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Fig. 1. (e) Light bounces from the light to the wall behind, to the kettle, then to the pots, then the glossy panel and finally the camera, involving several glossy
surface interactions. Such complex light paths are hard to render interactively, even with modern ray-tracing GPUs. We precompute a set of directional
probes in a 3D grid (a), storing such light paths, and interactively render by reprojecting probe information to novel views. Rendering by reprojecting glossy
probes raises three challenges: potentially high memory consumption, finding the correct samples for the glossy reflection in the probe and correctly treating
reflection occlusion boundaries that have artifacts if reprojected directly, due to parallax changes between the probe and the novel view. We address these
three problems by introducing: (b) An adaptive parameterization of probes allocating more resolution to glossy materials and complex geometry, by distorting
a regular parameterization; (c) A gathering algorithm based on path perturbation theory to accurately reproject glossy reflections from probes; (d) High quality
glossiness reconstruction by splitting the BRDF convolution into precomputation with reduced roughness and filtering at runtime. We achieve interactive
global illumination walkthroughs (f) for static scenes with opaque objects, with quality close to the path-traced ground truth (e) and better than a real-time
GPU ray-tracing baseline that queries the light map online (g).

Recent rendering advances dramatically reduce the cost of global illumina-
tion. But even with hardware acceleration, complex light paths with multiple
glossy interactions are still expensive; our new algorithm stores these paths
in precomputed light probes and reprojects them at runtime to provide
interactivity. Combined with traditional light maps for diffuse lighting our
approach interactively renders all light paths in static scenes with opaque ob-
jects. Naively reprojecting probes with glossy lighting is memory-intensive,
requires efficient access to the correctly reflected radiance, and exhibits prob-
lems at occlusion boundaries in glossy reflections. Our solution addresses
all these issues. To minimize memory, we introduce an adaptive light probe
parameterization that allocates increased resolution for shinier surfaces and
regions of higher geometric complexity. To efficiently sample glossy paths,
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our novel gathering algorithm reprojects probe texels in a view-dependent
manner using efficient reflection estimation and a fast rasterization-based
search. Naive probe reprojection often sharpens glossy reflections at oc-
clusion boundaries, due to changes in parallax. To avoid this, we split the
convolution induced by the BRDF into two steps: we precompute probes
using a lower material roughness and apply an adaptive bilateral filter at
runtime to reproduce the original surface roughness. Combining these ele-
ments, our algorithm interactively renders complex scenes while fitting in
the memory, bandwidth, and computation constraints of current hardware.
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1 INTRODUCTION
Interactive global illumination has been a major goal of computer
graphics since its inception. The introduction of GPU-accelerated
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ray tracing [Burgess 2020; NVIDIA 2018; Wyman and Marrs 2019]
brings closer the prospect of real-time, physically-based global illu-
mination. Current hardware can create a G-buffer [Saito and Taka-
hashi 1991] and trace specular paths very efficiently. However, more
complex, typically longer and glossy light paths are still very ex-
pensive: see for example the path with multiple glossy bounces in
Fig. 1(e). In this paper we introduce a new approach for precom-
puting and reprojecting such view-dependent glossy paths. When
augmented with view-independent paths stored in a traditional
light map, our solution enables full global illumination in interactive
walkthroughs of static environments containing opaque surfaces
(Fig. 1).

Numerous researchers have explored real-time global illumina-
tion approximations [Ritschel et al. 2012], often storing direct light
or irradiance in light probes [McGuire et al. 2017b] and approxi-
mately reconstructing a subset of light paths with various heuristics
[Robison and Shirley 2009]. These methods achieve impressive re-
sults, but can be less efficient on more expensive, glossy light paths.
We take a different approach, precomputing all light paths and
carefully handling storage and reprojection for each novel view.
Our approach relies on a simplifying assumption. We split light

paths, treating view-dependent and view-independent light dif-
ferently. Separating paths has a long history in graphics [Chen
et al. 1991; Slusallek et al. 1998; Wallace et al. 1987], allowing sig-
nificant acceleration of illumination computations. We focus on
view-dependent paths, while for view-independent paths we use
traditional light maps.

For such view-dependent paths, i.e., paths from the eye through
several glossy bounces, we precompute a new kind of light probe
to store them. While precomputing all light paths can enable in-
teractive rendering of realistic lighting, reprojecting this data into
novel views raises three main challenges. First, the dense angular
sampling needed to capture view-dependent effects can impose high
memory requirements, since glossiness and complex geometry im-
ply the need for denser sample rates. Second, reprojecting glossy
probe samples into a novel view can be challenging and costly. This
is because complex reflector and reflected geometry/materials make
it hard to find the best samples in the probes for a given novel view.
Third, directly reprojecting paths can cause sharpening at glossy
reflections of occlusion boundaries, as parallax changes between
the probe position and the novel view can sharpen the precomputed
blur.
Our work addresses these three challenges. Using Heckbert’s

[1990] notation, we store 𝐿(𝑆 |𝐷)∗𝐷𝐸 in a light map and we store
𝐿(𝑆 |𝐷)∗𝑆+𝐸 paths in light probes (here 𝑆 signifies any non-diffuse
reflection). Our approach has three main contributions:

• An adaptive light probe parameterization to increase resolu-
tion depending on scene geometry and material properties,
reducing the overall memory footprint.

• An algorithm using efficient reflection estimation and on-
the-fly search to gather view-dependent texels from probes,
providing high-quality interactive rendering of glossy paths.

• To avoid sharpening at glossy occlusion boundaries, we intro-
duce a new approach that splits the convolution effect of the

BRDF into two steps. First, we render the probes using mate-
rials with lower roughness in precomputation, and second,
during rendering we apply efficient, adaptive-footprint bilat-
eral filtering reproducing the original material roughness.

Our algorithm plausibly approximates ground truth illumination,
with complex light paths, at interactive rates for scenes with opaque
objects (Fig. 16-18, supplemental videos). We compare to modern
hardware-accelerated ray tracing baselines: a lightmap with real-
time glossy ray casting and real-time path tracing. We also compare
with light-probe based illumination [McGuire et al. 2017b] and
image-space gathering [Robison and Shirley 2009]. Overall, we show
better quality compared to ground truth, when other methods run
at the same framerate as ours.

2 RELATED WORK
Since our algorithm precomputes and reprojects light paths from a
new kind of glossy light probe, in this section we review prior work
on sample reuse, real-time reflections, and probe-based rendering.
Light maps are used widely in games, and recent research efforts
have explored efficient light map approximations [Luksch et al. 2013,
2019]. Our work is largely orthogonal, and we use diffuse light maps
computed offline with a modified path tracer.

2.1 Reusing Samples for Rendering
Several methods have been developed to precompute and reuse
samples. Shaded sample generation and rendering final images can
be decoupled by caching of radiance samples [Dayal et al. 2005;
Walter et al. 1999; Ward and Simmons 1999]. Samples are warped
and accumulated into a novel view using depth and surface informa-
tion to account for occlusions. A feedback loop guides new sample
generation, which is typically provided by ray or path tracing. More
recently, Nehab et al. [2007] reproject previous frame information
to avoid expensive shading computations in large areas of the novel
image. Other forms of sample reuse exist, e.g., for temporal super-
sampling and filtering [Karis 2014; Schied et al. 2017]. While our
work relies on sample reuse, our preprocessing is more exhaustive
than these solutions.
Object space shading can be used for remote rendering [Hladky

et al. 2019; Mueller et al. 2018]. Scene triangles are packed in an
atlas, while shading is updated on the server for visible triangles,
and streamed to a local device using video compression. Because
updates are progressive and no view extrapolation is performed
on device, view-dependent effects are hard to render accurately in
motion with these techniques.

