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Figure 1: Our rearchitected spatiotemporal resampling improves Bitterli et al.’s [BWP∗20] ReSTIR with significantly lower cost and is shown
here in two different renderers. (Left) Our Falcor [BYC∗20] prototype shows the 150 million triangle Paris Opera House model (courtesy
©GoldSmooth from TurboSquid), with lighting at a cost of 11.8ms for 3840×1440 using two rays per pixel, on a RTX 3090. (Right) A
dynamic night city scene, rendered in a driving simulator in 31 ms at 2560×1440, including 2001 analytic primitive lights and 453 emissive
meshes (26,067 triangles). Both results have denoising applied [NVI20].

Abstract

Recent work by Bitterli et al. [BWP∗20] introduced a real-time, many-light algorithm for rendering dynamic direct illumina-
tion from millions of lights by iteratively applying resampled importance sampling using weighted reservoir sampling. While
enabling new levels of lighting complexity in real-time, the total cost remained beyond the budgets of even the most computation-
ally demanding games. We introduce key algorithmic improvements developed while productizing this method that collectively
reduce lighting costs by up to 7×, dramatically improve memory coherence, shrink the required ray budget, increase rendering
quality, and expose parameters that enable trading quality for performance.

CCS Concepts
• Computing methodologies → Rendering; Ray tracing;

1. Introduction

Offline renderers have long used Monte Carlo ray and path tracing
to stunning effect (e.g., [BAC∗18,FHL∗18]). With the introduction
of hardware-accelerated ray tracing [Har20, KMSB18], developers
can perform arbitrary visibility queries for real-time Monte Carlo
integration. However, modern ray tracing hardware’s throughput is
limited, especially when targeting lower-end devices. Thus, devel-
opers often integrate ray tracing as optional eye candy for a subset
of users. Combined with recent advances in fast, low-sample recon-
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struction (e.g., [SKW∗17,SPD18]), this has significantly raised the
image quality of games rendered at maximum graphics settings.

But many benefits are not attained without redesigning assets and
rendering pipelines. For example, many-light rendering techniques
can simplify artist workflow, replace multiple per-light shadow al-
gorithms, and remove ambient occlusion passes. But improvements
only accrue when new algorithms also work on lower-performance
and legacy hardware. Without sufficient scaling, ray tracing’s ad-
vantages become disadvantages: artists must tweak another asset
variant and developers must maintain an additional code path.

We started productizing recent work [BWP∗20] on many-light
sampling. But their research prototype varied from 10 and 50 mil-
liseconds per frame on high-end, prosumer GPUs; while an undeni-
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Figure 2: An overview of the reservoir-based spatiotemporal importance resampling (ReSTIR) pipeline from Bitterli et al. [BWP∗20]. We
highlight above some specific performance bottlenecks addressed in this paper, including memory incoherence during initial candidate
generation (Section 5), a global synchronization prior to spatial reuse (Section 6.2), determining optimal number of spatial neighbors
(Section 6.3), ray count for shading (Section 6.1), and decoupling shading from reuse (Section 7).

ably impressive price-to-performance ratio, even the minimal cost
exceeds game budgets. But low-level performance analysis led to
some interesting observations. First, while leveraging ray tracing,
reservoir-based spatiotemporal importance resampling (ReSTIR)
often spent less than 1/3 of its time tracing rays. Second, the com-
putational complexity of ReSTIR’s non-ray computations is O(1),
but some component costs varied over 20× scene-to-scene.

To address these issues, we entirely rearchitected ReSTIR to im-
prove both quality and performance. We achieved these gains by:

• Understanding the causes of bias and their relation to noise; this
enables use of simple heuristics to reduce both bias and noise,
• Applying resampled importance sampling (RIS) [Tal05,TCE05]

to reshape computations, extracting most of the incoherent mem-
ory fetches from the inner loop,
• Carefully analyzing parameter quality implications; this allows

reducing the maximum ray budget from 5 to 2 rays per pixel,
• Removing a per-frame global barrier; selecting spatial samples

from our temporal buffer removes intra-frame dependencies,
• Decoupling shading from sample reuse; this improves quality at

a given cost by shading samples that resampling discards,
• Reusing visibility to trade quality for performance; in decoupled

shading, one of our two rays per pixel only impacts shading. Se-
lectively tracing that ray degrades quality, but reduces cost.

With traditional optimizations, such as data structure compression,
reducing intermediate data, and deduping computations, we reduce
cost up to 7× over Bitterli et al. [BWP∗20]. At 1920×1080 with
max settings, ReSTIR uses under 1.5 ms of compute plus two rays
per pixel, for total cost of 1.9 to 5.1 ms (varying by scene) on an
RTX 3090. By reducing settings, both costs decrease further.

2. Paper Overview

In this paper, we have multiple goals. First, Talbot et al. [TCE05]
and Bitterli et al. [BWP∗20] motivate use of importance resampling
and spatiotemporal reuse for rendering, but today neither is widely
used or discussed in textbooks (e.g., [DBB06,MS18,PJH16]). Sec-
tion 3 walks through the underlying mathematics, covering the ba-
sics in one place to develop more of the underlying intuition.

Second, Bitterli et al. [BWP∗20] derive how to unbiasedly reuse
samples, but this remains non-intuitive. Section 4 restates the math,
visually depicts bias, discusses how bias manifests, and reviews
techniques that reduce and eliminate bias. This helps validate the
soundness of spatiotemporal reuse to more skeptical readers.

Finally, we focus on improvements to drive higher efficiency (see
Figure 2), including both theoretically- and empirically-motivated
changes. Readers not interested in the underlying theoretical dis-
cussions can skip Sections 3 and 4.

Section 5 presents how we reshape computations to lift execu-
tion and data divergence from our inner loop. Section 6 outlines
empirically motivated optimizations to our ray budget, sampling
parameters, and data flow. And Section 7 traces the life of a sam-
ple, uncovering previously discarded work that we show drives im-
proved quality and performance.

3. Background and Preliminaries

Before describing our rearchitected resampling, we review the math
and highlight how ReSTIR benefits real-time rendering.

A fundamental challenge in real-time rendering is efficiently ap-
proximating the rendering equation [Kaj86], which has no analytic
solution in most realistic scenarios:

L(x,ωo) =
∫

Ω

ρ(x,ω,ωo)L(x,ω)〈~nx ·ω〉dω, (1)

This shades point x as viewed from direction ωo, with surface nor-
mal~nx, BRDF ρ, and incident radiance L(x,ω). Instead, ray tracers
typically approximate the rendering equation via importance sam-
pled Monte Carlo integration:

F =
∫

Ω

f (ω)dω≈ 1
N

N

∑
i=1

f (ωi)

p(ωi)
. (2)

In other words, we numerically approximate Equation 1 by sam-
pling N directions ωi per pixel, selecting ωi with probability p(ωi).

In real-time, minimizing ray count N is vital. Optimally, a per-
fect importance sampler reduces N to 1. This requires p(ω)∝ f (ω),
allowing cancellation in the summand from Equation 2. As proba-
bility density functions must integrate to unity, this means:

p(ω) =
f (ω)∫

f (ω)dω
, (3)

but requires knowing F a priori. Introductory texts (e.g., [PJH16])
often show Equation 3 and conclude perfect sampling is unachiev-
able. But can we approximate perfect importance sampling? Ap-
proximating may require N > 1 rays per pixel, but generally min-
imizes N. Suggesting approximately-perfect importance sampling
seems odd, but it follows well-known statistical methods, e.g., see
Devroye’s [Dev86] section on almost-exact cdf inversion.
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3.1. Resampled Importance Sampling

To approximate perfect importance sampling, we iteratively apply
Monte Carlo integration. To sample according to the unnormalized
target function p̂(ω), we approximate the normalization:

p(ω) =
p̂(ω)∫

p̂(ω)dω
≈ p̂(ω)

1
M ∑ j

p̂(ω j)
q(ω j)

, (4)

where q(ω) is the source pdf. Essentially, choose M samples from
source pdf q to guide our N samples to best approximate target pdf
p̂. Merging back into Equation 2 and rearranging gives:

F =
∫

Ω

f (ω)dω≈ 1
N

N

∑
i=1

[
f (ωi)

p̂(ωi)

1
M

M

∑
j=1

p̂(ωi j)

q(ωi j)

]
≡ 〈F〉ris, (5)

the resampled importance sampling (RIS) estimator, 〈F〉ris, intro-
duced to graphics by Talbot et al. [TCE05]. RIS reevaluates, or
resamples, the M candidate samples using p̂ and selects one pro-
portional to weight wi j = p̂(ωi j)/q(ωi j) as sample ωi.

3.1.1. Why Is Resampled Importance Sampling Valid?

Astute readers may observe the right hand side of Equation 4 is not
a pdf. Specifically, integrating over the hemisphere may not give
unity. Remember, these are approximate, randomized distributions.
Understanding them requires trusting their aggregate behavior, i.e.,
validating their expected values converge to our desired result. To
do that, define a function W (ω,z):

W (ω,z) =
1

p̂(ωz)

[
1
M

M

∑
i=1

wi(ωi)

]
, (6)

where ωz explicitly represents a random sample from {ω1, . . . ,ωM}
selected proportional to weights wi = p̂(ωi)/q(ωi), i.e., with prob-
ability wz/∑wi. This allows rewriting Equation 5 as:

〈F〉ris =
1
N

N

∑
i=1

f (ωi)W (ω, i), (7)

and is unbiased as long as the expected value:

E [W (ω,z)] =
1

p(ωz)
=

∫
p̂(ω)dω

p̂(ωz)
. (8)

This essentially requires E
[

1
M ∑

p̂(ωi)
q(ωi)

]
=

∫
p̂(ω)dω, which is just

Monte Carlo integration. But ensuring this expected value contin-
ues to converge to the desired result is a challenge as reuse becomes
more complex, i.e., when iteratively resampling. This opens oppor-
tunities for bias, which we explore more deeply in Section 4.

3.1.2. Degenerate Resampled Importance Sampling

Examining RIS edge cases provides insights into its sampling char-
acteristics and motivates some performance improvements we in-
troduce later. One set of edge cases includes M = 1 and M→∞:

F ≈ 1
N

N

∑
i=1

[
f (ωi)

q(ωi)

]
for M = 1, and

F ≈ 1
N

N

∑
i=1

[
f (ωi)

p̂(ωi)

∫
Ω

p̂(ω)dω

]
when M→∞.

(9)

For M = 1, RIS becomes Monte Carlo integration, sampling source
pdf q. When M =∞, RIS perfectly samples normalized target func-
tion p̂. Between the edge cases, as M grows, RIS more and more
closely samples according to target p̂’s distribution, and (for good
p̂) the better overall importance sampling becomes.

Equation 9 provides insight into the value of using higher-quality
source pdfs q(ω). For small M, the quality of q dramatically im-
pacts the final estimate. As M→∞, the quality of q is irrelevant.
For RIS and ReSTIR, in areas with large M, improving q has little
impact; where M is small, improving q is worthwhile.

