
Decoupled Coverage Anti-Aliasing

Yuxiang Wang
UC Santa Barbara

Chris Wyman
NVIDIA

Yong He
Carnegie Mellon University

Pradeep Sen
UC Santa Barbara

8x MSAA4S SBAA DCAA Reference

Figure 1: (left) The CITADEL scene rendered with the proposed Decoupled Coverage Anti-Aliasing (DCAA) method. (right) Insets com-
paring various algorithms for geometric anti-aliasing. Although 8×MSAA still has visible aliasing in regions with fine-scale geometry (e.g.,
the tree branches or building detail), our approach produces results of comparable quality to the reference, which is computed by correctly
downsampling a 64× larger image computed with 8×MSAA (effectively 512 visibility samples per pixel).

Abstract

State-of-the-art methods for geometric anti-aliasing in real-time
rendering are based on Multi-Sample Anti-Aliasing (MSAA),
which samples visibility more than shading to reduce the number
of expensive shading calculations. However, for high-quality re-
sults the number of visibility samples needs to be large (e.g., 64
samples/pixel), which requires significant memory because visi-
bility samples are usually 24-bit depth values. In this paper, we
present Decoupled Coverage Anti-Aliasing (DCAA), which im-
proves upon MSAA by further decoupling coverage from visibility
for high-quality geometric anti-aliasing. Our work is based on the
previously-explored idea that all fragments at a pixel can be consol-
idated into a small set of visible surfaces. Although in the past this
was only used to reduce the memory footprint of the G-Buffer for
deferred shading with MSAA, we leverage this idea to represent
each consolidated surface with a 64-bit binary mask for coverage
and a single decoupled depth value, thus significantly reducing the
overhead for high-quality anti-aliasing. To do this, we introduce
new surface merging heuristics and resolve mechanisms to manage
the decoupled depth and coverage samples. Our prototype imple-
mentation runs in real-time on current graphics hardware, and re-
sults in a significant reduction in geometric aliasing with less mem-
ory overhead than 8×MSAA for several complex scenes.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image

Generation—Antialiasing I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism

Keywords: Anti-aliasing, real-time rendering, graphics hardware

1 Introduction

Aliasing artifacts have long plagued rendering systems, as sampling
the scene to produce an image introduces aliasing wherever the fre-
quency content of the scene is sufficiently high [Shannon 1949]. A
common technique for anti-aliasing (addressing geometric, shader,
and texture aliasing) is super-sampling, which increases the number
of samples in each pixel [Fuchs et al. 1986; Mammen 1989; Hae-
berli and Akeley 1990]. However, high-quality super-sampling re-
quires a large number of shading and visibility calculations which,
although feasible for high-end offline rendering systems, are often
too expensive for real-time rendering.

Therefore, researchers have explored anti-aliasing solutions specif-
ically for real-time rendering. For example, real-time texture anti-
aliasing is usually handled through mipmaps [Williams 1983], and
there has also been work on real-time shader anti-aliasing [Olano
et al. 2003]. For geometric anti-aliasing (i.e., aliasing due to edges
in the scene geometry), the most effective solutions are based on
Multi-Sample Anti-Aliasing (MSAA) which decouples shading and
visibility by sampling visibility at multiple locations for each pixel
but shading only once [Akeley 1993]. MSAA is based on the ob-
servation is that while shading/textures can be anti-aliased through
other means, geometric anti-aliasing can only be addressed through
more samples. Therefore, by limiting the number of shading sam-
ples, the memory bandwidth required is considerably reduced as
compared to standard super-sampling.

However, geometric anti-aliasing methods based on MSAA have
two general problems. First, they require a significant number

of visibility samples (e.g., 64 samples/pixel) to get a high-quality
anti-aliased result for complex geometry with fine detail, as seen
in Fig. 1. Since each visibility sample is usually stored as a 24-
bit depth value, high-quality MSAA can consume an impractical
amount of video memory (e.g., 1GB for 1920× 1080 resolution).