Specialized methods to render reflections and specular effects of-
ten use image-based rendering (IBR) [Shum and Kang 2000]. Lischin-
ski et al. [1998] generate axis-aligned layered depth images con-
taining diffuse BRDF parameters as well as layered light fields for
specular effects. They splat diffuse color and gather from the light
fields using the stored parameters. Lehtinen et al. [2012] store glossy
and diffuse secondary rays from a conventional path tracer in a 4D
light field representation for a single viewpoint. The light field
allows reconstruction of diffuse and glossy reflections by using
neighbors in the 4D space weighted by the degree of glossiness.
This provides high quality reconstruction of indirect lighting from
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Fig. 2. For a given synthetic scene, both diffuse (a) and specular illumination are computed. A series of environment probes are placed on a regular grid and
parametrized (b) to capture view-dependent effects. In preprocess, high quality renderings are generated (d) along with additional geometric information
for each probe (c, e). At render time, the closest probes are selected and glossy information is gathered at the novel viewpoint (f) ; glossy effects are then
reconstructed (g). The diffuse scene is rendered separately (h) and both layers are composited to generate the final image (i).

a small number of samples for a single viewpoint. Lochmann et al.
[2014] handle more complex view-dependent effects by computing
warps from prior frames for diffuse, reflective and refractive sur-
faces. A small disparity between the previous and current view is
required. In contrast, our work uses light probes for glossy paths,
requiring a more involved approach to reproject these paths to the
novel view. Nonetheless, IBR techniques inspired our combination
of precomputed data feeding interactive rendering.

Image space gathering [Robison and Shirley 2009] stores perfect
specular reflections in a buffer and applies a post-process image-
space filter to create “phenomenologically compelling” approxima-
tions of blurry reflections and soft shadows. Our two-step convo-
lution to overcome the sharpening at reflected occlusions draws
inspiration from this work, but by precomputing all paths – not just
perfect reflections – we simulate all lighting at the same cost.

Filters based on the BRDF footprint have also been used to tackle
specular aliasing [Kaplanyan et al. 2016; Tokuyoshi and Kaplanyan
2019]. The material normal distribution function is filtered in the
surface local frame, on a parallel plane or unit disk. The exact filter
is derived from the pixel footprint considered and the variations
of the specular path half vector around the surface point. We rely
on similar assumptions to reconstruct the final glossy materials but
use a larger-scale footprint and a simplified surface representation.

2.2 Real-time Reflection Rendering
Real-time rendering of reflections on graphics hardware has been
extensively explored in the last twenty five years; Szirmay-Kalos et
al. [2009] provide a good survey.
Ofek et al. [1998] warp the geometry of the reflected scene to

virtual reflected positions. This requires highly tessellated geometry
for non-planar reflections, and each reflector has to be locally ap-
proximated by planes. Similarly, Estalella et al. [2005] store virtual
reflected objects in cube maps to accelerate reflection computation.
This method builds on the property that the reflected light path half-
vector coincides with the surface normal; we also use this property
when reprojecting from the glossy light probe.

Other methods rely on the perturbation of existing specular paths.
Chen et al. [2000a; 2000b] precompute reflection paths on a regular
image grid and express the reflection displacement at other pixels as
a second-order approximation. They rely on an analytical implicit
representation of the reflectors. We build on and generalize this
formulation as part of reprojecting probe texels to novel views.
Manifold exploration [Jakob 2013] has been used to upsample and
interpolate noisy path traced images while preserving specular
effects [Zimmer et al. 2015]. While it allows for perturbation and
update of complex specular paths under a small baseline, to our
knowledge it has not been applied to real-time rendering problems.
One-bounce glossy interreflections under distant illumination

can be computed analytically when projecting to a suitable repre-
sentation, e.g., spherical Gaussians [Xu et al. 2014]. In contrast, our
approach handles arbitrary lighting and materials, while imposing
no restrictions on path length.
Recent ray-tracing GPUs allow fast path-tracing [Wyman and

Marrs 2019], especially when coupled with denoising (e.g., [Schied
et al. 2017]). Multiple-bounce glossy paths however require a high
sample count to evaluate the BRDF and each path vertex, and thus re-
sult in degraded performance, as seen in our comparisons (Sec. 7.3.1).
In addition, poor reconstruction of dynamic glossy and specular
reflections from low-sample renderings is a known limitation of
existing denoisers.
Neural rendering [Tewari et al. 2020] has been used to predict

view-dependent shading effects in novel views. Implicit neural repre-
sentations [Mildenhall et al. 2020] bake the entire plenoptic function
of a small scene into a neural network. Closest to our approach in
this space is the work of Ren et al. [2013], which allows dynamic
lighting of glossy surfaces in static scenes. They evaluate a multi-
layer perceptron per point light, per pixel, limiting the applicability
for scenes with more complex lighting such as area lights. In con-
trast, the runtime performance of our approach is independent of
the lighting complexity. A property we share with learning-based
methods is a scene-specific pre-processing stage.
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2.3 Rendering with Light Probes
Precomputed environment maps are often used in production to
generate approximate real-time reflections. A reflected ray can look
in these maps to estimate the incident radiance. Blending between
multiple probes allows variations in the environment to be captured.
These ideas originate with the irradiance volume [Greger et al.

1998], which precomputes probes to light diffuse dynamic objects.
More recently, Silvennoinen et al. [2017] use a set of radiance probes
combined with a local reconstruction step to estimate indirect radi-
ance on diffuse surfaces in dynamic scenes. For mirror reflections,
Szirmay-Kalos et al. [2005] store an environment depth map and
iteratively update the sampled location by assuming locally planar
scene geometry. Yu et al. [2005] store a light field for all six cubemap
faces, increasing memory use. The light fields are queried at runtime
to obtain the closest sample to the reflected ray. Lagarde et al. [2012]
preserve parallax effects in their probes by intersecting rays with a
simplified analytic scene representation (a box or cylinder). Hakura
et al. [2001; 2001] only cast rays between reflector vertices before
fetching radiance from a layered environment map. Each layer is
optimized to accurately represent certain reference viewpoints. The
above solutions work only for specular reflections, in contrast to
our approach that handles general material properties.
Light probe memory consumption can be significant. We min-

imize this with an adaptive parameterization [Sander et al. 2002;
Sloan et al. 1998; Zayer et al. 2005], which relates to continuous mag-
nification techniques to obtain spatially-varying resolution [Friston
et al. 2019]. Unlike our solution, Friston et al. magnify according to
a simple foveation pattern, independent of the scene content.
Hirvonen et al. [2019] precompute environment maps that can

be lit at runtime like a G-buffer. When shading, secondary rays are
cast according to the BRDF. The radiance at secondary intersections
is estimated from the lit probes or the previous frame. McGuire et
al. [2017b] compute radiance, surface normals and depth for a set
of local probes. At runtime specular rays are marched through the
probes to find intersections. Probe resolutions and reflection accu-
racy are limited due to raymarching cost.Wang et al. [2019] improve
performance using hierarchical depth information and non-uniform
probe placement. Majercik et al. [2019] rely on similar probes at a
low resolution to estimate irradiance, but update them at runtime.
They fall back to ray-tracing for all reflections. Handling glossy
reflection paths in these method requires significantly increasing
sample count, degrading performance (see comparisons in Sec. 7.3.2).
In contrast, thanks to our precomputed probes containing all light
paths, glossy reflections are handled naturally by our solution.

