
EFFICIENT RENDERING OF ANATOMICAL TREE STRUCTURES USING GEOMETRY
PROXY

Hang Dou?, Christian Bauer∗ †, Member, IEEE, Chris Wyman?, Reinhard R. Beichel∗ † ‡, Member, IEEE

? Dept. of Computer Science, The University of Iowa, IA 52242
∗ Dept. of Electrical and Computer Engineering, The University of Iowa, IA 52242

† The Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242
‡ Dept. of Internal Medicine, The University of Iowa, Iowa City, IA 52242

ABSTRACT
Rendering tubular structures efficiently is crucial for studying
anatomical tree-like structures, such as vessels and airways.
Most existing methods are based on surface reconstruction,
resulting in complex meshes, which slows the rendering per-
formance as the tree complexity increases. In this paper, we
present an approach to render tubular tree structures using ge-
ometry proxy. We generate low complexity proxy meshes on
the fly and shade the meshes as tubular objects consisting of
truncated cones and spheres. Unlike surface reconstruction,
our method requires no precomputation and produces appeal-
ing imagery with faster rendering performance.

Index Terms— Geometry Proxy, Tubular Tree Structure,
Truncated Cone Visualization

1. INTRODUCTION

Blood vessels, bronchial tree and nerves form dense anatomi-
cal tree-like structures. Using modern volumetric imaging
techniques such as CT scans or an imaging cryomicro-
tome, these structures can be depicted with great detail.
Understanding these structures is crucial for several medical
and biomedical applications, including medical education,
therapy planning, biomedical analysis and simulation tasks.
Therefore, researchers have the need to interactively explore
these structures, which requires efficient visualization meth-
ods. Fig. 1 shows an example of such interactive exploration.

Standard volume rendering methods (e.g. [1]) and surface
reconstruction methods such as isosurface extraction [2, 3]
are generally insufficient for this task, because they do not al-
low for a visual separation of interwoven arteries and veins,
or picking arbitrary sub trees. Image analysis methods exist
that allow to reconstruct such structures and to describe them
on a higher abstraction level based on the tree’s skeleton and
associated diameter information. Such representations allow
for a compact encoding of the essential structural information
and are utilized in several applications, but cannot be visual-
ized directly. To obtain visualizations from such a represen-
tation, methods have been proposed to reconstruct a surface

(a) (b)

Fig. 1. (a) Volume rendering of a rat lung imaged with imag-
ing cryomicrotome. (b) Segmented airway tree structure with
selected subtree.

mesh based on the vessel skeleton and radii information. For
example, Oeltze [4] applied a convolution surface to visualize
anatomic tree structures and Hahn [5] utilized truncated cones
to visualize symbolic models of vessel structures. However,
to obtain visually appealing renderings, these surface recon-
struction methods result in high density meshes, which leads
to slow rendering performance for complex tree structures.

In this work, we present a novel method to efficiently ren-
der anatomical tree structures represented by their skeleton
and radius information. Rather than reconstructing complex
meshes for rendering, we produce one quad for each pair of
adjacent centerline points and employ primitive ray intersec-
tion on the quads to accomplish a tubular appearance.

2. METHODS

In our method, we decompose the skeleton into segments of
adjacent centerline points with associated radius that are ren-
dered individually. Each of these segments is rendered as a
truncated cone with a sphere at the endpoint that forms the
transition to the next segment as depicted in Fig. 2(e). For

(a) (b) (c) (d) (e)

Fig. 2. Rendering process. (a) Input centerline. (b) Generated quads (c) After truncated cone ray intersection. (d) After sphere
ray intersection. (e) Spheres at the joints and endpoints form the transition between the truncated cone segments.

the rendering, we utilize the programmable render pipe line
of modern graphics processing units (GPUs), which allows
us to generate graphics primitives from input segments on the
fly rather than simply rendering of precomputed meshes. In
a first step, we create quads on the fly that fully cover each
segment. In a second step, by pushing quad pixels onto the
truncated cone, we analytically find their position and surface
normal for use in standard Lambertian shading. Details for
both steps are described below. Fig. 2 shows an example with
intermediate processing results.

2.1. Quad Generation

We observe that for anatomical tree structures, the projection
of each segment, which is represented by a truncated cone
and a sphere, on the screen can be covered by a quad (see
Fig. 3(a)). Since performance decreases as the rasterized pixel
count increases, we aim to quickly generate a quad whose
screen space projection fully covers each truncated cone with
minimal wasted area.

(a)

Eye

View Ray Image Screen

V1

V2

V3A1
A2

R1

R2

Bounding

Box

(b)

Fig. 3. Quad generation. (a) Various trancated cones pro-
jected to the image plane. All projections fall into a quad. (b)
Quad generation process. We use points A1, A2 and radii R1,
R2 to identify the red quad inside the bounding box, which
minimally bounds the truncated cone’s projection.