Second, MSAA methods require even more memory for deferred
shading rendering systems which are a popular choice for video
game engines today [Mittring 2011; Tatarchuk et al. 2013]. These
systems improve performance by deferring the typically expensive
shading pass until the end, so that only visible surfaces are actually
shaded. This requires storing all shader inputs for the nearest scene
object at every sample in a structure known as a G-Buffer [Saito
and Takahashi 1990], which for MSAA would grow linearly with
the number of samples since each sample could come from a dif-
ferent object. For example, switching a 64×MSAA system at
1920× 1080 resolution from regular forward rendering to deferred
shading would increase the memory footprint from 1GB to 2GB
for a typical G-Buffer configuration. Although researchers have
begun to explore approaches to compress the G-Buffer by storing a
small set of aggregate surfaces [Salvi and Vidimče 2012; Kerzner
and Salvi 2014; Crassin et al. 2015], these approaches do not ad-
dress the first problem with the large size of the visibility map for
high-quality anti-aliasing.

In this paper, we propose a novel algorithm that addresses both
problems with MSAA simultaneously and therefore enables high-
quality, real-time anti-aliasing of complex scenes with fine geomet-
ric detail. Our key insight is that we can leverage existing work on
G-buffer compression that aggregates samples into a few consoli-
dated surfaces [Kerzner and Salvi 2014] to further decouple cov-
erage from visibility (depth) calculations, thereby significantly re-
ducing the size of the necessary G-Buffer to make it more practical.
This requires the introduction of new rules for merging and dis-
carding fragments to deal with the small geometric details captured
by the coverage samples, but enables us to use a high-resolution,
64 sample/pixel coverage mask which allows us to accurately com-
pute the weights of each color surface for high-quality geometric
anti-aliasing. We demonstrate our algorithm running at real-time
rates on current graphics hardware, and note that with dedicated
hardware support the algorithm would be even faster. We now be-
gin with a survey of related work in geometric anti-aliasing.

2 Related Work

As discussed earlier, the idea of decoupling shading and visibility
sampling during anti-aliasing to reduce expensive shading compu-
tation was first proposed in Multi-Sample Anti-Aliasing (MSAA)
[Akeley 1993]. There have been other methods proposed to de-
couple shading and visibility. To address problems with deferred
shading, Ragan-Kelley et al. [2007] use an indirect framebuffer
to preserve the relationship between shading and visibility sam-
ples, achieving a reduced shading rate similar to MSAA. Lauritzen
et al. [2010] analyzes planar features that are shared in a multi-
sampled G-Buffer and adaptively shades the pixel, lowering the
shading cost. A similar idea is also applied for stochastic rasteri-
zation [Clarberg et al. 2013; Liktor and Dachsbacher 2012]. How-
ever, these approaches cannot address the memory footprint issue
described earlier, as their samples still contain sizeable depth infor-
mation and a large amount of per-sample data is still needed.

Various post-processing methods have been proposed that perform
anti-aliasing by reusing information from adjacent pixels [Reshetov
2009; Lottes 2009; Reshetov 2012; Jimenez et al. 2011] or adjacent
frames [NVIDIA 2014b], thus saving computation. These methods
are typically fast and easy to integrate into a rendering engine, and
have become a popular choice for modern video games. However,

they have their own limitations, such as temporal artifacts for sub-
pixel details or blurriness.

The A-Buffer algorithm [Carpenter 1984] builds an linked list for
multiple fragments in a pixel in order to address transparency and
anti-aliasing problem. The Z3 algorithm [Jouppi and Chang 1999],
as a hardware variation of the A-Buffer algorithm, stores z-slope
and coverage map for each fragment, and save them in a fixed
length list, which is similar to our algorithm. However, the Z3

algorithm shades for every input fragment, which is more towards
forward rendering; when the number of fragments exceeds the fixed
size of list, the Z3 algorithm forces to merge closest fragments
together only according to weighted depth values, which will in-
troduce more artifacts, e.g., merging fragments with large normal
difference, than our merge and discard heuristics.