3 OVERVIEW
We introduce a novel approach to interactive rendering of global
illumination in static synthetic scenes containing opaque objects,
using lightmaps for diffuse and probes for glossy paths. We address
three challenges of probe-based glossy rendering: first, reducing
memory footprint of the probes; second, efficiently and accurately
reprojecting glossy path information to the novel view and third,
avoiding sharpening at glossy reflection occlusion boundaries. Our
method is outlined in Fig. 2.

In preprocess (middle box in Fig. 2), we use a path-tracer to com-
pute diffuse global illumination stored in a lightmap (a), while the
glossy component of radiance – i.e., 𝐿(𝑆 |𝐷)∗𝑆+𝐸 paths – is precom-
puted (d) and stored in light probes placed in the scene, far left in
figure.
For the first challenge, we maximize the amount of information

stored where glossy surfaces are visible by computing a parame-
terization for each probe with more resolution assigned to shinier
surfaces and objects with higher geometric complexity (Fig. 2b). We
generate this parameterization using quasi-harmonic maps [Zayer
et al. 2005]. We also precompute scene geometric curvature infor-
mation which is used at runtime for gathering (Fig. 2e). A visible
geometry map is also generated along with a map containing the
reflected positions visible in each direction of a probe (Fig. 2c).
Rendering is performed at runtime (right-hand box in Fig. 2).

We first render the diffuse component as a surface textured by the
lightmap.
For the second challenge, we efficiently render accurate view-

dependent paths by introducing a hierarchical gathering approach.
We first perform trilinear interpolation between probes.We compute
the perfect mirror reflected position visible at each point of the novel
view, and reproject it into each selected probe while taking specular
motion into account (Fig. 2f). We base our approach on specular path
perturbation [Chen and Arvo 2000b], but generalize it to arbitrary
geometry using curvature approximation. This estimate provides
an initialization for a search process performed in probe space to
gather the probe texels best corresponding to the – possibly glossy
– reflection. We accumulate these points from the probes and blend
them according to the material properties at the reflector surface.
The gather process is critical to the success of our approach, since
it renders our method robust to inaccuracies in the reprojection
process and finds the best available data in the probe.

The third challenge occurs because naively reprojecting glossy re-
flections from the probes can create a sharpening effect at occlusion
boundaries in the reflections. To overcome this issue, we introduce
a new approach that separates the convolution effect of BRDFs into
two steps (Fig. 2g). We first reduce the roughness of materials in
the probe precomputation, and apply bilateral filtering in screen
space during rendering. Importantly, we estimate a footprint for the
screen space filter that closely reproduces the overall glossiness of
the original materials.

The entire process is interactive, and reproduces all the light paths
in our static scenes made of opaque objects.

4 PROBE GENERATION AND STORAGE
We store glossy paths in light probes, and reproject them to novel
views when rendering. We first describe the per-probe data and how
we compute it. We then present our adaptive parameterization that
concentrates probe texels in important regions, reducing memory
usage at a given image quality.We also describe additional geometric
information needed as part of real-time rendering.

We place probes on a regular 3D grid in the scene [McGuire et al.
2017b]. After exploring various adaptive probe placements [Wang
et al. 2019], we found regular sampling gives the highest quality
at a given probe budget. This is because our reflection estimation
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Fig. 3. Per-probe data: (a) glossy color, (b) reflector geometry information
(triangle IDs and barycentric coordinates), (c) reflected positions (and re-
flected material ID in the alpha channel)

(Sec. 5.1) works best with small distances between probes and the
novel view. Regular sampling provides a conservative upper bound
of the maximum distance, while adaptive placement naturally sam-
ples some areas sparsely.

4.1 Per-probe Data
For each probe, we render a map storing surfaces visible from the
probe (Fig. 3b); this map stores triangle ID and barycentric coordi-
nates used to reconstruct surface attributes at runtime (e.g., position,
normals or curvature). We then render an environment map con-
taining a 360◦ view from the probe location, storing only the glossy
color at visible surfaces (Fig. 3a). We precompute this map with a
modified Mitsuba path tracer [Jakob 2010] where we force all first-
bounce rays to sample the glossy BRDF lobe and take our adaptive
parameterization into account. In practice any renderer can be used,
depending on desired probe quality. In a third map, we store the
geometry seen with one-bounce reflection if every surface acted as
a perfect mirror (Fig. 3c).

4.2 Probe Parameterization
At a high level, we aim to allocate probe resolution preferentially to
regions where it is most needed. Three requirements drive our texel

allocation. (a) Smoother surfaces require higher resolution for repro-
jected reflections, while we can reconstruct rough materials from
fewer samples due to their lower frequencies. (b) Distant surfaces or
those seen at grazing angles have lower effective resolution. Probe
queries may occur from novel views with different perspectives
requiring higher resolution. (c) High frequency geometric content
exhibits lots of variation in reflected radiance, which needs higher
resolution for reliable capture.
We start from a latitude-longitude (lat-long) parameterization

(Fig. 4a) and modify it driven by the requirements above. We could
start from other panoramic parameterizations, with few differences,
but we chose lat-long as it allows easy lookups from ray directions
and the map is a single image (i.e., not a cubemap). We proceed in
two steps: first we compute an adaptive resolution map𝑚 (Fig. 4b)
to encode relative resolution needs of various probe directions, then
we use the map to compute an adaptive parameterization (Fig. 4h).

4.2.1 Adaptive Resolution Map Computation. To construct the map,
we render four low resolution buffers, via ray casting, containing: (i)
material smoothness𝑚mat, (ii) depth𝑚depth, (iii) normal𝑚norm, and
(iv) facing angle𝑚face, the dot product of incident ray and surface
normal. We render these buffers at 256 × 128 pixels.

The adaptive resolution map𝑚 in Fig. 4b stores:

𝑚 =𝑚mat
(
𝑚size +𝑚complexity

)
.

Here,𝑚mat adapts resolution based on material smoothness (Fig. 4c),
satisfying requirement (a), above. Diffuse texels have𝑚mat = 0 so no
space is allocated for them, increasing resolution for shiny surfaces.
𝑚size (Fig. 4d) considers distance and orientation (b) and is computed
as:

𝑚size =
𝑚2

depth

𝑚face
cos

(
𝜃long

)
.

This term converts probe area to actual object size, compensating
for perspective and angular foreshortening akin to a form factor.
𝜃long is the longitude angle, which compensates for size variations
induced by the lat-long base parameterization.
Finally, requirement (c) calls for an estimate of local geometric

complexity. Simple gradient-based estimates on our buffers are not
meaningful, as their response increases around any discontinuity,
including (curved) edges, which we do not consider “complex” for
requirement (c). Therefore, we perform a simple frequency analysis
(Fig. 4e) as follows:

𝑚complexity =
1
𝑁 2

𝑁−1∑
𝑝=0

𝑁−1∑
𝑞=0

𝑤𝑝,𝑞 ∥b𝑝,𝑞 ∗𝑚norm∥1 .