Another degeneracy arises when we define p̂(ω) = q(ω). In this
case, Equation 5 becomes:

F ≈ 1
N

N

∑
i=1

[
f (ωi)

p̂(ωi)

1
M

M

∑
j=1

p̂(ωi j)

q(ωi j)

]

=
1
N

N

∑
i=1

[
f (ωi)

q(ωi)

1
M

M

∑
j=1

1

]
=

1
N

N

∑
i=1

[
f (ωi)

q(ωi)

]
.

(10)

This also gives a standard Monte Carlo estimator. But unlike Equa-
tion 9, which sets M = 1, this degenerate RIS has two steps! Al-
gorithmically: choose an M-element subset from a universe of po-
tential samples, then pick N of these elements for Monte Carlo in-
tegration. The key observation: any Monte Carlo estimator can be
replaced with a two-step degenerate RIS estimator.

3.1.3. Resampled Importance Sampling as Stratification

A final edge case defines p̂(ω) = f (ω). Here, Equation 5 becomes:

F ≈ 1
N

N

∑
i=1

[
f (ωi)

p̂(ωi)

1
M

M

∑
j=1

p̂(ωi j)

q(ωi j)

]
=

1
N

N

∑
i=1

[
1
M

M

∑
j=1

f (ωi j)

q(ωi j)

]
.

(11)
This shows RIS acting as a form of stratification over randomized
subsets, rather than typical stratification on fixed sets. I.e., in each
pixel, N sets of M random candidates ωi j are generated:

{{ω11, . . . ,ω1M},{ω21, . . . ,ω2M}, . . . ,{ωN1, . . . ,ωNM}}, (12)

and one random sample ωi is selected from each of the N sets (pro-
portional to weights wi j).

Viewing Equation 5 as a stratified estimator allows us to also
define an unstratified RIS estimator. This selects all N samples ωi
from the same set of M candidates, making the sums independent:

F =
∫

Ω

f (ω)dω≈

(
1
N

N

∑
i=1

f (ωi)

p̂(ωi)

)(
1
M

M

∑
j=1

p̂(ω j)

q(ω j)

)
. (13)

The utility of viewing RIS as a form of random stratification may be
unclear, but we revisit this observation in Section 5 when applying
RIS to reshape our computations.

3.2. Weighted Reservoir Sampling

To minimize ray count, we aim to resample from the largest set M
affordable. Best results can require M>1000, but prior RIS meth-
ods [TCE05, TH16] retain candidates until resampling completes,
requiring O(M) storage that makes high sample counts infeasible.
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Bitterli et al. [BWP∗20] reformulates RIS using weighted reser-
voir sampling [Cha82,Vit85] to stream candidates, reducing storage
to O(N), i.e., only the selected samples ωi remain in memory:

input: stream S of samples ωi on lights
output: reservoir R = {ω,wsum,M}

R← {∅,0,0}

for each ωi in stream S:
R.wsum←R.wsum + weight( ωi )

R.M←R.M + 1
if rand()< (weight( ωi )/R.wsum) then

R.ω← ωi

Weighted reservoir sampling takes a straightforward inductive ap-
proach. Assuming a stream has been partially sampled with the de-
sired distribution, to process new element ωi we just need to deter-
mine whether to replace current sampleR.ω with ωi. For RIS, our
function weight(ωi) is wi = p̂(ωi)/q(ωi), and the probability to
select a new sample is wi / (∑ j≤i w j).

3.3. Spatiotemporal Importance Resampling

Weighted reservoir sampling enables memory-efficient RIS, but
computational complexity remains O(M). This is problematic as M
must be large to closely approximate perfect importance sampling.

ReSTIR [BWP∗20] proposes reusing neighbor and prior frame
samples to substantially increase effective sample count, amortizing
candidate sample costs over many pixels. This prefilters the pdfs,
rather than traditional reconstruction and denoising methods, which
postfilter color after rendering completes.

The key mathematical insight is that the approximately perfect
importance sampling shown in Equation 4 need not use a traditional
Monte Carlo estimator. It can use an RIS estimator:

p(ω) =
p̂0(ω)∫

p̂0(ω)dω
≈ p̂0(ω)

1
M0

∑ j

[
p̂0(ω j)
p̂1(ω j)

1
M1

∑k
p̂1(ω jk)
q(ω jk)

] . (14)

Plugging this back into Equation 2 and rearranging gives us a two-
iteration RIS estimator similar to Equation 5:

F ≈ 1
N

N

∑
i=1

[
f (ωi)

p̂0(ωi)

1
M0

M0

∑
j=1

[
p̂0(ωi j)

p̂1(ωi j)

1
M1

M1

∑
k=1

p̂1(ωi jk)

q(ωi jk)

]]
(15)

We can iterate an arbitrary number of times, i.e., using Equation 15
as the estimator in Equation 14, giving:

F ≈ 1
N

N

∑
i=1

[
f (ωi)

p̂0(ωi)

1
M0

M0

∑
j=1

[
p̂0(ωi j)

p̂1(ωi j)

1
M1

M1

∑
k=1

[
p̂1(ωi jk)

p̂2(ωi jk)
· · ·
]]]

(16)

Per-iteration target functions, p̂i(ω), are very flexible. They can es-
timate distributions in spatial or temporal neighbors, or the current
pixel. They can include some, or all, of the rendering equation (e.g.,
visibility, incident lighting, BRDF, or cosine terms). Biased and ad
hoc target functions can be used without biasing results, as long as
q(ω)> 0 and p̂i(ω)> 0 whenever f (ω)> 0.

Intuitively, read Equation 16 as: N need not be large, as we ap-
proximate perfect importance sampling with quality controlled by
M0; but M0 is minimized by (again) importance sampling with

quality driven by M1; but due to good sampling, M1 need not be
large, driven by M2; et cetera. We either need one term Mi or the
product ∏i Mi to tend towards infinity. To make this cheap, we
amortize costs. By reusing samples, we pay for computation once
but each sample increases Mi values for thousands of neighbors.

3.4. Variance of Resampling Importance Sampling

Of course, this intuitive interpretation argues iterative resampling
reduces variance. Talbot et al. [Tal05,TCE05] provide a theoretical
variance analysis of RIS, allowing a detailed understanding. They
show the variance of our RIS estimator 〈F〉ris can be written:

Var (〈F〉ris) =
1
N

[
1
M

(e3− e2)+(e2− e1)

]
, (17)

where

e1 = E
[

f
q

]2

, e2 = E

[
f 2

p̂q

]
E
[

p̂
q

]
, e3 = E

[
f 2

q2

]
.

N and M both control variance from e3−e2, whereas only N affects
e2− e1. Useful corner cases include: if p̂ ∝ q, then e3− e2 = 0; if
p̂∝ f , then e2− e1 = 0.

When selecting p̂∝ f to ensure e2−e1 = 0, iteratively applying
Equation 17 indeed has variance proportion to 1/(N ∏i Mi). But in
practice p̂ ∝ f is not feasible, leading to residual variance propor-
tional to 1/N, 1/(NM0), 1/(NM0M1), and other partial products.

In Bitterli et al. [BWP∗20], N largely controls visibility variance,
as p̂ is proportional to f modulo visibility. During spatiotemporal
reuse, the magnitude |e2−e1| depends on how well reused samples
approximate values in our current pixel.

For small residuals, where a pixel and its neighbors are similar,
variance is dominated by the 1/(N ∏i Mi) term and the additional
samples from reuse improve quality significantly. If neighbors dif-
fer significantly, generally near various discontinuities, |e2−e1| be-
comes large. Reusing from such neighbors may be detrimental.

3.5. Comments on Notation and Generalization

To improve clarity above, we avoided explicitly adding subscripts
to all values that might vary during resampling. Specifically, M val-
ues can vary with i and source pdfs q need not be the same for every
sample j . In other words, we can write Equation 5:

F ≈ 1
N

N

∑
i=1

[
f (ωi)

p̂(ωi)

1
Mi

Mi

∑
j=1

p̂(ωi j)

qi j(ωi j)

]
,

which selects our N samples from differently-sized random subsets
(of size Mi), and each sample ωi j may have a unique source pdf qi j.

While somewhat reducing notational complexity (e.g., in Equa-
tion 16), variation frequently occurs. ReSTIR resamples between
different pixels. Target functions p̂1, p̂2, etc., all vary depending on
which pixel gets reused. And resampling begins anew from M=0
at disocclusions, which happens at different time across the screen.
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Figure 3: Reusing samples between pixels A and B causes bias if target functions p̂ have zeros in different locations. (Left) No bias when both
points lie on a plane illuminated by an unoccluded emissive hemisphere. (Left center) Adding visibility into p̂ causes bias when introducing
occlusions that vary between pixels (p̂A(a)> 0 but p̂B(a) = 0). (Right center) Reuse between pixels with varied surface normals introduces
bias, shown (right), where p̂A(d) = 0 and p̂B(a) = 0, causing bias when reusing B at A (or vice versa).

4. On Bias in Spatiotemporal Reuse

Intuitively, RIS and ReSTIR provide an approximately-perfect im-
portance sampler we can apply instead of truly perfect sampling.
But remember, it is only approximately-perfect. As described in
Section 3.1.1, we actually generate pdfs p(ω) stochastically via a
randomized algorithm (e.g., see [MR95]). Not only do samples ran-
domly vary between frames, so do the pdfs used to select them!

Section 3.1.1 argues the expected value E [W (ω,z)] indeed con-
verges to the desired value of 1/p(ωz). But this is only true when
the domains of our samples are identical. In ReSTIR, we explicitly
reuse pixels whose target functions p̂i or source pdfs qi j might vary
from ours; this expands the diversity of our sample pool.

But this diverse sample reuse potentially introduces bias. Bitterli
et al. [BWP∗20] show that, for Equation 5, if source pdfs qi j(ω)
arbitrarily vary per sample, then:

E [W (ω,z)] =
1

p(ωz)

|Z(ωz)|
M

, (18)

where |Z(ωz)| counts the source pdfs q j where q j(ωz)> 0, i.e.,

Z(ω) = { j | 1≤ j ≤M and q j(ω)> 0}. (19)

Basically, if not all pdfs can generate sample ω (i.e., q j(ω) = 0 for
some j), selecting ω introduces bias. However, Equation 18 sug-
gests debiasing is straightforward, as then:

E
[

M
|Z(ωz)|

W (ω,z)
]
=

1
p(ωz)

, (20)

leading to an unbiased variant of the RIS estimator in Equation 5:

F ≈ 1
N

N

∑
i=1

[
f (ωi)

p̂(ωi)

1
|Z(ωi)|

M

∑
j=1

p̂(ωi j)

qi j(ωi j)

]
, (21)

and an unbiased ReSTIR estimator updating Equation 16:

1
N

N

∑
i=1

[
f (ωi)

p̂0(ωi)

1
|Zi|

M0

∑
j=1

[
p̂0(ωi j)

p̂1(ωi j)

1
|Zi j|

M1

∑
k=1

[
p̂1(ωi jk)

p̂2(ωi jk)
· · ·
]]]

, (22)

where |Zi| counts the number of p̂1 pdfs that are non-zero at ωi and
|Zi j| counts how many p̂2 pdfs are non-zero at ωi j, etc.

