temporal reuse most important

Initial Candidates Only Spatial Reuse Temporal Reuse Both

REUSING SAMPLES MORE INTELLIGENTLY
Why use spatial reuse at all?

Spatial reuse dithers out issues with temporal-only reuse

Minimize this reuse; exactly one spatial tap seems sufficient (though 2 or 3 help with noise)

SHADING MORE INTELLIGENTLY
Other opportunities to reduce redundancy

SHADING MORE INTELLIGENTLY
Other opportunities to reduce redundancy

SHADING MORE INTELLIGENTLY
What’s going on here?

One of three samples is shaded

SHADING MORE INTELLIGENTLY
What’s going on here?

One of three samples is shaded

Two shadow rays traced (a reasonable chance they’re duplicates)

SHADING MORE INTELLIGENTLY
What’s going on here?

One of three samples is shaded

Two shadow rays traced (a reasonable chance they’re duplicates)

Have reasonable (if approximate) visibility from last frame

COULD WE REORGANIZE WHERE WE TRACE RAYS?

Still 2 rays per pixel, but now has 3 shaded samples

COULD WE REORGANIZE WHERE WE TRACE RAYS?

Still 2 rays per pixel, but now has 3 shaded samples

Sadly, reusing approximate visibility → c

IDEA: DECOUPLE REUSE AND SHADING
Visibility can be used differently for reuse and for shading

Still 2 rays per pixel, but now has 3 shaded samples

Sadly, reusing approximate visibility → c

But we can decouple shading and ruse

Shading artifacts less noticeable; transient, just 1 frame

 c

 u

Select Sample

for Reuse

IDEA: DECOUPLE REUSE AND SHADING
Visibility can be used differently for reuse and for shading

Can be more aggressive, reusing spatial visibility

Noticeably lightens shadows

But degradation is parameterizable

Allows tuning down quality for fewer rays

 c

 u

Select Sample

for Reuse

Before Decoupled Shading

Paris Opera House, GoldSmooth from TurboSquid

With Decoupled Shading

2 rays per pixel, 4.0ms, >500k emissive triangles

SUMMARY

SUMMARY

RTXDI available now; take a look!

Classroom:
4 emissive meshes (13k tris) plus light probe
2 ms for lighting

SUMMARY

RTXDI available now; take a look!

We’ve seriously tuned perf since prior published numbers

Subway:
750 emissive meshes (25k tris)
2.2 ms for lighting

SUMMARY

RTXDI available now; take a look!

We’ve seriously tuned perf since prior published numbers

Big algorithmic changes:

Pre-randomize to reduce incoherency; remove from inner loop

Minimizing ray count

Improving quality at isoperf via decoupling
Emerald Square:

280 emissive meshes (89k tris)
5 ms for lighting

SUMMARY

RTXDI available now; take a look!

We’ve seriously tuned perf since prior published numbers

Big algorithmic changes:

Pre-randomize to reduce incoherency; remove from inner loop

Minimizing ray count

Improving quality at isoperf via decoupling

Remaining scene-to-scene perf deltas largely from ray cost

Zero Day:
384 emissive meshes (11k tris)
3 ms for lighting

More information:
https://developer.nvidia.com/rtxdi

E-mail:
cwyman@nvidia.com

Twitter:
@_cwyman_

https://developer.nvidia.com/rtxdi
mailto:cwyman@nvidia.com