Here b are basis functions of the 2D discrete cosine transform
(DCT) [Ahmed et al. 1974], with [𝑝, 𝑞] integer 2D frequency vectors
(Fig. 4f). See Appendix A for more on the choice of DCT. Convolv-
ing the basis functions with the normal buffer analyzes frequency
content of local neighborhoods, and the 1-norm sums absolute re-
sponses of the three normal map dimensions. We weight responses
by𝑤𝑝,𝑞 = ∥ [𝑝, 𝑞] ∥𝑘 to ensure higher frequencies contribute heavily
to our geometric complexity measure (Fig. 4g). In practice, we set
𝑁 = 16 and 𝑘 = 5. We normalize both𝑚size and𝑚complexity by a
per-probe mean to ensure equal effective contribution. Subsequent
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Fig. 4. Overview of our probe parameterization pipeline. Conventional content-agnostic spherical parameterizations (a) of a glossy rendering allocate resolution
budget suboptimally. Map (a) is never rendered in our approach and shown here only for illustrative purposes. Instead, we design an adaptive resolution map
(b), combining local information on surface parameters (c), foreshortening (d), and geometric complexity (e). The latter is estimated by convolving a G-buffer
with DCT basis functions (f ) – here shown for 𝑁 = 8 – which are then aggregated using a weighting scheme (g) to detect high-frequency variation. We use
quasi-harmonic maps to convert the adaptive resolution map into a corresponding adaptive parameterization (h). This induces an inverse flow field (i) – here
2D lookup coordinates are visualized using red and green channels – which we use to steer rays, obtaining a probe with spatially varying resolution (j).

steps behave more robustly after blurring𝑚 with a small Gaussian
(i.e., 𝜎 = 5).

4.2.2 Adaptive Parameterization. To turn our adaptive resolution
map 𝑚 into a parameterization with adapted resolution, we use
tensorial quasi-harmonic maps [Zayer et al. 2005].
A quasi-harmonic map takes 𝑓ℎ from the plane to the plane, fol-

lowing the quasi-harmonic equation div (𝐶∇𝑓ℎ) = 0. The 2 × 2
matrix 𝐶 is a requested first fundamental form, which can vary
spatially. In our case 𝐶 = 𝑚I, where I is the identity matrix. This
essentially imposes scaling proportional to𝑚.

We use a regular quad mesh to discretize the domain, where each
pixel of𝑚 corresponds to a quad. We restrict motion of boundary
vertices to the domain boundary. Since the lat-long base parame-
terization naturally wraps, we force corresponding vertices at the
vertical boundaries to move in sync, ensuring parameterization
smoothness. Following Zayer et al. [2005] we solve the resulting
quasi-harmonic equation iteratively using a sparse matrix solver.

This quasi-harmonic map induces a forward flow, telling us how
to move our quad mesh vertices to obtain the desired parameteriza-
tion (Fig. 4h). To determine where to look up directions in parame-
terized probes, we need to invert the mapping, essentially creating
an inverse flow field 𝑓 −1

ℎ
(Fig. 4i). We do this by rasterizing the

deformed mesh with the original vertex positions as colors. This
happens at full probe resolution. To render our adaptively parame-
terized light probes, each pixel looks up its lat-long position using
the inverse flow field and we trace a ray through the scene in the
corresponding direction. This distorts the probe according to our
magnification rules (Fig. 4j).

When rendering our glossy light probe, this inverse map specifies
each texel’s correct view vector to initiate path tracing. At the first
intersection, we only trace paths corresponding to the glossy BRDF
lobe, exploiting standard material models’ separation of diffuse and
specular components. Both the forward and inverse maps are also
used at run time (see Sec. 5) to render the view-dependent layer.

4.3 Geometric Information
When gathering glossy light probe samples at runtime (Sec. 5),
we build on Chen and Arvo’s [2000a] specular path perturbation.

(a) (b)

(c) (d)

Low

High 

Pl
an

ar
ity

Fig. 5. (a) The triangle-based mesh and the estimate curvature vectors: mini-
mal (green) and maximal (red) directions. (b, d)Maximal planarity estimated
using the initial (b) and subdivided (d) objects: the estimation improves. (c)
Visualization of paraboloids fitted using our estimated parameters.

This requires implicit representations of all reflector geometry and
various derivatives. To avoid limiting scenes to implicit surfaces,
we need additional geometric data to support our approximation
described in Sec. 5.1.

For each scene vertex we first estimate both principal curvature
values and directions (Fig. 5a) using standard techniques [Meyer
et al. 2003]. We do this separately on each object. For best results,
we tessellate large planar objects with only a few large triangles
(Fig. 5b,d). To get more robust estimation, we regularize curvatures
between neighboring vertices when normals deviate less than 40
degrees.We average curvaturesweighting by the normal dot product
and ignoring values from boundary vertices. This reduces issues
at mesh boundaries (which do not have a full cycle to estimate
curvature) and filters smaller, irrelevant cuvature variations.
We transfer these values back from the tessellated geometry to

each scene vertex, allowing runtime interpolation of the curvature.
The principal curvatures allow us to locally represent the surface
by a paraboloid using the curvature directions as axes (Fig. 5c),
for which we can analytically compute our required higher-order
derivatives.
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Fig. 6. Rendering of diffuse (left) and view-dependent (right) components
occurs separately. Both rely on precomputed illumination.

5 RENDERING GLOBAL ILLUMINATION
To render a novel view, we handle diffuse and glossy components
separately, sampling two forms of precomputed lighting (see Fig. 6).
For diffuse light, we render meshes textured with a standard light
map, which contains diffuse global illumination.

For glossy light paths, we reproject our light probes to the current
view. To do reprojection, we first rasterize a G-buffer with position,
normal, surface curvature, and material (ID and roughness). With
a ray caster, we then trace perfect mirror rays at specular pixels,
storing reflected hit positions and material IDs. This reflection ray
is real-time on modern GPUs. We then compute per-pixel glossy
lighting by gathering information from nearby probes. This gather
relies on estimated specular flow, but as we gather from glossy
probes it closely approximates a wide range of material properties.
An exception are reflected occlusion boundaries, treated in Sec. 6.

For each output pixel containing a glossy surface, we use G-buffer
and ray data above plus the probe data (see Fig. 3) to select relevant
probe texels and merge their contributions. Let 𝑝 be the current
camera position. A pixel sees point 𝑥 , sampled by our G-buffer, and
the mirror ray from 𝑥 intersects reflected point 𝑞 (see Fig. 7a). To
shade 𝑥 using data from probe 𝑃 ′, we need to fetch the probe sample
for 𝑥 ′ that reflects point 𝑞 as seen from probe origin 𝑝 ′ (assuming
such data exists in 𝑃 ′).

x x’

p
p’

q

Δx

Δp

rv

p

rp

Rv
Rp

p’

nv
np

(a)

Camera
Probe

Camera

Probe

(b)

Fig. 7. The geometry of path perturbations. (a) From a known specular path
(𝑞, 𝑥, 𝑝) and a probe position 𝑝′, a new path (𝑞, 𝑥′, 𝑝′) can be determined
through local path perturbation. (b) To assess probe samples, we compute a
score based on ray information (reflector and reflected positions, reflector
normal) associated with the sample (𝑟𝑝 , 𝑛𝑝 and 𝑅𝑝 ) and the novel view
pixel (𝑟𝑣 , 𝑛𝑣 and 𝑅𝑣 ).