4.1. Intuitively Understanding Bias

While Equation 21 shows reuse can be unbiased, evaluating |Z(ωi)|
is costly. Knowing how bias arises helps determine when debiasing

boosts fidelity enough to compensate for increased costs. Without
costly |Z| terms, the estimators guarantee unbiasedness, for:

• Importance sampling (Eq. 2), if p(ω)>0 when f (ω)>0.
• RIS (Eq. 5), if p̂(ω)>0 and q j(ω)>0 when f (ω)>0.
• ReSTIR (Eq. 16), if p̂i(ω)>0 and q j(ω)>0 when f (ω)>0.

These simply restate conditions when all |Z(ω)| terms equal their
corresponding M terms, cancelling the extra factor in Equation 18.

Figure 3 illustrates when these guarantees fail for RIS (and Re-
STIR). Two points on a planar surface, illuminated by distant, un-
shadowed lights can reuse samples in an unbiased way. But intro-
ducing occlusions or sharing between different surface orientations
lead to zero-valued probabilities. Specifically, bias arises if:

1. B’s target function, p̂(ω), has varying visibility (from A to B),
2. B’s target function, p̂(ω), does not cover the hemisphere at A, or
3. B’s source pdf, q(ω), does not cover the hemisphere at A.

Enumerating our list is easy: consider where reflected light is non-
zero at the current pixel but zero at reused neighbors. These intro-
duce bias. Complex environments may add bias from other sources,
e.g., directionally varying emission and BRDFs with zero-valued
reflectance in the visible hemisphere.

All bias types are handled by the estimators in Equations 21
and 22, however the cost to compute |Z(ω)| can vary signifi-
cantly. For instance, identifying zeros at samples below the hori-
zon, caused by varying normals, requires a few dot products. But
finding visibility changes requires shooting new rays.

Importantly, when debiasing via |Z(ω)| terms, we consider only
one iteration at a time. While varied p̂2’s in Equation 22 can add
bias when approximating p̂1, correcting gives an unbiased estimate
for p̂1 at a particular pixel. These unbiased p̂1 pdfs can be (re)used
to estimate p̂0. But by borrowing p̂1 from neighbors, we may intro-
duce new differences to account for to get unbiased p̂0.

While debiasing considers only one iteration at a time, if we skip
debiasing to reduce cost, it is important to understand that bias it-
eratively compounds. Care is required to avoid bias explosions.

4.2. Manifestation of Bias

Section 4.1 describes why bias occurs, but it may be unclear how
bias manifests. Figure 4 shows a concrete example, reusing samples
from pixels with varying normals. Bias arises in corner cases, when
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Figure 4: (Left) Two adjacent pixels, A and B, have different nor-
mals. Both pixels use RIS, selecting one random candidate (MA=7,
MB=6) to store for reuse. (Right center) When reusing B to improve
sampling at A, we have MA+B = 13 effective candidates. (Right)
But we only pick from the samples explicitly selected for reuse. Bias
arises when incorrectly weighting the selected sample. If we pick
the blue sample, it could not have been generated at B; we need to
use an appropriate M when normalizing (use MA if selecting the
blue sample, MA+B for the gray sample).

selecting a sample that cannot be sampled by both pixels (e.g., the
circled blue one). These cases require careful normalization.

Normalization essentially splits the integral into disjoint pieces.
In Figure 4, the region covered by both hemispheres is integrated
with MA+B effective samples. The region covered by only A’s hemi-
sphere is integrated with only MA effective samples. Intuitively, this
is what the |Z(ω)| terms do in Equations 21 and 22.

Once we understand bias arises from the ignored M/|Z(ω)| term
in Equation 20, it becomes easier to describe its appearance. Most
commonly, bias gets introduced by always using all neighbor sam-
ples, without accounting for their target functions going to zero.

In Figure 4, such reuse assumes MA+B effective samples, even in
regions where only MA contribute. For the RIS normalization term:

1
Mi

Mi

∑
k=1

[
p̂i(ωk)

p̂i+1(ωk)
· · ·
]
, (23)

Mi ends up being too large (i.e., MA+B rather than MA). This re-
duces the normalization term, causing darkening. Darkening wors-
ens when reusing more neighbors with partially relevant pdfs. Thus,
bias increases nearing large depth, normal, or shadow boundaries.

4.3. Heuristics for Reducing Bias

Bitterli et al. [BWP∗20] propose applying simple heuristics to help
reduce bias without computing |Z(ω)|. Mathematically, this intro-
duces a heuristic function H to the RIS estimator from Equation 5:

F ≈ 1
N

N

∑
i=1

[
f (ωi)

p̂(ωi)

1
H

M

∑
j=1

(
H(i, j)

p̂(ωi j)

q(ωi j)

)]
, (24)

where H(i, j) ∈ {0,1}, based on the heuristic result. H replaces M,
and counts samples where the heuristic passes, i.e., H = ∑H(i, j).
Heuristics work like edge-stopping functions in filtering. They stop
bias crossing boundaries, keeping per-neighbor bias below a thresh-
old (controlled by any heuristic parameters).

Bitterli et al. [BWP∗20] use standard heuristics, checking if nor-
mals at i and j point in similar directions (i.e., 〈~ni ·~n j〉 > τ) and if
pixel depths are similar (i.e., abs[(zi− z j)/zi]< ε).

Figure 5 shows how heuristics help. In spatiotemporal reuse, bias
increases as target function overlap decreases. For smaller overlaps,

Figure 5: When reusing from pixels with different normals, sample
relevance, usefulness, and bias varies highly. (Left) Given similar
normals, we have a low chance to select (blue) samples introduc-
ing bias. (Center) With more variation, we get a benefit from reuse
(gray region) but add more bias. (Right) If normals point in oppo-
site directions, reuse introduces a lot of bias for little improvement.

reuse greatly increases bias but adds few new samples. Ignoring
poorly matching neighbors reduces bias with little quality impact.

While Figures 4 and 5 show reuse over varying normals, chang-
ing visibility also defines regions where neighbor target functions p̂
go to zero. Reuse over large depth differences often changes sample
visibility; a depth heuristic helps reject these samples.

Other heuristics are possible, but heuristics examining sample
weights or pdfs p̂(ωi j) or q(ωi j) generally add conditional proba-
bilities into H(i, j) in Equation 24. Our resampling theory does not
yet handle such conditional probabilities, so these heuristics tend to
overzealously discard neighbors. This shrinks Mi in Equation 23,
causing a lightening bias.

4.4. Multiple Importance Sampling For Sample Reuse

Equation 21 correctly normalizes a sample based on which neigh-
bors contributed to its selection. The heuristics in Section 4.3 dis-
card categorically, using knowledge about samples likely to be ben-
eficial. But both approaches make binary decisions: either a neigh-
bor is reused or discarded. What if some neighbors provide better
estimates than others? Could we weight neighbors differently?

Multiple importance sampling (MIS) [VG95] allows exactly this
sort of reweighting. In resampling, each neighbor is a different es-
timator we use to sample our current pixel. Bitterli et al. [BWP∗20]
show a straightforward application of MIS by redefining the weight
function W (ω,z) in Equation 6 with an arbitrary weight m(ωz):

W (ω,z) =
1

p̂(ωz)

[
m(ωz)

M

∑
i=1

wi(ωi)

]
. (25)

Rederiving the expected value with this new W (ω,z) gives:

E [W (ω,z)] =
1

p(ωz)
∑

i∈Z(ωz)

m(ωi), (26)

allowing unbiased reuse whenever we define m(ωz) such that sum
∑i∈Z(ω) m(ωi) = 1. This is trivially true for m(ωz) = 1/|Z(ωz)|, as
used in Equation 21. But we can replace this trivial m(ωz) with a
standard balance heuristic:

m(ωz) =
qz(ωz)

∑
M
i=1 qi(ωz)

, (27)

which, for clarity, may also be written:

m(ωz) =
qz(ωz)

∑i∈Z(ωz) qi(ωz)
, (28)
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Figure 6: Compare (left) a ReSTIR rendering without debiasing to a (right) converged, unbiased ground truth. We also compare various
insets (center) using varying debiasing settings, left to right: no debiasing; still biased heuristic-based rejection of neighbors [BWP∗20];
heuristics plus MIS to remove bias due to varying normals; unbiased using MIS [BWP∗20]; unbiased using both MIS and heuristics to reject
likely bad neighbors; and converged ground truth. H+MIS improves the highlight on the Vespa body and reduces noise on the flowers. (U)
H+MIS helps eliminate noise at discontinuities that using MIS, alone, to debias tends to introduce.

as pdfs qi(ωz) may be zero during spatiotemporal reuse. Modifying
Equation 5 gives an unbiased, MIS variant of our RIS estimator:

F ≈ 1
N

N

∑
i=1

[
f (ωzi)

p̂(ωzi)
m(ωzi)

M

∑
j=1

p̂(ωi j)

q j(ωi j)

]
, (29)

and inserting our balance heuristic from Equation 27:

F ≈ 1
N

N

∑
i=1

[
f (ωzi)

p̂(ωzi)

qzi(ωzi)

∑
M
k=1 qk(ωzi)

M

∑
j=1

p̂(ωi j)

q j(ωi j)

]
, (30)

where, for clarity of notation, we’ve defined ωzi as the sample in the
set {ωi1, . . . ,ωiM} selected for reuse by RIS and qzi is that sample’s
corresponding source pdf q j .

4.5. Interesting MIS Observations

Bitterli et al. [BWP∗20] derive that m(ωi) summing to unity gives
unbiasedness (in Equation 26), and then directly inferred we could
reuse standard balance heuristics for MIS. However, we can make
more mundane, but still useful, observations.

For instance, if M = 4 (i.e., reusing from four neighbors), we can
define m(ωz) = 0.25. Or more usefully, if the four neighbors are in
a 2×2 block, we can define m(ωz) as a set of bilinear weights.

Interpolating reservoirs makes no sense, as they contain dis-
crete samples without a well-defined interpolation operator. But
with Equation 26, we can incorporate bilinear weights directly
in function m(ωz) to similar effect. During temporal reuse, such
weights provide one mechanism to proportionately reuse from the
four nearest temporal neighbors of a backprojected pixel.

4.6. Combining Heuristics and Multiple Importance Sampling

Two issues remain with multiple importance sampling in either
Equation 30 or iterative variants (akin to Equation 22):

• MIS can increase variance when using poor pdfs, and
• One may want to reduce bias, without paying to remove it all.

Essentially, we want the heuristics and MIS in Sections 4.3 and 4.4
to not be mutually exclusive. Perhaps developers can afford extra

dot products for MIS to remove bias from varying surface normals,
but the extra rays to remove visibility bias are too costly.

And while MIS theoretically combines two extremely different
estimators correctly (e.g., Figure 5, right), perhaps it is a bad idea
practically. We can use heuristics to avoid passing known-bad esti-
mators into MIS, reducing variance as a result.