To reduce the storage overhead of many visibility samples per pixel,
some algorithms, like our own, have proposed decoupling cover-
age from visibility. The CSAA/EQAA algorithms [NVIDIA 2010;
AMD 2012] sample coverage more than visibility, and associate
multiple coverage samples with each visibility sample. However,
this association can change in unpredictable ways depending on
fragment ordering, sometimes leaving covered samples with no cor-
responding visibility sample.

To reduce the size of the G-Buffer, Surfaced-Based Anti-Aliasing
[Salvi and Vidimče 2012] introduced the notion of consolidating
fragments into a small set of surfaces that could be independently
shaded. To do this, they analyze the result of a MSAA prepass, then
find the most important n fragments to store in the G-Buffer. This
allows similar fragments to be merged together and limits the num-
ber of G-Buffer samples per pixel needed. The Streaming G-Buffer
compression algorithm by Kerzner and Salvi [2014] improves upon
SBAA by merging and discarding fragments on-the-fly in a stream-
ing fashion, making it a single pass algorithm. In order to reduce the
memory overhead, both approaches will sometimes need to discard
fragments, which leads to artifacts in cases when many fragments
contribute to a pixel. Aggregate G-Buffer Anti-Aliasing (AGAA)
[Crassin et al. 2015] filters geometric information and compresses
it into few aggregate surfaces, then shades each only once. How-
ever, all three approaches rely on MSAA for visibility sampling,
and can achieve no better quality than the corresponding MSAA
quality they use in their process.

Note that the Kerzner and Salvi [2014] method, like our own, only
stores binary coverage and a single depth at the aggregated surfaces.
However, they do this by computing visibility and then discarding
the depth values, since hardware does not support decoupled depth
and coverage sampling rates. Therefore, in their approach the mem-
ory footprint still includes the depth value per sample, which can be
expensive at high sampling rates. In contrast, our method generates
coverage maps results without depth information by using a shader,
reducing the overall memory footprint.

Coverage determination is another important issue for anti-aliasing.
Modern graphics hardware can use up to 8 samples per fragment for
coverage and visibility determination, but increasing the number
beyond that would be expensive. Researchers have studied ways
this could be increased. For example, Waller et al. [2000] present
a sub-pixel coverage map based on lookup table, which yields
high quality anti-aliasing results when using an ASIC. Wyman et
al. [2015] use a high quality coverage map to sample an irregular
z-buffer to render anti-aliased hard shadows, enabling sub-pixel ac-
curacy with little speed overhead.

Motivated by ideas such as the Streaming G-Buffer, we propose to
address the problem of high-quality geometric anti-aliasing using a
lossy compressed G-Buffer with a coverage map with 64 samples
per pixel.

Raster

1 1 1 1
1 0 1 1
0 1 0 0

Visibility
Test

Coverage Mask
+

Depth

Resolved
Framebuffer

Superposition
Result

Current
Framebuffer

4x MSAA

Analytical
Result

Raster

1 1 1 1 0 ...

Fragment
Merge w/

HQ-Coverage

High Quality
Coverage Mask

Modified
Surface List

Resolved
Framebuffer

Decoupled
Coverage AA

Surface 1
Surface 2
Surface 3
Surface 4

Current
Surface List

Surface 1
Surface 2
Surface 3
Surface 4

Final
Depth

Resolve

1 1 1 0 1 ...

1 1 0 0 1 ...

Figure 2: Algorithm overview. (left) The superposition of two triangles, and the analytical framebuffer based on the covered area of each
pixel (ground truth anti-aliasing). (middle) The 4×MSAA process averages the visible color of each sample to produce the resolved result.
However, the small number of MSAA samples cannot provide precise result. (right) By decoupling coverage and visibility, our DCAA
algorithm can generate high quality coverage map, and uses a new set of rules to merge the new fragment with existing surfaces. After the
final depth resolve, the resolved framebuffer is more precisely weighted and is comparable to the analytical result.

3 Algorithm

As shown in Fig. 2, our algorithm uses post-projection geometry in-
formation to get the explicit representation of triangles edges, and
uses them to generate fragment coverage maps based on the triangle
edge equations. We use the coverage map along with other infor-
mation to aggregate surfaces, and merge or discard fragments based
on a new set of rules we will discuss later. Finally we do a depth
resolve to calculate the contribution of each surface. Specifically,
for every fragment our algorithm takes the following three steps:

1. Generate coverage map (Sec. 3.1): we render the scene using
a conservative rasterizer and use a shader to generate a high
quality coverage map for each fragment.