5.1 On-the-fly Reflection Position Estimation
First, we must determine 𝑥 ′ as the camera moves from 𝑝 to 𝑝 ′. The
theory of specular path perturbation [Chen and Arvo 2000b] allows

us to approximate displacement Δ𝑥 = 𝑥 ′ − 𝑥 given displacement
Δ𝑝 = 𝑝 ′ − 𝑝 (see Fig. 7a). For any reflector represented by implicit
function 𝑓 , we can derive a second order approximation of the path
function from Fermat’s principle and the implicit function theorem.
Then, there exists a Jacobian 𝐽 (𝑝, 𝑞, 𝑥, 𝑓 ), a 3x3 matrix, and Hessian
𝐻 (𝑝, 𝑞, 𝑥, 𝑓 ), a 3x3x3 tensor, such that

Δ𝑥 = 𝐽Δ𝑝 + [Δ𝑝]𝑇𝐻 [Δ𝑝],

where [Δ𝑝] is a 1x1x3 tensor replicating Δ𝑝 three times.We refer the
reader to Chen et al. [2000a] for a detailed discussion. As we know
𝑝 , 𝑝 ′, 𝑥 , and 𝑞, this gives sufficient data to lookup probe samples.

While Chen et al. [2000a] require first, second and third order
derivatives of 𝑓 , we do not want to limit scenes to implicit sur-
faces. We generalize to triangular meshes using our local curvature
approximation stored during precomputation (see Sec. 4.3) and G-
buffer rendering. From these curvatures we estimate a paraboloid
to locally fit the surface, and use its analytical derivatives for path
perturbation. We only keep points 𝑥 ′ that share the same material
as 𝑥 , and reproject their probe samples.

5.2 Gathering View-dependent Color
Combining specular path perturbation with our estimated curvature
only approximates the specular motion between the novel view and
our probe. To be robust to inaccuracies, we explore a neighborhood
in probe space before finalizing our sample selection.
We use a two-level search on a grid of decreasing step size and

radius, looking for a texel with stored radiance valid at our novel
location. The two-level search ensures thoroughness while main-
taining efficiency. Samples corresponding to reflections on other
materials are ignored.
We seek to favor probe samples containing information closely

corresponding to the novel view surface. We achieve this by evaluat-
ing an energy function designed to favor such samples. We use the
following notation (see Fig. 7b): reflector position 𝑟𝑝 , normal 𝑛𝑝 , and
reflected position 𝑅𝑝 as seen in the light probe, and corresponding
values 𝑟𝑣 , 𝑛𝑣 , and 𝑅𝑣 from the novel view.

Our energy function considers four criteria. First, view and probe
samples (𝑅𝑣 and 𝑅𝑝 ) preferentially lie on the same surface; if their
material IDs differ, we strongly penalize the total energy, multiplying
it by 𝑠𝑎 = 10. We thus use mismatched samples only if no others
are available. Second, the reflected hits 𝑅𝑣 and 𝑅𝑝 should be close;
for this we add a term 𝑠𝑏 = ∥𝑅𝑣 − 𝑅𝑝 ∥. Third, using similar surface
normals 𝑛𝑣 and 𝑛𝑝 ensures consistent lighting; the term 𝑠𝑐 = 1 −
(𝑛𝑣 ·𝑛𝑝 ) achieves this goal. Finally, the sample should have a similar
reflected ray; we use the following term:

𝑠𝑑 = 1 −
(𝑅𝑣 − 𝑟𝑣) · (𝑅𝑝 − 𝑟𝑝 )
∥𝑅𝑣 − 𝑟𝑣 ∥∥𝑅𝑝 − 𝑟𝑝 ∥

.

Combining these criteria, we use the following energy function:

E = 𝑠𝑎 · (min(𝑠𝑏 , 1) +min(𝑠𝑐 , 1) +min(𝑠𝑑 , 1)) . (1)

𝑠𝑎 and 𝑠𝑏 have the most effect, but the other terms help fix issues in
more uncommon cases, such as non convex reflectors.
Because we adaptively parameterize probes, searching probe

neighborhoods with a constant-sized regular grid risks missing
details in compressed regions or insufficiently exploring magnified
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BRDF BRDF
Probe values pre-convolved w/ BRDF Naive post-process blur:

overblurring occurs

Probe Probe

(e) (f) (g)

Probes rendered w/ 
reduced roughness

(h)

Adaptive Gaussian
footprint

Post-process blur w/
better accuracy

(a) Ground truth (b) Reprojection (c) Ground truth (d) Reprojection

Fig. 8. (a) Path traced ground truth of unoccluded glossy reflection where (b) naive reprojection is accurate. (c) Reference reflection with occlusion boundaries;
(d) naive reprojection sharpens these boundaries. (e) Ground truth: pixel colors integrate the BRDF over samples from both yellow and blue surfaces. (f)
Naively sampling precomputed probes uses only samples from either side of the occlusion, sharpening the boundary. (g) Naive post-process filtering over blurs
results. (h) By reducing roughness and estimating the footprint of the post-process filter, we improve accuracy.

areas. We thus scale the search step size by
���� 𝜕𝑓 −1ℎ

𝜕x

����−1, where 𝑓 −1ℎ
is

the inverse flow field (Sec. 4.2.2). In our two-level neighbor search,
our coarse level uses 7x7 samples at 4 texel spacing (before compen-
sation). The fine level searches 3x3 samples with 2 texel spacing,
centered at the minimal energy sample found by the coarse search.
To avoid popping during camera motion, we sample reflections

in the eight probes nearest the novel view. Each probe selects its
sample with minimal energy (Eq. 1). and the eight probe samples
are combined with trilinear weights 𝑡𝑖 into a final pixel color:

C =
1
𝑍

8∑
𝑖=1

𝑡𝑖 · exp(−𝜙E𝑖 ) · c𝑖 , (2)

where 𝜙 is a constant falloff factor we set to 8, and𝑍 is a normalizing
constant ensuring that weights sum to unity. When loading colors
c𝑖 from the probes, we use bilinear interpolation when this does not
blend colors from different reflectors.
For pixels with no valid sample in any of the eight probes, we

temporally reproject information from last frame’s glossy layer. The
lowest error E𝑖 among the eight probes is also stored for our glossy
filter pass (see Sec. 6.2).

6 TWO-STEP CONVOLUTION FOR ACCURATE
WARPING OF GLOSSY PROBES

For glossy materials, we can reuse samples representing any ray in
the BRDF lobe, even if they are not perfect specular reflections; this
is similar to Robison and Shirley [2009]. Generally, gathered probe
samples are nearly correct for the novel view, giving satisfactory
results (see Fig. 8a,b)

However, reflected geometric occlusions often appear “sharpened”
when gathered samples straddle these boundaries. To understand

why, consider Fig. 8. Fig. 8e shows that correct pixel values inte-
grate the BRDF lobe, combining samples from both yellow and blue
surfaces. Naive probe reprojection gathers precomputed samples
falling entirely on either side of the occlusion, sharpening the blurry
boundary (Fig. 8d). Simply applying a post-process filter overblurs
(Fig. 8g), increasing apparent surface roughness. To reduce overblur-
ring, our solution separates the convolution effect of the BRDF into
two steps. We reduce the material roughnesses when precomputing
probes and then adaptively blur during lookups to approximate the
desired glossiness (Fig. 8h). We first explain how to estimate the
filter footprint so that we match the original material roughness in
the final image (Sec. 6.1). We then explain how to perform the filter
operation (Sec. 6.2) and finally our efficient filter approximation
(Sec. 6.3).