Fortunately, the heuristic estimator in Equation 24 resembles the
MIS estimator in Equation 29. In fact, heuristics can be thought of
as a form of MIS weighting, i.e., we can define set Z(i,ω):

Z(i,ω) = { j | 1≤ j ≤M and q j(ω)> 0 and H(i, j) = 1}, (31)

allowing use of both MIS and heuristics, akin to Equation 21:

F ≈ 1
N

N

∑
i=1

[
f (ωzi)

p̂(ωzi)

1
|Z(i,ω)| ∑

j∈Z(i,ω)

p̂(ωi j)

q j(ωi j)

]
, (32)

and to Equation 30:

F ≈ 1
N

N

∑
i=1

[
f (ωzi)

p̂(ωzi)

qzi(ωzi)

∑k∈Z(i,ω) qk(ωzi)
∑

j∈Z(i,ω)

p̂(ωi j)

q j(ωi j)

]
. (33)

These complete our options, allowing us to apply RIS and ReSTIR
in a biased form, with heuristics, with MIS to eliminate bias, or
with both MIS and heuristics.

With Equation 33, the difference between our highest quality bi-
ased and unbiased modes is simply whether we shoot shadow rays
in the MIS weight qzi(ωzi)/∑qk(ωzi). Our unbiased variant shoots
one ray per neighbor (i.e., for each qk) while the biased variant
skips tracing rays, assuming each query is unoccluded.

In both variants, MIS corrects bias due to reuse between neigh-
bors with varied normals and heuristics discard neighbors likely to
introduce both bias and noise. The only difference is whether our
results have bias due to spatiotemporal visibility variations.

A key takeaway, illustrated by Figure 5, is neighbors introducing
large biases also introduce significant noise. Heuristics help discard
such neighbors, and help even when using MIS. Figure 6 shows the
effect of various combinations of MIS and our heuristics.
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(a) Cornell Box
0.5 ms / 0.5 ms

1.4 ms / 1.1 ms
2 emissive tris

(b) Emerald Square
1.8 ms / 0.8 ms

6.1 ms / 2.0 ms
89k emissive tris

(c) Amusement Park
18.3 ms / 0.8 ms

98.7 ms / 2.1 ms
3.4M emissive tris

Figure 7: Initial light candidate generation costs for varying com-
plexity scenes, using Bitterli et al. [BWP∗20] and our presampling
that pulls incoherent memory accesses out of the inner render loop.
Times on (top) RTX 3090 and (bottom) laptop RTX 2080 Max-Q.

5. Reshaping Resampling for Improved Memory Coherency

Given the above theoretical derivations of RIS and ReSTIR estima-
tors and a deeper understanding of how bias occurs during resam-
pling, we now shift to focus on practical problems like removing
bottlenecks and redesigning the algorithm for optimal performance.

An appealing aspect of ReSTIR is a constant-time computational
complexity. Each pixel selects a small set of initial candidates from
source pdf p(ω) and combines them with a few reservoirs from the
current and prior frame. Bitterli et al. [BWP∗20] use 32 candidates,
1 temporal reservoir, and 2 rounds of spatial reuse with 5 neighbors
each. Reservoirs store 4 samples, so pixels touch exactly 72 lights.

But testing ReSTIR, we saw non-constant performance. In fact,
profiled component costs varied up to 20× between scenes. Obvi-
ously, fixed computation and memory usage (i.e., 72 lookups) with
varying performance implies different caching behavior. This lim-
its adoption, as artists must manage cache-based performance cliffs
that change between GPU vendors and generations.

This cache thrashing arises due to independent sampling of light
candidates. In the Cornell Box (see Figure 7), pixels pick 32 sam-
ples on one light, using memory coherently. In the Amusement
Park, pixels randomly pick 32 of the 3 million lights; this randomly
walks memory, often going to DRAM due to cache misses.

Interestingly, stratified sampling helps improve performance. For
example, with jittered sampling [Coo86] threads coherently walk
through subsets of the light list, reducing potential for cache thrash.
Still, this just reduces intra-warp incoherency; separate warps con-
tinue to compete for cache lines. But Section 3.1.3 shows RIS strat-
ifies over random subsets. Can that improve coherence?

5.1. Reshaping Computation Using Degenerate RIS Steps

Remember degenerate RIS estimators offer two benefits. They pro-
vide randomized stratification and decompose sampling into two
steps. A key observation: the decomposed sampling steps can occur
at different times. The first step, creating M-sized light subsets, con-
tains most incoherent memory accesses; removing it from the inner
render loop improves performance significantly (see Figure 7).

Since random memory lookups cause incoherence, presampling
or prerandomizing the light lists reduces incoherency if it allows us-
ing smaller light subsets that remain in cache during the inner ren-
der loop. Figure 8 compares pseudocode for the per-pixel sampling
from Bitterli et al. [BWP∗20] with two prerandomized variants.

The simplest factorization (Figure 8b) selects a subset S of the
scene lights L once per frame and pixels sample from S to select
their (N = 32) light candidates. If S = L, this reverts to independent
per-pixel sampling. If |S|=N, pixels all use the same candidates. In
any case, this gives unstratified RIS, per Equation 13, as neighbor
pixels all select from the same candidate pool.

A more complex approach precomputes light subsets S j for each
pixel. When rendering, each pixel selects candidates from its cor-
responding subset. This gives fully stratified RIS, per Equation 5.
But this fails to improve performance; it has the same incoherency,
moved from the per-pixel sampling into a per frame preprocess.

The power of decomposed sampling is these methods are ends of
a continuum; we need not use either one precomputed set per frame
or one per pixel. If |P| is the number of pixels, we can precompute
S light subsets S j, where 1� S� |P| (see Figure 8c). This leads
to partially stratified RIS, mixing Equations 5 and 13. This reduces
incoherency (as S� |P|) and removes it from the inner loop.

5.2. Coherent Initial Candidate Generation

Given that principle, let us define an algorithm to select initial, per-
pixel light candidates. Key parameters are the number of light sub-
sets S generated each frame, each subset’s size |S j|, how a pixel
selects a light subset S j to sample, and the pdfs used when precom-
puting and sampling from S j .

The pdfs fall out of Equation 10. When presampling lights S j
from global light list L, we sample L using source pdf q(ω), i.e.,
use the same pdf Bitterli et al. [BWP∗20] used for initial candidate
generation. When selecting per-pixel candidates from S j, we select
uniformly, as subsets S j are already distributed according to q(ω).

To maximize coherence within warps, tiles of pixels all sam-
ple the same subset S j. We found 8× 8 pixel tiles maximize co-
herence without introducing noticeable correlations not masked by
spatiotemporal reuse.

This gives our new algorithm for initial candidate selection:

input: scene light list L = { li }
output: 32 light candidates C per pixel
once per frame:

for j ∈ [1 . . .S ]:
for k ∈ [1 . . . |S j| ]

S j[k] = sample(L, q())

for each pixel (x,y):
S = selectRandomSubsetForTile(x,y,{S j })
for i ∈ [1 . . .32 ]

C[i] = sample(S, uniformly)

We empirically found S=128 and |S j|=1024 minimizes cost with-
out introducing artifacts, across a wide set of scenes. For smaller
scenes, these values are overkill but launch overheads dominate the
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input L = {li}
for each pixel:

select N lights from L

(a) Independent per-pixel samples

input L = {li}
once per frame:

select M lights from L
S = {set of M lights}

for each pixel:
select N lights from S

(b) Single preselected subset

input L = {li}
once per frame:
for j ∈ [1 . . .S]:

select M lights from L
S j = {set of M lights}

for each pixel:
select light set S j
select N lights from S j

(c) Multiple preselected subsets

Figure 8: Three light candidate selection methods. (a) Independently sample lights L per pixel, causing cache thrashing in many-light scenes.
(b) Factor candidate selection via degenerate RIS, using one light subset S. This gives unstratified RIS as in Equation 13. (c) Factor candidate
sampling, but use multiple light subsets S j to allow (partially) stratified RIS as in Equation 5.

cost of precomputation, so lower values have no benefit. For large
scenes, the premise is the total working set, S×|S j|, fits entirely in
cache and each subset S j fits in a (few) cache lines.

5.3. Other Implications of Presampling Lights

Beyond improved caching, prerandomizing lights in subsets S j has
other benefits. In particular, highly optimizing sampling perfor-
mance is less important. With 32 initial candidates per pixel across
a 1920×1080 image, Bitterli et al. [BWP∗20] incoherently sample
64 million lights per frame; with S= 128 and |S j|= 1024, we only
need 128,000 incoherent lookups, invariant of resolution.

This gives flexibility to employ different sampling algorithms.
For example, prerandomization allows easy mixing of emissive
primitives: triangles, spheres, capsules, patches, etc. Each has
unique sampling code, so mixing them per-pixel adds both data
and execution divergence. But degenerate RIS pulls this divergence
out of the inner, per-pixel loop. Each frame starts by selecting new
samples per primitive type: a set St for samples on triangles, Ss for
spheres, Sc capsules, etc. Then we create S per-frame light sets S j
by sampling the combined set {St ,Ss,Sc, . . .} with an appropriate
pdf, e.g., proportional to total emission from each primitive type.

Additionally, Bitterli et al. [BWP∗20] use alias tables [Wal77]
to pick lights proportional to power. Alias tables allow cheap O(1)
sampling, which is vital with 64 million samples a frame. But opti-
mal table builds cost O(N) [Vos91] and do not parallelize trivially
on GPUs. In moderate complexity scenes CPU builders take under
0.5 ms, but build costs for large environment maps exceed 200 ms.

For dynamic light probes, we can substitute alternative ap-
proaches. Binder and Keller [BK19] propose one option, quickly
building a radix forest to sample via the cutpoint method [FM84].
The cutpoint method has O(logN) worst-case lookups, but search-
ing via a radix forest has average case complexity of O(1).

Instead, we perform cdf inversion [PJH16] hierarchically us-
ing a mipmap chain, leveraging existing GPU strengths. We create
a texture storing luminance (times solid angle) for each environ-
ment map texel, and build a mip chain. When sampling, we start at
the second coarsest mip level, loading all 4 texels. We create a 4-
element cdf, and sample one (with probability pn−1). We load our
sample’s four children, in the next mip level, and again sample from

the new 4-element cdf (with probability pi). On reaching the finest
level, we have a random texel sampled with pdf pn−1 pn−2 · · · p0.
Building our hierarchy costs around 60 µs for a 2048×1024 light
probe. Lookups are O(logN), but occur outside the inner loop,
thanks to presampling. This allows truly dynamic textured emis-
sives, e.g., light probes streamed live from a 360◦ camera.

6. Improved Efficiency for Sampling

In Section 5, we addressed the aspect of ReSTIR that scaled poorly
with increased complexity. But deeper investigation found other
hidden inefficiencies and redundancies that we address, below, to
reduce cost and increase flexibility.

6.1. Ideal Ray Budget

Bitterli et al. [BWP∗20] propose using 5 rays per pixel. On an ab-
solute scale, this is exceedingly cheap to dynamically shadow mil-
lions of lights. But developers only budget 1

4 , 1
2 , or 1 ray per pixel

today, depending on quality settings. Thus, scaling ray counts is
vital for wide adoption; asking 20× current budgets is a hard sell.