2. First Merge Attempt (Sec. 3.2 and Alg. 1): we merge similar
fragments together into aggregate surfaces stored in the G-
buffer.

3. Second Merge Attempt (Sec. 3.3 and Alg. 1): If a fragment
cannot be merged with an existing surface and the list of sur-
faces is full, we must discard the surface with the least visual
contribution. However, before this happens we attempt a sec-
ond merge with relaxed rules to try and preserve the informa-
tion.

After all fragments are processed, we do a final depth resolve to de-
termine the contribution of each surface (Sec. 3.4). We now discuss
in detail each step of our algorithm.

3.1 Coverage Map Generation

A key aspect of our algorithm is decoupling coverage from visibil-
ity, which reduces the storage of each sample and thereby enables
much higher coverage rates than MSAA. This, in turn, results in
higher-fidelity weights for combining shaded samples, which im-
proves anti-aliasing quality. Therefore, unlike the 24-bit depth used
to represent coverage in MSAA, we use a bitmask with one bit per
sample to identify which coverage samples belong to a specific sur-
face, and associate a single depth value to each surface.

Since current graphics hardware generates at most 8 coverage sam-
ples per pixel, we use conservative rasterization and a custom frag-
ment shader to perform denser coverage sampling for each trian-
gle. For each fragment, we project its triangle edges onto the pixel
and use a lookup table (LUT) to identify which samples in our bit-
mask are covered. Researchers have previously used similar LUTs
(e.g., Waller et al. [2000]). The basic idea is to project each triangle
edge independently, lookup the half-plane coverage in the LUT, and
perform a binary AND of the contributions from all three triangle

Algorithm 1: Merge and discard algorithm
Input: sin – input fragment, θt – normal angle threshold

1: for all surfaces si in list S do // first merge attempt (Sec. 3.2)
2: if ni · nin > cos θt and DepthOverlap (si, sin) then
3: Merge (si, sin);
4: merged = true;
5: end if
6: end for
7: if !merged then
8: if list is not full then
9: Store(sin, S);

10: else // second merge attempt (Sec. 3.3)
11: CoarseDepthResolve (S, sin);
12: sd = FindSmallestCoverage (S, sin);
13: for all surfaces si in {S,sin} do
14: if DepthOverlap (si, sd) then
15: Merge (si, sd);
16: end if
17: end for
18: if sd != sin then
19: Discard(sd, S);
20: Store(sin, S);
21: end if
22: end if
23: end if

edges to get the final coverage map. Specifically, for each LUT en-
try there is a corresponding directed line. When building the LUT,
we test every coverage sample location in the pixel to see if it is
located on the left of the line, which is treated as covered; then we
save the coverage bitmask in the LUT. To use the LUT for cover-
age map, we find the corresponding LUT entries for three projected
triangle edges, and then do bitwise AND for all three coverage bit-
masks for the final coverage map, which is done in fragment shader.
Fig. 3 gives an outline of this process.

One advantage of using a LUT is the ability to adjust sampling loca-
tions and the number of samples. In our implementation we use 64
coverage samples per pixel, but this can easily be increased, albeit
with additional storage cost for a larger coverage mask.

3.2 Merging Heuristics and First Merge Attempt

As with some previous approaches [Salvi and Vidimče 2012;
Kerzner and Salvi 2014], our algorithm exploits the fact that we
cannot distinguish many distinct surfaces within a pixel, by merg-
ing similar fragments together to reduce the number of per-sample

(c) (d)

Coverage Mask Generation

Pixel frustum Pixel NDC

Coverage MaskProjection

(a) (b)

Figure 3: We generate a 64-bit coverage mask for each fragment by: (a,b,c) projecting the triangle onto the pixel plane in either perspective
space or normalized device coordinates, (d,e,f) using each edge to index into a lookup table to determine coverage for a half plane, and
bitwise AND the three edge coverages to get the fragment’s sub-pixel coverage map.

shader inputs that need to be stored. However, compressing stor-
age to our target of four per-pixel surfaces requires a set of merging
heuristics. Since we want to merge surfaces that are close together
and have similar orientations (e.g., adjacent triangles in a mesh), we
use two common heuristics from prior surface-based approaches:

Aligned normal: The normals of two merge candidates should be
close to each other. We found that a difference angle of θt = π/16
worked robustly.