6.1 Filter Footprint Estimation
To estimate our filter footprint, we use a simple configuration (see
Fig. 9a): a camera looking at a plane of uniform isotropic roughness,
with normal parallel to the view and reflected point colinear to the
camera. We evaluate the GGX BRDF [Walter et al. 2007] for each
point under a fixed field-of-view, shown in Fig. 9b. The parame-
ters influencing the BRDF footprint are the material roughness 𝜌 ,
distance to the reflector 𝑑𝑐 , and distance to the reflected light 𝑑𝑟 .
Given this, we fit a Gaussian G𝜌 (x; 𝜌,𝑑𝑐 , 𝑑𝑟 ) with covariance matrix
Σ𝜌 to the image-space BRDF footprint. We can ignore the mean as
the Gaussian is centered at zero. We determine Σ𝜌 for specific pa-
rameters [𝜌, 𝑑𝑐 , 𝑑𝑟 ] by sampling the BRDF footprint and evaluating
spatial covariance numerically. Such a fit is shown in Fig. 9c along
one scanline; we see this approximates the BRDF quite accurately.
We precompute and tabulate covariances in 32 × 32 × 32 bins

with roughness varying from 0 to 0.5 and distances from 0.01 to
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Gaussian Fit
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x

Fig. 9. Filter footprint estimation. (a) The setup for estimating our filter
footprint. A camera observes a reflected point (green) via a planar reflector.
We evaluate the BRDF lobe (blue ellipses) at various positions x and corre-
sponding viewing angles (blue points) to obtain an image-space footprint.
(b) The footprint of the GGX specular lobe, for 𝜌 = 0.075, 𝑑𝑐 = 2𝑚, 𝑑𝑟 = 5𝑚.
(c) A 1D slice of the specular lobe and our fit giving a close approximation.

10m, corresponding to typical values in our scenes. We use a power
sampling scheme and decrease the covariance for small 𝑑𝑟 (<0.5m)
as we observed fitting overestimated covariance in these cases.

Slanted reflectors foreshorten the BRDF footprint along the slant
direction. We dynamically incorporate this when rendering: the
projected surface normal in image space gives the foreshortening
direction.We then update Σ𝜌 by scaling the variance in this direction
by the dot product between view direction and surface normal.
Using Gaussian filtering allows splitting our glossy filter into

two steps, relying on properties of Gaussians. The steps include
G𝜌 , the reflector BRDFs when precomputing glossy light probes,
and G𝐼 , the runtime image filter. Final pixel values are given by
the convolution G𝜌 ∗ G𝐼 . We can reduce material roughness during
precomputation, giving a new Gaussian G𝜌′ with covariance matrix
Σ𝜌′ corresponding to the new roughness 𝜌 ′. Using the property:

Σ(G1 ∗ G2) = Σ(G1) + Σ(G2),

we find the covariance matrix Σ𝐼 of the image Gaussian G𝐼 such
that the operation G𝜌′ ∗ G𝐼 reproduces the effect of G𝜌 :

Σ𝐼 = Σ𝜌 − Σ𝜌′ . (3)

In practice, we set 𝜌 ′ to 𝜌/2, and modify our preprocess probe
rendering to account for this at the first glossy vertex of each path.

During interactive rendering, for each pixel, we look up the values
of G𝜌′ for a given initial roughness 𝜌 and distances 𝑑𝑐 and 𝑑𝑟 . We
compute Σ𝐼 using Eq. 3, compensate for geometric foreshortening
and apply the image filter as detailed in the next section.

10x Error
(d) Ours: 4 ms

(b) Full: 45 ms

(c) Separable: 3 ms

(a) Input

10x Error

Fig. 10. Comparing filter alternatives. (a) Filter input is high-amplitude uni-
form random noise, which is adversarial for anisotropic edge-stopping filters.
The guide image contains hard edges, with smoothly varying anisotropic
covariance in each region. (b) Applying a full 2D filter, per Eq. 4, is highly
inefficient for large kernels. (c) A naive separable implementation is fast, but
suffers from strong artifacts. (d) Our four-pass implementation is almost as
efficient as the separable version, but reduces artifacts significantly.

6.2 Gloss Filtering
Above, we estimated the image-space filter footprint. Now, we filter
guided by the geometric data used to estimate colors 𝐶 in Eq. 2:

𝐶 (x) = 1
𝑍 (x)

∑
xi∈N(x)

G𝐼 (x𝑖 − x)𝑤𝑟 (x, x𝑖 )E−1 (x𝑖 )𝐶 (x𝑖 ). (4)

Here,N(x) denotes the filter footprint at x. E is the energy function
in Eq. 1; the inverse acts as a confidence to limit propagation to pixels
that match well [Knutsson and Westin 1993]. The range weight

𝑤𝑟 (x, x𝑖 ) = 1n(x) ·n(x𝑖 )>𝛼n · 1 |𝑑 (x)−𝑑 (x𝑖 ) |<𝛼𝑑 · 1𝑚 (x)=𝑚 (x𝑖 ) ,

acts as a cross-bilateral term, preventing filtering across normal (n)
or depth (𝑑) discontinuities or between different reflector material
IDs (𝑚). We deliberately use indicator functions instead of more
canonical exponential cross-bilateral weights [Tomasi and Man-
duchi 1998], since the spatial filter footprint already accounts for
local geometry using G𝐼 . We set indicator thresholds to 𝛼n = 0.8 and
𝛼𝑑 = 0.2 in our experiments. Finally, 𝑍 is the normalizing partition
function, ensuring filter weights sum to unity.

6.3 Efficient Filter Approximation
Evaluating Eq. 4 is costly for large footprints (Fig. 10b), so we employ
an approximation to maintain interactivity. A two-pass separable
anisotropic filter [Geusebroek et al. 2003] reduces complexity from
quadratic to linear, but is only accurate for spatially invariant filter
kernels. We observe that within regions defined by 𝑤𝑟 the filter
parameters vary smoothly, by construction. Naively implementing
a separable edge-stopping filter introduces artifacts at edges that
do not align with the filter directions [Pham and Van Vliet 2005]
(Fig. 10c). To mitigate this, we split the filter into two passes, effec-
tively using four 1D separable filters [Gastal and Oliveira 2011]. The
first and third pass filter along the first principal direction of Σ𝐼 ,
whereas the others filter along the second principal direction. In all
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(a) (b)

(c) (d)

Fig. 11. Our four test scenes: (a) Bathroom, (b) Livingroom, (c) Staircase and
(d) Small Kitchen.

cases, covariances must be halved to maintain the correct footprint.
We observe this very closely matches the full 2D filter (Fig. 10d).

7 RESULTS, EVALUATION AND COMPARISONS
We implemented our approach in our internal framework using
C++ and OpenGL. We will release the full source code, including
all preprocessing and runtime components. After an initial prepass
where geometric information is rendered in the novel view, the path
perturbation process and gathering are run in a single fragment
shader. The reconstruction filter is then applied on the gathering
output in a separate set of render passes.
Specular layers and the diffuse light map were generated with a

modified version of the Mitsuba unidirectional path tracer at 2048
samples per-pixel. Each scene contains 252 probes placed on a reg-
ular grid, each generated at a 1024x512 resolution. We render the
novel view at 1920x1080.

To highlight their relative importance, we first evaluate different
aspects of our algorithm on four test scenes. We then compare
our results to five different methods, including some quantitative
comparisons. We present results for varying levels of glossiness,
from perfect mirrors to rough metal and wood. Results are best
appreciated in the provided supplementary videos; we include a
supplemental HTML file that allows side-by-side video comparisons
of different methods.

7.1 Test Scenes
We evaluated our method on the scenes shown in Fig. 11: Bathroom,
Livingroom, Staircase and Small Kitchen, all from the Bitterli [2016]
model repository. The first three contain the original geometry, with
some added elements to showcase glossy reflections. Small Kitchen
contains only a portion of the repository’s scene; the high object
count in the original required a large diffuse light map. Solutions
for handling large, complex light maps exist, but are orthogonal to
our approach and we leave this as future work.