The variance analysis in Section 3.4 motivates this five ray bud-
get; ReSTIR largely skips reusing visibility, meaning N, the per-
pixel shade count, controls visibility variance. Talbot et al. [TCE05]
propose balancing N and M via a complex cost analysis. On high-
end GPUs, N =4 shadow rays cost milliseconds and seem a small
price for reduced visibility variance.

But reevaluating this is vital to scale down cost. To this end, we
analyzed the impact of changing N=4 to 1, with surprising results.
More rays reduce noise. But the difference is fairly small and (ar-
guably) not cost effective, as higher frame rates also improve per-
ceptual quality due to flicker fusion in the visual system [ANS∗19].

What limits the variance improvement from increased ray count?
ReSTIR leverages correlations to improve neighbor sampling qual-
ity. But correlations become problematic if shading multiple sam-
ples; with 4 light samples per pixel, ReSTIR likely picks the same
sample multiple times.

Figure 9 visualizes duplicate samples in the Amusement Park.
Across scenes, when shading four samples per pixel, between 1/2
and 2/3 of pixels include duplicates. Perhaps 20% of pixels pick
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Figure 9: ReSTIR improves quality via correlated sampling. But
correlations may cause duplicate selections in per-pixel light sam-
ples. (Left) The Amusement Park rendered with ReSTIR. (Right)
A heat map visualizing duplicate samples in per-pixel reservoirs
with four elements (e.g., [BWP∗20]). Black means no duplicates;
white means all four light samples are identical. Duplicates occur
most near shadows—exactly where we hoped higher sample counts
would reduce variance.

the same light sample four times. Worse, duplicates occur most
frequently near shadows; this is exactly where we hoped to reduce
variance by increasing sample count!

Fortunately, researchers and engineers frequently filter visibil-
ity with very few samples [JWPJ16,MML12,SKW∗17,EHDR11].
Given N controls visibility noise, increasing N is costly and some-
what ineffective, and filtering this noise is known feasible with one
sample per pixel, we decided N=4 is excessive and wasteful.

Throughout the rest of this paper, we fix N=1. This reduces the
ray count for ReSTIR from five to two rays per pixel. Quality de-
creases somewhat in shadowed regions, especially in static images.
But our other improvements help compensate for this quality loss.

6.2. Removing Per-frame Global Synchronization

Consider the pipeline in Figure 2. This structure relies on a global
barrier; before spatial reuse, neighbors must select candidates and
reuse temporally. This forces certain implementation choices, in-
cluding the use of multiple kernels.

In theory, removing synchronization allows a single kernel vari-
ant of ReSTIR, containing all steps from Figure 2. This opens more
opportunities for optimization, amortization, and reducing band-
width for intermediate data. In practice, hardware constraints may
make separate components more efficient (e.g., one kernel for ray
tracing, another for other computations). Without a forced synchro-
nization, testing these reformulations becomes significantly easier.

ReSTIR gets its spatiotemporal name by reusing both spatially
and temporally. But we need not avoid true spatiotemporal reuse,
i.e., reusing neighbors in the temporal buffer. In fact, replacing all
spatial samples with spatiotemporal samples trivially removes our
synchronization; all reused samples come from the last frame.

Generally, this change is imperceptible. However, fast-moving
geometry causes large disocclusions where the prior frame poorly
approximates the current frame. Here, using spatiotemporal sam-
ples essentially delays convergence by one frame—current candi-
dates only get shared next frame. Where such lag is objectionable,
synchronizing to reuse current samples may still be desirable.

6.3. Importance of Temporal versus Spatial Reuse

As ReSTIR reuses both spatial and temporal samples, understand-
ing their relative importance helps us prioritize computations in a
limited budget. Both types of reuse have advantages that compen-
sate for issues in the other; but they are not equally important.

Figure 10 compares the Paris Opera House with various types of
reuse. Basic RIS tests a few candidate lights per pixel but is woe-
fully inadequate in complex environments. Spatial reuse multiplies
the effective sample count by a constant (e.g., 5× given five taps);
this noticeably improves quality but remains far from the reference.
Temporal reuse accumulates from all prior frames, increasing ef-
fective sample count much more significantly.

But two problems emerge when only reusing temporally. Motion
reveals disoccluded regions with no temporal history. And backpro-
jection identifies nearest neighbor temporal samples, as reservoirs
contain discrete samples without a well-defined interpolation oper-
ator. During motion, this adds noticeable correlation between adja-
cent pixels. Such artifacts are hard to see in images, e.g., Figure 10.
Combining spatial and temporal samples helps address these issues.

Adding even one spatial sample eliminates issues due to discrete
backprojection. Here, spatial reuse acts as a stochastic filter, choos-
ing between the correlated temporal sample and a randomized spa-
tial sample. Each pixel selects different neighbors, so spatial reuse
stochastically dithers out temporal correlations.

To determine the ideal spatial sample count, the key is how spa-
tial samples reduce noise from disocclusions. By definition, disoc-
clusions mean no temporal reuse. Quality depends solely on spa-
tial samples and improvement occurs linearly with more samples.
Reaching quality comparable to temporal reuse requires hundreds
of spatial samples, which is infeasible in constrained budgets.

6.4. Target Spatial Sample Count at Disocclusions

The key question is: at game framerates, how many spatial samples
are needed for unnoticeable disocclusions? This is complicated—it
depends on user taste, available budget, framerate, and the denoiser.
At very low framerates, fast motion causes large disocclusions that
remain for a sizable time. Bitterli et al.’s [BWP∗20] prototype has
similar characteristics. In such cases their parameters are quite rea-
sonable: two spatial reuse passes with five spatial taps each.

But at 60 Hz, spatiotemporal reuse quickly fills disocclusions.
Figure 11 shows quick horizontal strafing in a 5120×1440 render.
With only temporal reuse, disocclusions persist for over 20 frames.
With one spatial and one temporal sample, significant variance lasts
for 3 or 4 frames, with a longer trail of elevated noise that a denoiser
easily fixes. Using one temporal and five spatial samples increases
noise for 2 frames, after which it largely reconverges to average
variance across the frame.

This comes from the exponential growth in spatiotemporal reuse:
combining one spatial and temporal tap over 4 frames borrows from
24 pixels; using five spatial taps reuses 64 pixels. In both cases, spa-
tial reuse potentially finds neighbors with valid temporal histories,
improving quality further.

Seeing disocclusion noise similar to Figure 11 across various
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Figure 10: The Paris Opera House with over 150 million polygons and 500,000 emissive triangles rendered at 5120×1440, using (a) naive
RIS lighting in 8.8 ms, (b) spatial reuse in 12.4 ms, (c) temporal reuse in 13.4 ms, (d) spatiotemporal reuse in 13.0 ms, and (e) a reference.
Times include initial sampling, reuse, two shadow rays, and final shading on a RTX 3090. Model courtesy TurboSquid and ©GoldSmooth.

Figure 11: The Amazon Bistro (top) with insets showing temporal
disocclusions under horizontal motion, using three settings. (Left)
Temporal reuse only, (center) temporal reuse plus one spatial sam-
ple, and (right) temporal reuse plus five spatial samples. The yellow
lines show the width of the disocclusion in one frame.

scenes, we found that with modern denoisers [NVI20] a single spa-
tial tap is frequently sufficient for most disocclusions. Developers
targeting higher quality or 30 Hz framerates may want 2 or 3 spa-
tiotemporal samples. When using more than one, spatiotemporal
samples should be adaptively used in just disoccluded regions; this
targets the additional cost exactly where these computations actu-
ally impact quality.

7. Decoupling Shading and Reuse

Another observation on ReSTIR: it couples shading and reuse. The
samples shaded in frame N are also reused when resampling frame
N+1. However, the goals of shading and reuse are quite different.

For shading, we want best quality for immediate display. Resam-
pling should forward samples to optimize quality in future frames.
Both goals may not be optimized via the same samples. In fact, we

Figure 12: Our pipeline after improvements from Section 6. Note
each pixel examines M+2 samples (highlighted in green): M can-
didates, 1 temporal and 1 spatiotemporal sample. But just one gets
shaded and reused. This seems wasteful, but we cannot afford M+2
shadow rays per pixel to shade them all. But RIS cuts our pool of
samples. We know one of the three dashed samples gets selected for
shading and reuse. Perhaps we could shade all three?

found explicitly decoupling shading and reuse opens new opportu-
nities to improve current frame render quality.

How? Resampling selects one sample to reuse and shade from
many, according to a more optimal distribution, i.e., resampling se-
lectively discards samples (rejection sampling). But why discard
samples before shading? Why not leverage them all to improve
shading? Decoupling allows shading and resampling different sub-
sets of the samples we examine each frame.

7.1. What Samples Are Examined?

Figure 12 shows the simpler ReSTIR pipeline after Section 6. With
M candidates, pixels each touch exactly M+2 light samples. After
multiple resampling steps, M+1 get discarded, with just one sample
shaded and reused in future frames.

Why not shade all M+2 samples but only reuse one temporally?
The problem is shadow rays. Shading M+2 samples requires M+2
shadow rays, and in Section 6.1 we assert even 5 rays is too many.

But we can group samples multiple ways, thanks to ReSTIR’s it-
erative nature. Our per-pixel candidates undergo resampling, leav-
ing three inputs to the second resampling. ReSTIR chooses one of
these three samples for shading and reuse.

Why not shade all three? This requires more shadow rays—three
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Figure 13: Our decoupled pipeline separately evaluates shading
and resampling for candidate, temporal, and spatiotemporal sam-
ples. We reuse only one next frame but shade all three this frame.
Green dots represent shadow queries. We show a biased pipeline;
unbiased reuse of temporal sample visibility requires additional
rays for the MIS terms in Section 4.6.

per pixel rather than two. But it also triples the shaded sample
count, increasing image quality. That might be a good tradeoff.

Figure 13 shows our decoupled ReSTIR pipeline. Each of the
three inputs to our shading pass traces a shadow ray. If using multi-
ple spatiotemporal taps, we can first select just one to pass to shad-
ing and reuse (as in the additional RIS step used for candidates).

Note, just the candidate shadow ray gets fed forward, as reusing
visibility for spatiotemporal samples either introduces compound-
ing bias (Section 4.1) or requires additional shadow rays for multi-
ple importance scattering (Section 4.6) to maintain unbiasedness.

During shading, we weigh our three samples’ contributions with
the probabilities used for resampling. If a sample has a 95% chance
of being reused, it contributes 95% of pixel color. This avoids in-
troducing too much noise from the new, low-probability candidates
added each frame. While Figure 13 depicts shading and reuse as
logically separate, we run them simultaneously in a single kernel.

7.2. Reusing Visibility in Resampling

In this decoupled shading pipeline, an important change is visibility
rays are now tied to explicit samples, rather than to pipeline stages.
This allows reasoning about the samples, and avoids any chance for
duplicate shadow queries in a pixel.

With explicit bubbles to highlight shadow rays, Figure 13 helps
clarify visibility reuse in ReSTIR. If (spatio-)temporal sample vis-
ibility gets piped into resampling, it introduces potential zeros in
p̂ for future frames (i.e., darkening bias from Section 4.2). This
requires additional rays to remove, via the weights in Equation 33.