Overlapping depth: The two merge candidates should be similar
in depth. To test this, we approximate a fragment bounding box
using depth derivatives dD

dx
and dD

dy
over the pixel extent. These

bounding boxes must overlap in depth in order to merge the frag-
ments.

Unlike the work of Kerzner and Salvi [2014], we do not consider the
overlap of surface coverage when merging. In fact, we found that
the addition of this third rule resulted in artifacts in some cases. In a
tree, for instance, it may be better to merge two slightly overlapping
branches than to discard one because coverage samples overlap.

When a new fragment is rasterized, we apply the aligned normal
and overlapping depth metrics to determine which existing surface
provides the best merge candidate (i.e., closest normal and max-
imal depth overlap). We then merge the fragment and its closest
surface, averaging normals, depths, and material parameters based
on a weighted average of the fragment’s and surface’s coverage. We
then combine coverage with a binary OR operation.

If no existing surface provides a satisfactory match, the incoming
fragment becomes a new surface and is inserted into the pixel’s
surface list.

3.3 Discard and Second Merge Attempt

If we are unable to successfully merge our fragment with an exist-
ing surface and the per-pixel surface list is full, we cannot create a
new surface. Kerzner and Salvi [2014] start discarding fragments
in this situation, but this can lead to light leaking, especially when
the discarded fragment lies on the geometry closest to the camera,
as shown in Fig. 4.

Before discarding a surface, we instead perform a secondary merge
step with relaxed merge rules. The idea is that instead of discarding
information, we prefer to try to combine somewhat disjoint sur-
faces, resulting in approximate surface shading but with accurate
coverage. Pixels with 5 or more surfaces generally contain aggre-
gate geometry, like tree leaves, where shading with averaged G-
buffer parameters makes sense [Crassin et al. 2015].

For our secondary merge attempt we select the surface with the
smallest visible coverage, i.e., the surface whose contribution to

(d) reference

(a) without second merge (b) w/o keeping front most

(c) with addtional rules

Figure 4: Failure cases of original rules. (a) DCAA without second
merge, some pixels leak to background color (blue). (b) Apply sec-
ond merge attempt but without keeping front most surface, leaking
is reduced, but some front most surfaces may be discarded and re-
veals the background. (c) DCAA with both additional rules, getting
comparable result with (d) reference.

pixel color would be smallest. This can be either the current frag-
ment or any surface in the pixel’s list. Since our surfaces do not
contain resolved coverage, we coarsely resolve depths by order-
ing surfaces front to back and use bitwise operations to mask off
samples covered by closer surfaces. The surface with the small-
est coverage then becomes our candidate for merge (and possible
discard).

We compare to other surfaces in the pixel using a single metric, the
overlapping depth heuristic from Section 3.2. If the depth overlaps
with any other surface, we merge them together (as before), other-
wise the surface with smallest coverage is discarded (see Figure 5).

We also discovered that discarding the closest surface, even with
low coverage, can cause visible popping and aliasing on fine details
like hair, wires, and fences, as shown in Fig. 4(b). Therefore, we
exclude the closest surface when identifying the one with the least
coverage.

3.4 Final Depth Resolve

After processing all fragments we apply a depth resolve to deter-
mine coverage of each surface. Using the surface’s depth and nor-
mal, we can approximate the depth of each coverage sample and
mask off bits occluded by other surfaces. Specifically, for a screen

(a) Pixel with 5 fragments (b) Pixel in (a) seen from side

(c) Discard without merge (d) Merge before discard

Depth

Figure 5: Merge before discard. (a,b) When a new fragment comes,
the pixel may have 5 surfaces, but can only contain 4 surfaces in
buffer. (c) Discarding the smallest covered non-front-most one (yel-
low surface) may cause leak to the background. (d) Merge before
discard keeps the coverage of the smallest surfaces, avoiding leak
to the background.

space coverage sample (xi, yi) and a surface plane in normalized
device coordinates f(p) : n · p+ w = 0:

depth(xi, yi) = −(nxxi + nyyi + w)/nz.