As shown in Fig. 3(b), given a tubular section with a pair
of centerline points A1, A2 and vessel radii R1, R2, we build

the truncated cone’s bounding box with one of its diagonal
quads facing the viewer. By applying cross product to the eye
ray V2 and cone’s axis V3, we get vector V1. (V1, V3, R1,
R2) defines the truncated cone’s bounding box. To ensure
the quad fully covers the cone’s projection on the image, we
select the diagonal of the bounding box by choosing the one
with normal closest to view ray. Additionally, to cover the
projection of the sphere within the same quad, we expand the
quad in length by the radius of the sphere.

2.2. Primitive Ray Intersection

For each pixel inside a quad, we shade it as a diffuse truncated
cone surface:

OutputColor = (N · L)× Im, (1)

where L denotes the light direction, Im denotes the light
intensity and N denotes the surface normal. For the ray inter-
section with the truncated cone, our goal is to find the hit point
along the eye ray on the cone through the given pixel. As de-
picted in Fig. 4, given a truncated cone C(A1,A2,R1,R2),
where A1 and A2 are two centerline points and R1 and R2

their radii, respectively, we generate the quad as discussed in
the previous section. When shading each pixel covered by
the quad’s projection on the screen, a ray D is cast from the
viewer. First we convert D into cone space where the origin
is A1 and the Z axis is (A1,A2). Suppose the hit point of
D on C is H. In cone space, H can be derived by solving
equations(2), (3) and (4):

H = E+ t×D, (2)

(XE + t×XD)2 + (YE + t× YD)2 = r2, (3)

r =
R2 −R1

||A1 −A2||
× (ZE + t× ZD) +R1, (4)

where E indicates eye position, D indicates ray direction,
t indicates the distance between the hit point H and the viewer
E. (XE , YE , ZE) represents eye position in cone space and
(XD, YD, ZD) represents the ray direction in cone space.
Suppose N is the cone’s tip. Then the surface normal at H

E

D Image Screen

A1 A2

R1

R2

H

Cone: C

Z

Y

X

P Projection of

the Quad

N

(a)

E

D Image Screen

P Projection of

the Quad

A

R

T

H

Sphere: S

(b)

Fig. 4. Primitive ray intersection. P is the pixel we are shad-
ing. E represents the viewer and D represents the view ray di-
rection. (a) Truncated cone C intersects with ray D (b) Sphere
S intersects with ray D.

can be obtained by generating a vector perpendicular to
−−→
NH

in the plane (A1,A2,H).
For the ray intersection with the sphere at the end of the

segment, we solve equations (2), (5), (6) and (7) for each
pixel:

t = |TE| − |TH|, (5)

|TE| = (E−A) ·D, (6)

|TH| =
√
R2 − (|AE|2 − |TE|2), (7)

where A indicates the endpoint, R indicates the radius at
the endpoint and H is the hit point along the view ray on the
sphere. The pseudocode used for pixel shading is as follows:

Shoot a ray from eye through the pixel
Apply truncated cone intersection and get valid tcone
Apply sphere intersection and get valid tsphere
if tcone is valid or tsphere is valid then

t := Min(tcone, tsphere)
H := E+ t×D
Compute H’s surface normal N
Shade the pixel by equation 1 and store t as depth value

else
Do nothing

end if

We observed, that in case the centerline points are very
close compared to their radius, the sphere contains most of the
truncated cones body and the truncated cone itself does not
need to be rendered. Therefore, we introduce an optimization
stragety (OPTS), where we render the truncated cone only if
the distance between two points is smaller than the smaller of
the two segments radii.

3. EVALUATION METHOD AND RESULTS

Our method is implemented with OpenGL/GLSL in C++
and is tested on a machine with an Intel Xeon X5450 CPU
@3.00GHz and an NVIDIA GeForce GTX550 Ti graphics
card. Two sets of data are used for evaluation: (a) a vascular
structure from human lung CT scan and (b) a rat lung airway
tree reconstructed from cryomicrotome images. We com-
pare our method with three other approaches: standard cone
mesh generation (SCM)1, raw isosurfaces [2] extracted from
binary segmentations and isosurface meshes simplified with
QSlim [6]. SCM produces a set of N points along a circle
around each centerline point and connects them into a cone.

Fig. 5 shows the quality of our rendering result compared
with other approaches. Table 1 and 2 depict the resulting
mesh complexity and the corresponding rendering speed. All
the images are generated with an image size of 1680×974
pixels.