Figure 15 shows different types of biased visibility reuse. With-
out shooting more rays to compute MIS weights that remove visi-
bility bias, we found the pipeline in Figure 13 optimal. It biasedly
reuses visibility for selected per-pixel candidates, as this provides
significant quality gains (e.g., Figure 15f versus 15b). Other shadow
rays only impact shading, but these queries are important for local
contact shadows (e.g., Figure 15f versus 15c).

7.3. Cheaper Visibility Reuse

Sadly, the pipeline in Figure 13 requires three rays per pixel, rather
than the two rays proposed in Section 6.4. However, with visibility

Figure 14: As (spatio-)temporal visibility queries only affect shad-
ing in our decoupled pipeline, we can consider cheaper, alternate
methods to compute them. For both (yellow) temporal and (orange)
spatiotemporal samples, presumably we knew visibility last frame
when shading. Can we reuse that visibility?

queries directly corresponding to specific samples, we can consider
cheaper alternatives for determining visibility (see Figure 14).

For instance, frames come from a sequence of renderings. While
we do not reuse visibility as part of resampling, we did previously
compute visibility to shade temporal samples. Why not reuse this
visibility to shade again?

For our temporal sample (yellow dot in Figure 14), modulo scene
animation, visibility has not changed; reuse easily eliminates one
shadow ray. Under animation, reusing this visibility adds a one-
frame shadow lag in one of the three samples shaded per pixel. But
we were unable to perceive this lag to show here.

Similar reuse for our spatiotemporal sample (orange dot in Fig-
ure 14) is less straightforward. Clearly, visibility may vary between
the current pixel and its neighbor, so reuse adds additional bias.
How does this bias manifest? For static images, hard-coding spa-
tiotemporal visibility (orange dot) to one gives the result in Fig-
ure 15c. Tracing a ray gives the result in Figure 15f.

This shows that skipping the spatiotemporal visibility ray signif-
icantly reduces quality; but perhaps we can trace the ray less often?
For instance, the further away a neighbor is from the current pixel,
the more likely its visibility will vary. Perhaps we can reuse visibil-
ity for neighbors within some user-defined threshold.

Figure 16 shows the effect of this parameter. We reuse spatiotem-
poral visibility when resampling from nearby neighbors; we shoot
visibility rays, as before, for more distant neighbors. This provides
a parameter to trade quality for performance. As neighbor selection
is randomized in ReSTIR, this parameter stochastically interpolates
between endpoints (i.e., never and always reusing visibility).

To summarize, our decoupled shading pipeline provides flexibil-
ity for computing visibility queries in Figure 14. We always trace a
candidate ray (green dot), always reuse visibility for our temporal
sample (yellow dot), and parameterize reuse for our spatiotemporal
sample (orange dot). This allows ReSTIR-based lighting by tracing
between one and two rays per pixel, based on desired quality.

8. Results

Our experimental prototype uses Falcor [BYC∗20], though our Re-
STIR lighting and sampling has been integrated into various other
renderers. Detailed performance numbers and comparisons come
from our prototype, where we have control to carefully instrument,
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Figure 15: Examples of biased visibility reuse in the Berkeley Soda Hall model, lit by an HDR environment and 52,000 emissive triangles
scattered through over a hundred mutually-occluded rooms on six floors. Each real-time image shows both pre- and post-denoised results
(using the ReLAX denoiser [KC21]). To compare, we also show unbiased RIS (without spatiotemporal reuse). ReSTIR results include an
overlaid diagram, similar to Figure 13, showing dots where we trace visibility rays. (a) ReSTIR without any visibility, showing the importance
of shadows in complex environments. (b) Using visibility only for shading loses many advantages of reuse, but remains unbiased. (c) With
one ray per pixel for our winning candidate, and used for both resampling and shading, we gain most benefits of reuse but lose local contact
shadows. (d,e) Biased spatiotemporal visibility reuse can occur multiple ways; in either case, future frames never reuse shadowed samples.
However, we can (d) discard the entire reservoir, zeroing contributions from all prior samples, or (e) include prior sample weights in future
reuse but never select the now-occluded sample. Overzealous discarding in (d) causes some lightening bias, discussed in Section 4.3, whereas
(e) has the darkening discussed in Section 4.2. (f) The pipeline in Figure 13 gains the benefit of reusing candidate visibility (from (c)) and
uses spatiotemporal visibility only for shading, reintroducing crisp contact shadows. Remaining bias stems from reusing initial visibility,
visible as darkening of the fully lit region in the center of the floor (or on the patio).

Figure 16: Denoised results in the Subway scene, changing the per-pixel rays counts by reusing visibility for nearby neighbors. The intuition:
when reusing lights from distant pixels, visibility is more likely to change. Left-to-right: 2 rays per pixel (no reuse), 1.75 rays per pixel (reuse
within 15-pixel radius), 1.5 rays per pixel (20-pixel radius), 1.25 rays per pixel (25-pixel radius), and 1 ray per pixel (always reuse).
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do parameter sweeps, and validate settings. We profiled on a desk-
top GeForce RTX 3090 with an Intel Core i7-5820 and a laptop
GeForce RTX 2080 Max-Q with an Intel Core i7-8750H.

Source code for a well documented exemplar implementation is
available as part of NVIDIA’s free RTXDI library [NVI21].

8.1. Implementation Details

We heavily instrumented our prototype to profile performance, and
this naturally led to a three-kernel implementation: first, select and
resample per-pixel candidates; second, shoot shadow rays for our
selected candidates and spatiotemporal samples; and third, perform
(decoupled) shading and resampling for next frame.

With no intra-frame dependencies, these can be fused into a sin-
gle megakernel. But we found the reduced inter-kernel communi-
cation from fusing was counterbalanced by increased register usage
and divergence caused by mixing ray tracing with compute inside
a single, complex kernel. However, revisiting this decision with fu-
ture API and hardware improvements could save a couple tenths of
milliseconds—a big improvement in our simpler scenes.

All scenes in Table 1 (and elsewhere) use identical settings, un-
less otherwise noted. This includes M=32 candidates per pixel, 1
temporal and 1 spatiotemporal sample, 2 visibility rays per pixel,
S = 128, |S j| = 1024, and 8×8 pixel tiles for initial candidates.
Comparisons to Bitterli et al. [BWP∗20] use the parameters from
their paper, again uniformly across all scenes.

While not our focus here, for denoising we use ReLAX [KC21]
from NVIDIA’s NRD library [NVI20]. This draws inspiration from
spatiotemporal variance-guided denoisers [SKW∗17,SPD18] while
improving the denoising of specular reflections, firefly suppression,
temporal stability, robust disocclusion handling, and speed.

8.2. Performance

Table 1 collects detailed performance measurements comparing
our optimizations and baseline ReSTIR [BWP∗20] across various
scenes, ranging from a Cornell Box to the 150 million triangle Paris
Opera House. Our scenes contain up to 3.4 million emissive trian-
gles, some textured. Our prototype allows two light types: emissive
triangles and environment maps, though other engine integrations
support analytic light primitives (see Figure 1), per Section 5.3.

Note, Table 1 only evaluates ReSTIR-specific lighting costs. We
do not include G-buffer creation, tonemapping, denoising, or other
post-process passes. Our G-buffer takes a couple milliseconds, and
our denoiser runs in 1.8 ms at 1920×1080 on our RTX 3090.

The key result: our optimized ReSTIR pipeline is over 4× faster
than Bitterli et al. [BWP∗20], unless limited by ray tracing (e.g.,
Emerald Square). In scenes previously dominated by incoherent
memory during candidate selection, our pipeline runs up to 7×
faster. When memory-constrained, by either scene complexity or
device limits, our decoupled pipeline runs up to 20× faster. All our
scenes now run interactively on our laptop.

Importantly, compare our results before decoupling shading (yel-
low lines in Table 1) with unoptimized ReSTIR (red lines). Across

the board, all costs decrease, especially in more complex scenes.
This is due to continued benefits of improved memory coherence.
Caches are not thrashed after candidate selection, and selected sam-
ples are probably nearby neighbor samples. Note, incoherent mem-
ory still slightly slows performance in our decoupled pipeline; the
“Reuse and Shade” cost rises with increased lighting complexity
(scenes with either many emissives or an environment map).

In our rearchitected ReSTIR, performance scales linearly across
most important parameters, including screen resolution and light
pool count and size (S and |S j|). Candidate selection cost varies
non-linearly when changing light pool parameters S and |S j|, as
those values impact caching behavior. Typically, increasing light
pool size |S j| is more destructive to coherence; larger pools use
more cache lines, increasing memory contention between warps.

As in Bitterli et al. [BWP∗20], we used M=32 candidates across
our scenes, as cost is reasonable for good quality. Cost is linear in
M. Increasing M is rarely worthwhile; ReSTIR provides exponen-
tial growth to the effective sample count, and this generally trumps
any linear increase provided by M. However, reducing M provides
a performance win in simpler scenes (e.g., the Cornell Box looks
similar with M=1), for users willing to tweak settings per-scene.

Our new decoupled pipeline improves quality, discussed below,
while maintaining roughly equal performance. On our RTX 3090,
decoupling shading always reduces cost, largely due to use of fewer
kernels with less launch overhead and intermediate buffers. But de-
coupled shading never traces a ray to the same sample twice per
pixel, which can increase ray tracing costs on slower hardware.

8.3. Image Quality of Decoupled Shading

While providing significant performance improvements, we need
to verify that image quality does not suffer.

Figure 17 zooms in on interesting regions of our scenes to com-
pare quality before and after we decouple shading and reuse (i.e.,
with and without Section 7). Both variants shoot 2 rays per pixel
and touch the same samples, i.e., the only difference is our decou-
pled pipeline shades three samples per pixel instead of just one. In
particular quality improves in shadows, as decoupled shading pro-
vides three samples that can contribute lighting. This reduces the
number of black pixels with zero lighting.

Generally, decoupled reuse improves perceived quality and im-
age metrics. However, Figure 17 shows that in unshadowed regions,
when ReSTIR converges well, decoupled shading can slightly in-
crease noise. This also appears in the Cornell Box (see error metrics
in Table 1). The problem is shading three light samples per pixel
that have very different quality. Specifically, candidate light sam-
ples have M=32, while converged (spatio-)temporal samples have
effective M in the thousands. Using MIS weights to blend colors
reduces this problem, but does not remove it entirely.