7.2 Evaluation
We evaluate four aspects of our algorithm. All figures in this subsec-
tion show only our generated glossy layer. Specifically, we explore:

(1) the effect of our probe parametrization,

(2) the effect of gathering via our approximate path perturbation,
(3) the effect of total probe count and the subset used at runtime,
(4) and the effect of our glossiness filtering.

Fig. 12. Comparing (left) regular and (right) our adaptive parameterization
when warping just a single probe into the novel view. Top: Bathroom scene,
Bottom: Small Kitchen. For clarity, we do not apply our glossiness filter.

Fig. 12 compares results using a standard lat-long probe parame-
terization and our adaptive method when warping just the single
closest probe into a novel view. Adding resolution for reflections
viewed at a grazing angle (Bathroom) and on high-frequency sur-
faces (Small Kitchen) clearly reduces aliasing and subsampling ar-
tifacts. The additional resolution improves warping, as geometric
information is more accurate. For clarity, renderings in Fig. 12 and
13 do not include our glossiness filtering.

For gathering using our approximate path perturbation, Fig. 13
shows the effects of our paraboloid approximation and using a single
level search. We see that using a planar approximation on curved
objects leads to large regions where the corrective search fails, while
our paraboloid representation gives much improved results (Fig. 13
first row). Decreasing the search window can miss optimal probe
samples, creating distortions on the bin (Fig. 13 second row). Using
only the coarsest search level (Fig. 13 third row) we can select sub-
optimal probe samples, resulting in a larger number of incorrect
samples.
In Fig. 14 we show the effect of using fewer probes for repro-

jection and reducing the number of precomputed probes. In both
cases, the reduction prevents more pixels in novel views from dis-
covering relevant probe samples, creating discontinuities and other
inconsistencies on glossy surfaces.

Using probes containing full roughness materials, discontinuities
are visible at reflected occlusion boundaires. In Fig. 15 we illustrate
the effects of our two-step glossiness convolution, using probes with
halved material roughness. This reproduces the desired material
glossiness without artifacts at occlusions.
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Fig. 13. Row 1: Paraboloid approximation. Left using a planar approxima-
tion and right our paraboloid. Row 2: Left using reduced (3x3;3x3) search
windows, right, our solution. Row 3: Left using a one level search, right our
2-level solution. Please note that glossiness filtering is not applied here.

Fig. 14. Top: left, selecting 4 probes instead of 8; right our solution selecting
8 probes. Bottom: left, total of 126 probes; right our solution with 252. Fewer
available probes lead to missing information on some surfaces.

Fig. 15. Left: glossy layered rendered by gathering from probes generated
using initial material roughness. The reflections are sharper. Right: our
glossiness convolution applied on halved roughness probes approximate
the effect of the material full roughness.

7.3 Results and Comparisons
Fig. 16 shows frames from our supplementary video’s camera paths,
together with the corresponding ground truth. We accurately cap-
ture complex glossy light paths at interactive frames rates, including
complex secondary glossy effects (e.g., the reflection of the top of
the bin—row 1, left; glossy reflections of the table—row 4, right).
Nonetheless, while our approximation is quite accurate overall,
some differences remain (e.g., roughness levels on the floors). Please
refer to the supplemental for a visualization of the error between
the path traced ground truth and our results.

We compare to three baselines and two previous methods, along
with path-traced ground truth rendered withMitsuba. We encourage
the reader to watch the corresponding videos, provided as supple-
mental material. Note: due to issues converting and loading model
and material formats, we only compare the Bathroom scene across
all methods.

7.3.1 Comparisons with Baselines. The first baseline is an image-
based rendering (IBR) approach akin to an unstructured lumigraph
(ULR) [Buehler et al. 2001] rendering of our probes. We reproject the
probes using the scene geometry and use standard ULR weights per-
pixel. Evidently, this naive IBR cannot correctly capture reflections,
see Fig. 18.

The second and third baselines use real-time ray tracing (RTRT)
via NVIDIA’s Falcor framework [Benty et al. 2020]. We compare
to a real-time path tracer, denoised with the OptiX denoiser. We
gave this path tracer the same compute budget as our prototype,
resulting in 2 paths per pixel. Even though this captures the general
structure of light paths, quality and stability are generally lower
(e.g., in the reflections on the sink, Fig. 17, top right). Please note
that materials in the Falcor real-time path tracer and – to a lesser
extent – McGuire et al. [2017b] are slightly different from those in
our system, resulting in small differences in overall appearance. We
also compare to lightmap rendering augmented by BRDF-sampled
rays. Again using the same budget allows for 3 bounces, using 4
samples for the glossy lobes (at the first path vertex) to obtain the
best results. This method also provides good results, but misses
secondary glossy effects from distant emitters that require a much
higher sample count (Fig. 17, bottom left). Note, for example, the
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Ours Ground Truth Ours Ground Truth

Fig. 16. Results of our method. For each scene we show two viewpoints rendered with our method and the corresponding ground truth path traced image.

missing glossy highlight on the table. In contrast, our solution has
overall good image quality, even though some small inaccuracies
remain in reflections. The quality is best appreciated over the entire
path in the video.

7.3.2 Comparisons with Prior Art. We also compare to image-space
gathering [Robison and Shirley 2009] and McGuire et al.’s [2017b]
probe-based method. We reimplemented the former in our frame-
work, using Optix [Parker et al. 2010] and fetching our lightmap to
generate the perfect reflection image. For McGuire et al. [2017b],

we adapted the publicly available implementation in the G3D frame-
work [McGuire et al. 2017a]. For a fair comparison, we use Mitsuba
to path-trace 128 regular light probes using their octahedral param-
eterization at 1024x1024 resolution, giving the same overall pixel
count our probes used. We import these probes into G3D and use
them for all processing required, e.g., irradiance. We activate their
glossy reflections, which trace 8 additional rays in the probes. Both
methods were given the same compute budget as ours. Again, the
result is plausible, but glossy effects are missing (Fig. 17-18).

ACM Trans. Graph., Vol. 39, No. 6, Article 237. Publication date: December 2020.



Glossy Probe Reprojection for Interactive Global Illumination • 237:13

[Robison and Shirley 2009] [McGuire et al. 2017b] ULR Real-time Path Tracer

RTRT+lightmap Ours Ground Truth

Fig. 17. Comparisons with same frame rate for each method. Previous methods: [Robison and Shirley 2009], [McGuire et al. 2017b]; baselines: unstructured
lumigraph (ULR), real-time path tracing using Falcor, RTRT with light map; ours and the path-traced ground truth.

Table 1. Quantitative error metrics, using both RGB and luminance, com-
paring Image Space Gathering [Robison and Shirley 2009], the probe-based
approach of McGuire et al. [2017b], the unstructured lumigraph (ULR),
real-time path tracing and RTRT with light map baselines, and our method.
Lower is better.

RMSE DSSIM
Method RGB Lum. RGB Lum.
[Robison and Shirley 2009] .086 .084 .072 .064
[McGuire et al. 2017b] .093 .093 .087 .080
ULR .074 .073 .100 .091
RT path tracer .049 .042 .123 .114
RTRT+Lightmap .050 .050 .063 .056
Ours .027 .026 .046 .039

7.3.3 Quantitative Evaluation. We performed a quantitative eval-
uation using both root mean square error (RMSE) and structural
dissimilarity (DSSIM) [Loza et al. 2006]. We compute the error be-
tween the generated and ground truth glossy layers. Error is aver-
aged over 12 frames sampled regularly along the path recorded in
the Bathroom scene. Table 1 summarizes the error for Robison and
Shirley [2009], McGuire et al. [2017b], the unstructured lumigraph
(ULR), real-time path tracing using Falcor and RTRT with light map
baselines, and our method. The error for our method is consistently
much lower than the previous work and baselines.