FPS Triangle Number
Our method with OPTS 771 63542
Our method without OPTS 572 63542
SCM with 8 Points 563 569648
SCM with 16 Points 381 1139296
SCM with 32 Points 210 2278592
Isosurface with QSlim 430 481248
Isourface 176 2568428

Table 1. Airway tree of rat lung with 35603 centerline points.

FPS Triangle Number
Our method with OPTS 269 216566
Our method without OPTS 251 216566
SCM with 8 Points 86 2100704
SCM with 16 Points 77 4201148
SCM with 32 Points 60 8402816
Isosurface with QSlim 120 1000000
Isosurface 53 3398188

Table 2. Vascular structure from human lung CT scan with
353875 centerline points.

4. DISCUSSION

In our experiments, we compared our method to the results of
three other methods.

Standard isosurface mesh extraction from a binary seg-
mentation allows to represent the tree structure very accu-
rately. However, these meshes are of very high density and
only allow for low rendering performance. Simplifying these
isosurfaces using methods like QSlim (Fig. 5(b)) allows re-
ducing the mesh complexity and increasing the performance.

1available in VTK (http://www.vtk.org) in class vtkTubeFilter.

(a) Isosurface (b) Isos. with QSlim (c) Our method (d) SCM with 8 points (e) SCM with 16 points (f) SCM with 32 points

Fig. 5. Rendering results. The first row shows images of a rat lung airway tree extracted from cryomicrotome images and the
second row shows images of vascular structures from a lung CT scan. For both cases, only subparts of the whole dataset are
shown.

However, the resulting meshes appear visually less appeal-
ing and artifacts may occur in branching areas or for thin tree
branches, if the meshes are simplified too much. Even af-
ter simplifying the isosurfaces, rendering performance is still
much slower compared to our proposed method.

Similar to our method, the SCM method utilizes center-
line and radius information as input besides an additional
parameter n specifying the number of surfaces that are used
to approximate the individual cylinder segments between two
adjacent centerline points. This parameter represents a trade-
off between quality and rendering performance. While the
method requires at least 3 surfaces around 16 to 32 surfaces
are needed to provide visually appealing results (Fig. 5(e)
and Fig. 5(f)). Our method performs about 2-3 times faster
than SCM with 16 or 32 points. SCM with 8 points shows
comparable performance to our method without the opti-
mization strategy (OPTS), but to the cost of obvious artifacts
(Fig. 5(d)). Additionally, the introduced OPTS approach
allows increasing the performance by about 10% without
any noticable quality degradation. Contrary to the SCM
method, our approach (Fig. 5(c)) utilizes only a small num-
ber of triangles and does not just provide an approximation
of the cones but renders them accurately utilizing analytical
ray-intersection. This allows for fast and visually appealing
rendering results.

5. CONCLUSION

We present a novel way to render anatomical tree structures.
Using centerlines with radius information as input, quads are
generated as geometry proxies for the tree. By exploiting
primitive ray intersection in OpenGL fragment shader, we
shade these proxies with a tubular exterior. Thus, our method
gives a real truncated cone look of the branches rather than a
triangulated mesh approximation and runs in high frame rates
compared to mesh-based approaches.

6. ACKNOWLEDGEMENTS

This work was supported in part by NIH grant R21HL110000.
The authors thank Prof. Robb Glenny from the University of
Washington for providing the cryomicrotome images.

7. REFERENCES

[1] E. Bullitt and S.R. Aylward, “Volume rendering of seg-
mented image objects,” Medical Imaging, IEEE Transac-
tions on, vol. 21, no. 8, pp. 998–1002, 2002.

[2] Y. Livnat and C. Hansen, “View dependent isosurface ex-
traction,” in Visualization’98. Proceedings. IEEE, 1998,
pp. 175–180.

[3] Will Schroeder, Kenneth M. Martin, and William E.
Lorensen, The visualization toolkit (3rd ed.): an object-
oriented approach to 3D graphics, Kitware, Inc., Corpo-
rate Park Drive, Clifton Park, NY 12065, USA, 2001.

[4] S. Oeltze and B. Preim, “Visualization of anatomic
tree structures with convolution surfaces,” in
IEEE/Eurographics Symposium on Visualization,
Informatik aktuell, S, 2004, pp. 311–320.

[5] H.K. Hahn, B. Preim, D. Selle, and H.O. Peitgen, “Vi-
sualization and interaction techniques for the exploration
of vascular structures,” in Visualization, 2001. VIS’01.
Proceedings. IEEE, 2001, pp. 395–578.

[6] M. Garland and P.S. Heckbert, “Surface simplification
using quadric error metrics,” in Proceedings of the 24th
annual conference on Computer graphics and interactive
techniques. ACM Press/Addison-Wesley Publishing Co.,
1997, pp. 209–216.