Selectively shading only two of the samples may allow design-
ing a decoupled pipeline that always improves quality, but we did
not investigate this. Our denoiser easily handles slightly increased
noise in well-converged regions; the key problem is reducing noise
in poorly-sampled regions, which decoupled shading achieves.
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Emissive Triangle Count 2 124 25,194 52,448 20,638 89,279 3,381,540 538,916
Scene Triangle Count 36 7,798 3,847,379 2,169,211 2,832,120 10,046,405 22,945,649 150,670,732
Uses Environment Map? 7 3 7 3 3 7 7 7
Uses Alpha Test? 7 7 7 7 3 3 3 7

Our Results at Maximal Quality (i.e., using Sections 5, 6, and 7) Times in milliseconds on a RTX 3090 (and RTX 2080 Max-Q)
Presampling (Sec. 5.2) 0.02 (0.02) 0.02 (0.03) 0.03 (0.10) 0.02 0.06) 0.02 (0.06) 0.02 (0.05) 0.04 (0.29) 0.03 (0.14)
Initial Candidates (Sec. 5.2) 0.5 (1.1) 0.8 (2.1) 0.8 (2.1) 0.7 (2.0) 0.8 (2.7) 0.8 (2.0) 0.8 (2.1) 0.8 (2.0)
Trace Rays (Sec. 7.3) 0.3 (0.7) 0.5 (1.3) 0.9 (2.6) 0.5 (1.5) 1.5 (4.8) 3.9 (14.0) 3.1 (10.8) 2.3 (13.3)
Reuse and Shade (Sec. 7) 0.2 (0.7) 0.6 (2.5) 0.4 (1.5) 0.5 (2.3) 0.8 (4.7) 0.4 (1.5) 0.6 (3.8) 0.6 (4.0)
Total Lighting 1.0 (2.5) 1.9 (6.1) 2.1 (6.3) 1.8 (5.9) 3.1 (12.2) 5.1 (17.7) 4.6 (16.9) 3.8 (19.5)
Speedup Over [BWP∗20] 4.0× (4.3×) 4.4× (4.5×) 4.8× (5.9×) 6.3× (N/A) 4.0× (3.1×) 2.9× (2.6×) 6.7× (19.2×) N/A
Speedup w/Decoupled Shading 1.2× (1.3×) 1.1× (1.0×) 1.1× (1.2×) 1.1× (1.1×) 1.1× (0.9×) 1.1× (1.0×) 1.0× (0.9×) 1.0× (0.9×)

Unoptimized ReSTIR [BWP∗20] Times in milliseconds on a RTX 3090 (and RTX 2080 Max-Q)
Initial Candidates 0.5 (1.4) 1.3 (3.0) 3.1 (5.8) 3.7 (N/A) 1.4 (3.6) 1.8 (6.1) 18.3 (98.7) N/A
Candidate Visibility 0.2 (0.4) 0.3 (0.8) 0.5 (1.1) 0.6 (N/A) 1.3 (4.0) 2.8 (9.4) 2.6 (27.9) N/A
Spatiotemporal Reuse (10 taps) 1.2 (4.4) 2.9 (14.0) 2.8 (12.4) 2.4 (N/A) 2.8 (10.4) 2.4 (7.8) 3.9 (104.4) N/A
Shade With Visibility 0.6 (1.5) 2.1 (6.2) 1.7 (14.8) 3.1 (N/A) 5.5 (17.2) 6.1 (20.0) 4.3 (57.7) N/A
Total Lighting 4.0 (10.8) 8.4 (27.3) 10.0 (37.1) 11.3 (N/A) 12.3 (38.4) 14.7 (46.7) 31.0 (324.1) N/A

Our Results, Without Decoupling Shading (i.e., before Section 7) Times in milliseconds on a RTX 3090 (and RTX 2080 Max-Q)
Initial Candidates (Sec. 5.2) 0.5 (1.1) 0.8 (2.1) 0.8 (2.1) 0.7 (2.0) 0.8 (2.7) 0.8 (2.0) 0.8 (2.1) 0.8 (2.0)
Candidate Visibility 0.1 (0.3) 0.2 (0.7) 0.4 (1.4) 0.3 (0.7) 0.9 (2.8) 2.4 (8.7) 2.2 (7.0) 1.4 (8.7)
Spatiotemporal Reuse (1 tap) 0.3 (1.0) 0.7 (2.1) 0.6 (1.8) 0.6 (1.9) 0.7 (2.5) 0.5 (1.6) 0.6 (2.1) 0.6 (1.9)
Spatiotemporal Reuse (10 taps) 1.1 (2.6) 2.5 (6.4) 2.0 (5.5) 2.0 (5.5) 2.4 (6.8) 1.7 (4.6) 2.0 (5.9) 2.1 (5.7)
Shade Visibility (1 ray) 0.2 (0.4) 0.3 (0.7) 0.5 (1.4) 0.3 (0.9) 0.7 (2.2) 1.5 (4.6) 1.0 (3.3) 0.8 (3.2)
Final Shading 0.1 (0.4) 0.2 (0.7) 0.2 (0.6) 0.2 (0.6) 0.2 (0.9) 0.2 (0.6) 0.2 (0.7) 0.2 (0.7)
Total Lighting (1 tap) 1.2 (3.2) 2.1 (6.4) 2.4 (7.3) 2.0 (6.3) 3.3 (11.1) 5.4 (17.5) 4.8 (15.2) 3.8 (16.6)

Varying Candidate Pixel Tile Size, see Section 5.2 Times in milliseconds on a RTX 3090 (and RTX 2080 Max-Q)
Initial Candidates (1x1) 2.6 (3.2) 4.1 (6.7) 4.4 (7.2) 3.9 (6.5) 4.1 (6.8) 4.4 (6.9) 4.4 (7.2) 4.4 (6.9)
Initial Candidates (2x2) 1.0 (2.8) 2.2 (5.7) 1.9 (6.1) 2.1 (3.8) 2.2 (8.6) 1.8 (5.9) 1.8 (6.0) 1.9 (6.1)
Initial Candidates (4x4) 0.5 (1.6) 1.1 (3.1) 1.4 (2.9) 1.0 (2.9) 1.1 (5.2) 0.9 (3.0) 0.9 (2.8) 1.0 (2.9)
Initial Candidates (8x8) 0.5 (1.1) 0.8 (2.1) 0.8 (2.1) 0.7 (2.0) 0.8 (2.7) 0.8 (2.0) 0.8 (2.1) 0.8 (2.0)
Initial Candidates (16x16) 0.5 (1.0) 0.8 (2.1) 0.8 (2.1) 0.8 (2.1) 0.8 (2.2) 0.8 (2.0) 0.8 (2.1) 0.8 (2.0)

Varying Size of Light Subsets |S j|, see Section 5.2 Times on RTX 3090, for presampling / candidate selection
|S j| = 1024, S = 128 0.02 / 0.5 0.02 / 0.8 0.03 / 0.8 0.02 / 0.7 0.02 / 0.8 0.02 / 0.8 0.04 / 0.8 0.03 / 0.8
|S j| = 4096, S = 128 0.04 / 1.0 0.04 / 1.6 0.07 / 1.9 0.05 / 1.5 0.05 / 2.2 0.05 / 1.8 0.14 / 1.8 0.09 / 1.9
|S j| = 16384, S = 128 0.10 / 3.6 0.11 / 5.3 0.22 / 6.2 0.17 / 5.1 0.15 / 6.1 0.14 / 6.2 0.52 / 6.2 0.32 / 6.2

Varying Number of Light Subsets S, see Section 5.2 Times on RTX 3090, for presampling / candidate selection
S = 128, |S j| = 1024 0.02 / 0.5 0.02 / 0.8 0.03 / 0.8 0.02 / 0.7 0.02 / 0.8 0.02 / 0.8 0.04 / 0.8 0.03 / 0.8
S = 1024, |S j| = 1024 0.06 / 0.7 0.07 / 1.0 0.13 / 1.1 0.09 / 0.9 0.09 / 1.2 0.10 / 1.1 0.27 / 1.1 0.17 / 1.1
S = 4096, |S j| = 1024 0.19 / 0.8 0.20 / 1.1 0.45 / 1.3 0.32 / 1.0 0.29 / 1.3 0.29 / 1.3 1.10 / 1.3 0.66 / 1.3

Resolution Scaling of Our Decoupled ReSTIR Times on RTX 3090, for resolutions 1280×720, 1920×1080, and 2560×1440
Initial Candidates (Sec. 5.2) 0.2 / 0.5 / 0.8 0.4 / 0.8 / 1.5 0.4 / 0.8 / 1.5 0.3 / 0.7 / 1.3 0.4 / 0.8 / 1.5 0.4 / 0.8 / 1.4 0.4 / 0.8 / 1.4 0.4 / 0.8 / 1.6
Trace Rays (Sec. 7.3) 0.2 / 0.3 / 0.5 0.2 / 0.5 / 0.8 0.4 / 0.9 / 1.5 0.2 / 0.5 / 0.9 0.7 / 1.5 / 2.7 1.9 / 3.9 / 7.0 1.4 / 3.1 / 5.6 1.1 / 2.3 / 4.1
Reuse and Shade (Sec. 7) 0.1 / 0.2 / 0.4 0.3 / 0.6 / 1.2 0.2 / 0.4 / 0.8 0.2 / 0.5 / 1.0 0.3 / 0.8 / 1.7 0.2 / 0.4 / 0.7 0.3 / 0.6 / 1.2 0.3 / 0.6 / 1.3
Total Lighting 0.5 / 1.0 / 1.8 0.8 / 1.9 / 3.5 0.9 / 2.1 / 3.9 0.8 / 1.8 / 3.3 1.4 / 3.1 / 5.8 2.5 / 5.1 / 9.1 2.1 / 4.6 / 8.2 1.8 / 3.8 / 7.0

Image Error Versus Offline Reference [Mean Squared Error (MSE)]
Our Decoupled Pipeline 0.0028 0.0170 0.0716 0.0494 0.1428 0.0471 0.1260 0.0655
Our Pipeline (Before Sec. 7) 0.0023 0.0235 0.1142 0.0721 0.1929 0.0482 0.1592 0.0856
ReSTIR [BWP∗20], Biased 0.0038 0.0341 0.1322 0.0950 0.2440 0.0553 0.1801 N/A
ReSTIR [BWP∗20], Unbiased 0.0035 0.0217 0.0802 0.0467 0.1434 0.0547 0.1473 N/A

Image Error Versus Offline Reference [ FLIP [ANA∗20]]
Our Decoupled Pipeline 0.0326 0.1255 0.1930 0.2246 0.3080 0.2329 0.3238 0.2533
ReSTIR [BWP∗20], Biased 0.0345 0.1374 0.1903 0.2457 0.3369 0.2322 0.3419 N/A

Table 1: Performance with various settings at 1920×1080. Times are in milliseconds on a RTX 3090 (and RTX 2080 Max-Q). Green lines
show our final performance with maximum quality (2 rays per pixel); fewer rays can be used, per the discussion in Section 7.3. Red lines
show comparable times for unoptimized ReSTIR [BWP∗20], separated per Figure 2, except spatiotemporal costs are combined; total cost is
larger than the component sum, due to synchronization. Yellow lines show our results before decoupling shading and reuse, comparing the
reduced spatial samples from Section 6 and Bitterli et al.’s [BWP∗20] 10 spatial taps. Un-highlighted lines show how varying the presampled
light subsets and pixel tile sizes, in Section 5.2, impacts performance. At the bottom, we explore performance scaling with resolution and
compare mean square errors (MSE) between our work and Bitterli et al. [BWP∗20]. The FLIP perceptual metric [ANA∗20] also validates
we maintain or improve image quality with our better performing pipeline.
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Figure 17: Compare quality between our decoupled pipeline (Section 7) and the original computation pipeline (i.e., organized per Bitterli et
al. [BWP∗20]). Both methods shade and reuse the same samples (i.e., access the same memory), and trace 2 rays per pixel. Here, we focus
on interesting inset locations in our Bistro, Opera House, Soda Hall, and Arcade scenes. At right, we illustrate a limitation of decoupling:
it can somewhat increase noise in well-converged, unshadowed regions. This is due to forced shading of one (possibly poor) candidate each
frame. However, decoupled shading still reduces error in typical full-scene views of the Arcade (MSE 0.0170 v.s. 0.0235; see Table 1).