7.3.4 Statistics. The timings and memory consumption for our
method, including preprocessing, are shown in Table 2. Rendering
times are averaged over the paths shown in the supplemental video.
Interactive performance was measured on a computer with an Intel
Core i7-7800X processor, 64GB of RAM, and a NVIDIA Geforce
RTX 2080Ti with 11GB of VRAM. We currently use the Mitsuba

renderer to precompute probes and diffuse light maps on our clus-
ter. A typical node has a dual Intel Xeon Silver 4110 processor and
192GB of RAM. We could instead use a real-time path tracer, greatly
accelerating this step, but we opted for Mitsuba’s mature pipeline
to handle the materials in our scene repository. Comparing with
our Falcor path-tracer implementation in Bathroom for example, for
approximately the same quality one could expect a 10x speedup
in preprocessing. Our adaptive parameterization minimizes overall
memory use, especially when using half-precision probe textures.
Our probe texels use 24 bytes: glossy color (6 bytes), reflected po-
sitions and material ID (8 bytes), triangle ID (4 bytes), barycentric
coordinates (4 bytes), parameterization and its derivatives (8 bytes,
stored at half resolution). Other geometric information is stored
per-vertex and interpolated at runtime.

In table 3 we display rendering time and VRAM use for the Bath-
room scene for different probe counts and resolutions, each time
doubling the number of probes or pixels. Because only the eight
closest probes are gathered, performance is stable apart from a slight
improvement at low resolutions thanks to texture caching. Note
that the highest count test incurs a performance loss as the probes
did not fit in VRAM. Memory consumption is approximately linear
with the number of probes and pixels. Our method remains viable
at lower memory footprints than that presented in this section, at
the cost of artefacts in sharp reflectors and the shape of glossy high-
lights. We show example error maps with different probe counts
and resolutions in supplemental.

8 LIMITATIONS AND FUTURE WORK
Our method achieves plausible results with a satisfactory accuracy
in many cases (see Fig. 16-18); however it has some limitations.

The computational cost and memory of the precomputation is the
main drawback of our approach, which also limits our solution to
static scenes. An incremental approach to building light probes and
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[Robison and Shirley 2009] ULR RTRT+lightmap Ours Ground Truth

Fig. 18. Equal time comparisons for each method. Left to right: [Robison and Shirley 2009], ULR, RTRT with light map, ours and the path-traced ground truth.

Table 2. Timings and memory consumption of our method. Rendering
timings average costs over frames in our videos.

Bathroom Kitchen Livingroom Staircase
Preprocess
Parameterization 9min 6min 8min 8min
Geom. Data 3min 3min 3min 2min
Light map 10 h 9 h 15 h 12 h
Probes 16 h 13 h 22 h 23 h

Runtime
Rasterization 0.9ms 1.1ms 0.9ms 0.7ms
Raycasting 6.3ms 6.3ms 6.3ms 5.4ms
Gathering 21ms 27ms 26ms 18ms
Filtering 10ms 12ms 11ms 11ms
Total 41ms 47ms 46ms 36ms

VRAM 5.6GB 5.8 GB 5.7 GB 5.7 GB

Table 3. Average timings and VRAM usage of our method on Bathroom
for different probe counts and resolutions. Rendering timings average costs
over frames in our video.

768x384px 1024x512px 1440x720px
125 probes 36ms 2.8GB 38ms 3.7GB 41ms 5.9GB
252 probes 37ms 4.0GB 41ms 5.6GB 41ms 10.1GB
504 probes 37ms 6.3GB 39ms 9.7GB 118ms 18.6GB

maps via hardware accelerated path tracing would be an interesting
way to lift this limitation in future work.

Specular geometric aliasing can appear along object edges, occa-
sionally creating bright crawling pixels. This is a common issue with
sharp specular lobes; methods exist to reduce this artifact by adjust-
ing the roughness at run-time [Kaplanyan et al. 2016; Tokuyoshi
and Kaplanyan 2019]. An interesting possibility for future work
would be to merge such approaches with our current gathering, by
extending this formulation to large-scale filter footprints.
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We are currently limited to opaque materials. Extending our ap-
proach to transparent materials probably requires storing more
information in the probes plus a new gathering approach for re-
projecting transmissive surfaces. Such a gathering solution is an
exciting future direction. A similar argument applies to extending
the method to anisotropic materials, though a simpler solution may
be possible for this case.
Because our method blends reprojected specular information

from nearby pixels, spatially varying BRDFs with high-frequency
roughness details are not accurately supported. Our method could
be extended in this direction by incorporating roughness maps in
the filter footprint estimation, potentially by using the minimal
roughness over the map in precomputation, and replicating the final
roughness during filtering. Roughness of probe samples could also
be taken into account when evaluating the gathering score, to reject
candidates with a different roughness.
While the specular path perturbation framework allowed our

technique to be real-time, it required a simplified representation
for reflector surfaces. Manifold exploration [Jakob 2013] provides a
more general way of estimating perturbed specular paths on arbi-
trary geometry. Exploring how it could be applied in real-time is an
opportunity for future work.
Finally, our two-step convolution is approximate, as seen with

the small differences in glossiness in Figs. 16-18. A deeper study
of error bounds and a more accurate approximation are definitely
worthy goals. Nonetheless, our current results are plausible and
provide convincing and quite accurate interactive renderings.

9 CONCLUSION
We presented a novel algorithm for real-time rendering of synthetic
scenes using glossy paths dynamically reprojected from probes and
diffuse lighting from a light map. Our solution builds on three main
contributions: an adaptive parameterization to optimize probe mem-
ory usage, an accurate gathering algorithm for reprojecting glossy
paths into novel views, and a two-step solution to avoid reflection
boundary sharpening that occurs when reprojecting naively.

Our solution allows interactive walkthroughs with global illumi-
nation for opaque scenes. The path we chose is based on precompu-
tation: the advantage is that complex light paths are precomputed
at high quality and that our reprojection can accurately construct
novel views. However, this comes at the price of the computational
overhead of precomputation and the limitation to static scenes. On
the other end of the spectrum are online methods, such as a de-
noised real-time ray-tracer. Our results show the feasibility of using
precomputed data to render complex light paths interactively, and
future methods should build on the full spectrum of methods from
fully online to precomputed. Our solutions for memory optimization,
accurate reprojection and occlusion-aware glossiness will hopefully
be useful building blocks to such solutions, moving towards the
ultimate goal of real-time global illumination for complex, dynamic
scenes.
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A DISCUSSION OF CHOICE OF DCT
In Sec. 4.2.1, we use the DCT to identify probe regions requiring
increased resolution due to small features or high geometric com-
plexity. While any frequency decomposition could be used, we used
the DCT for simplicity and its real-valued coefficients. We could
have used image depths, rather than normals, as a representation of
geometry. However, due to the linearity of the convolution, larger
depth differences naturally produce stronger responses. To avoid
this, we use the normal buffer, which contains normalized values
by construction. A canonical DCT application subdivides the image
into 𝑁 × 𝑁 blocks and treats blocks individually, resulting in one
response per block. In contrast, we convolve the image with the
corresponding 𝑁 × 𝑁 DCT basis functions, yielding an individual
response per pixel. Note that, therefore, our approach gives the same
responses as the block-based method, just at an 𝑁 2 higher spatial
resolution.
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