Reference 1 Iteration, 1 Tap 1 Iteration, 2 Taps 1 Iteration, 3 Taps 1 Iteration, 4 Taps 1 Iteration, 5 Taps

MSE: 0.0889 MSE: 0.0958 MSE: 0.0965 MSE: 0.0982 MSE: 0.0996

Temporal Only 2 Iterations, 1 Tap 2 Iterations, 2 Taps 2 Iterations, 3 Taps 2 Iterations, 4 Taps 2 Iterations, 5 Taps

MSE: 0.0760 MSE: 0.0932 MSE: 0.0987 MSE: 0.1007 MSE: 0.1020 MSE: 0.1042

Figure 18: Comparing different spatial sample counts. Section 6.3 suggests understanding the relative importance of spatial and temporal
samples. In our Subway scene, we show a reference, temporal resampling only, and spatiotemporal reuse with various spatial sample counts
(between 1 and 10 spatial samples). Spatial samples occur in either one or two iterations of resampling, with between one and five samples
per pass. Bitterli et al. [BWP∗20] use 2 iterations with 5 spatial samples each. For reference, our decoupled pipeline from Section 7 has an
MSE of 0.0425 with just 1 temporal sample and an MSE of 0.0546 with 1 temporal and 1 spatiotemporal sample in this view.
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Figure 19: Using presampled light pools (Section 5.2) introduces
correlations within and between tiles of pixels. Insets show lighting
directly with our initial candidates (no reuse), using different pixel
tile sizes, to show this correlation. All with S=128 and |SJ |=1024.

8.4. Quality Impact of Reduced Sampling Frequency

Section 6 significantly changes how spatial, temporal, and visibil-
ity sampling occurs. Surprisingly, our changes often increase im-
age quality. The key quality regression is a reduction in visibility
queries; but, as shown in Figure 9, tracing four visibility rays for
final shading wastes a lot of work. In fact, decoupled shading pro-
vides a better noise reduction in these regions (see Table 1).

Figure 18 compares quality with varying numbers of spatial sam-
ples used for reuse. Bitterli et al. [BWP∗20] uses 2 spatial iterations
with 5 taps each, which has the highest MSE shown in Figure 18.
Spatial samples simply estimate the current pixel worse than (valid)
temporal estimates. Figure 11 shows spatial samples help quickly
reduce noise in disocclusions (or other temporal discontinuities),
but they can worsen quality elsewhere.

For biased ReSTIR, part of the increased error comes from addi-
tional bias introduced by each spatial sample. But measuring MSE
for unbiased ReSTIR shows a similar increase in error, albeit of
smaller magnitude (i.e., from 0.0770 to 0.0829 as spatial sample
count increases from one to five).

This leads to somewhat contradictory conclusions: spatial sam-
ples allow the exponential growth in effective sample count M, and
thus are vital to ReSTIR. They also help fill discontinuities, when
temporal samples get invalidated. However, using too many spatial
samples increases error. Adaptively changing spatial sample count
only in disoccluded regions can carefully target increased reuse.

8.5. Quality Impact of Prerandomized Light Samples

Section 5 is somewhat surprising—it suggests replacing 32 inde-
pendent light samples per pixel (64 million independent samples
in a 1920×1080 image) by a few, much smaller subsets, indepen-
dently randomized once per frame. We empirically chose S=128
subsets of size |S j|=1024. This reduction, of course, enables much
of the performance boost shown in Figure 7 and Table 1.

Obviously, reducing the sample size introduces correlation. This
may be worrying, until we remember ReSTIR is fundamentally
about leveraging correlated sampling to improve image quality. We
simply propose also leveraging correlations to reduce cost.

Figure 19 shows these correlations by lighting the initial candi-
dates directly (before reuse) using different size screen tiles; every

pixel in tile picks 32 independent samples from the same pool of
|S j|=1024 light samples. Correlations clearly occur with 8×8 and
larger tiles, and they are more obvious under animation.

Correlations appear because each screen tile samples from pool
S j either 32∗8×8, 32∗16×16, or 32∗32×32 times. All of those
are larger than our selected size |S j|= 1024. Pixels become more
correlated as tile size increases. Choosing |S j|=16384 removes any
visible correlation for even 32×32 tiles.

ReSTIR handles limited correlations within 8×8 tiles, as pix-
els also spatiotemporally sample from a larger, 30-pixel neighbor-
hood. These samples come from different light pools, as they are
re-randomized each frame; this helps decorrelate neighbors before
shading and reuse.

Another, less obvious, issue exists with prerandomized light sets.
Different screen tiles use the same light pool. This correlates dis-
tant parts of the image. But this only matters if such correlations
are visible or if they impact resampling quality. Fortunately, these
correlations are simply not perceptible with reasonable sized S and
|S j|. (Though S=4 and |S j|=32 makes them obvious).

And long-distance correlations do not impact ReSTIR since we
draw spatiotemporal neighbors from a limited region. We only need
samples in our neighborhood to remain relatively uncorrelated. A
30-pixel radius neighborhood contains 30×30×π×32 ≈ 90,000
samples, if pixels use M = 32 candidates. And this 30-pixel filter
touches 45-50 of our 8×8 pixel tiles. This suggests our empirically-
determined S and |S j| are reasonable, giving perhaps 40,000 in-
dependent samples in ReSTIR’s 30-pixel search radius. This ap-
proaches the 90,000 needed for truly independent sampling. Inter-
estingly, this logic is independent of scene complexity.

9. Discussion

Beyond specific quality and performance issues discussed above,
our explorations highlighted various other interesting observations.

Numerical precision. Using weighted reservoir sampling to sum
samples over many frames seems likely to encounter problems
from catastrophic cancellation. Fortunately, each pixel only sums
32+2 values, our candidates plus one temporal and one spatiotem-
poral sample. Reservoirs are renormalized between frames (i.e.,
sums become averages) by Bitterli et al.’s [BWP∗20] clamping of
M to 20× the current reservoir’s M. This virtually eliminates inter-
frame precision issues.

Ray coherence. Shadow rays for per-pixel candidates are ex-
tremely incoherent, by design. But the resampling process makes
our selected samples more correlated and, thus, more coherent. See
the yellow-highlighted lines in Table 1, where one shade visibility
ray is significantly cheaper than one candidate visibility ray. This
likely affects relative performance of our decoupled pipeline, which
benefits somewhat less from this improved coherence.

Expensive materials. ReSTIR evaluates materials multiple times
per pixel, to compute target functions p̂i during reuse. When inte-
grating into renderers with complex layered or procedural material
models, this may be worrying. If materials can be evaluated once
per pixel and baked into a G-buffer for deferred shading, ReSTIR
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Figure 20: Resampling can undersample very complex lighting. A
reference with insets, (left) reference and (right) ReSTIR, of the ex-
tensive “Vokselia” Minecraft world with 200,000 emissives, mostly
torches with limited range. Torch lighting flickers temporally, as
pixels rarely find a relevant light; when a torch is proposed as a
candidate, it is rarely at a pixel within range of the torchlight.

simply consumes this G-buffer data. Alternatively, target functions
p̂i can use simplified material models at the cost of increased noise.

Alternate forms of visibility. Section 7.3 shows we achieve plau-
sible results without accurately knowing each sample’s visibility
and proposes a simple knob to parameterize quality. We could
also imagine using other, faster visibility approximations, e.g.,
screen-space ray tracing [MM14] or screen-space directional oc-
clusion [RGS09]. Such use will likely inherit their limitations, but
in a decoupled pipeline we would apply them only when shading.

Scaling performance lower. Even the knobs we introduce to tune
performance and quality may be insufficient for today’s lower-end
hardware. Our pipeline interacts well with checkerboard render-
ing [Wih17] and similar techniques.

MIS with BRDF rays. Our source pdfs q(ω) need not only sam-
ple lights; BRDF rays can be included. We advise not combining
a BRDF ray with the result of ReSTIR; this neglects any benefit
the BRDF ray could provide to nearby pixels via reuse. Addition-
ally, ReSTIR combines thousands of samples while BRDF sam-
pling provides just a few; determining an appropriate weighting af-
ter reuse occurs is more challenging.

10. Limitations

There are three key issues that underlie the limitations in ReSTIR:
perfect specular materials, undersampling, and correlations.

For perfect specular surfaces, firing a reflection ray easily com-
putes correct lighting. For near-specular surfaces, BRDF sampling
can perform better than ReSTIR, largely because narrow specular
lobes radically limit the set of useful neighbors. This limits the ben-
efits of reuse on these materials.

While ReSTIR multiplies our limited sampling budget, it has
limits. Figure 20 shows an extremely large Minecraft world with
over 200,000 emissive, mostly tiny torches. These torches have rel-
atively limited range, so pixels need to find the single nearby, im-
portant torch. With 32 candidates per pixel and effective M values
of perhaps ten thousand, this is insufficient to sample tiny emitters
every frame. This leads to temporally flickering torchlight.

Correlated sampling gives ReSTIR its power, but also poses
problems. Essentially, ReSTIR identifies important samples, holds
on to them, and reweights them for nearby pixels. When it finds
too few important samples, pixels all end up reusing the same
sample, leading to blotchy, VPL-like artifacts. By reusing from
many past frames, ReSTIR generally finds good samples. However,
blotchiness worsens in conjunction with specular surfaces or under-
sampling, i.e., it is more visible on highly specular surfaces or in
sparsely lit regions of large, well-illuminated scenes.

11. Conclusions

We presented numerous algorithmic improvements to dramatically
improve performance and quality of spatiotemporal resampling for
direct lighting in many-light scenes. We show leveraging resam-
pling to reshape computations allows removing many incoherent
memory accesses from our inner render loop. We also identified
discarded work that, by decoupling shading and sample reuse, im-
proves shading quality at negligible cost. We also empirically ex-
plored ReSTIR’s parameter space, finding that spatial sampling is
less useful than initially imagined; this allows turning down quality
settings surprisingly far without reducing image quality.

Combined these provide improved quality and up to a 7× per-
formance improvement, with even larger gains for complex scenes
on memory-constrained, lower-performance hardware. We also ex-
pose a new performance knob that allows scaling down ray costs in
exchange for less defined contact shadows.

We hope that, given our improvements, ReSTIR-based sampling
techniques will continue being developed to leverage correlations
for improved quality in more complex real-time light transport, e.g.,
global illumination [OLK∗21].
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