The final pixel color C is a weighted average of surface colors:

C =

S∑
i=1

ni

N
ci

where S is the number of aggregate surfaces (S = 4 in our imple-
mentation), ni is the number of sub-pixel coverage samples for the
ith surface still visible after depth resolve and ci is the shaded color
of that surface, and N is the total number of samples (bits) in the
coverage mask.

4 Implementation and Optimization

Our prototype uses OpenGL 4.5 running on a GeForce GTX 980,
which provides various hardware features to help accelerate our al-
gorithm.

4.1 Primitive Ordering and Coverage

In a streaming process, we compress incoming fragments into a
fixed number of surfaces per pixel. Since fragments in the same
pixel (from different triangles) may be processed simultaneously,
we use a critical section to ensure hazard-free surface merging. We
use NV fragment shader interlock to guarantee atomic processing.

We use 64 coverage samples per pixel, but current hardware pro-
vides at most 8 samples per pixel. Instead we compute sample cov-
erage in software (via a lookup table). To avoid missed coverage

samples, this requires a fragment to be generated anytime any part
of the pixel is covered. We use NV conservative raster to achieve
this and extrapolate triangle attributes outside the original triangle.

4.2 Avoiding Stalls Via Z-Prepass

Simultaneously using conservative raster and fragment interlock
provides poor performance. Conservative raster generates overlap-
ping fragments for triangles sharing mesh edges, and fragment in-
terlock stalls to avoid read-write hazards on overlapping fragments.

Eliminating primitives known to have no impact on final image
quality is thus vital. We use a z-prepass to cull triangles known to
be occluded. Since the z-prepass and our per-surface coverage use
different sampling rates, care is required to perform culling conser-
vatively. Our prepass stores the maximum z within the pixel for all
visible surfaces. This can be approximated with an 8× MSAA z-
pass with max resolve or implemented exactly in a fragment shader.

4.3 Compressed Surface Data Format

Memory accesses can quickly become the bottleneck on modern
GPUs, especially when part of larger critical sections like our sur-
face merge. We attempted to minimize per-surface memory to save
bandwidth and maximize performance.

As discussed in Section 3.4, we need a facet normal and depth to
merge surfaces. To shade surfaces, we need standard G-buffer data
including albedo, specularity, emissiveness, and roughness in addi-
tion to the ability to extract shading normal and eye-space position.
We use recent practical G-buffer formats (e.g., Crassin et al [2015],
Tatarchuk et al. [2013], and Mittring [2011]) to guide our format.

We compress normals to two 16-bit values (see [Cigolle et al.
2014]) and store depth in a 24-bit format; an evaluation of the effect
of depth and normal compression is presented in Section 5.2.

Finally, we store per-surface aggregate coverage. This requires a
number of bits equal to the sampling rate; we use 64 bits. This
sampling rate could vary, trading performance for sampling fidelity.

Figure 6 shows a reference G-buffer layout compared to our surface
format. While our surfaces require more space than corresponding
G-buffer samples, we use only 4 surfaces per pixel independent of
the sample coverage rate. With 64 coverage bits, we achieve quality
close to 64× supersampling but require only 112 bytes (4×24) per
pixel; a 64× supersampled result requires 1024 bytes (64 × 16),
and 8×MSAA requires 128 bytes (8× 16).

5 Evaluation

We evaluate image quality, performance, and the surface compres-
sion on three scenes shown in Figures 1 and 7. CITADEL is a game-
like scene with varying levels of geometric detail, ranging from
terrain to tree branches. VILLA also contains fine tree branches,
near-vertical fence poles, and distant window lattices. BAMBOO
contains hundreds of bamboo stalks made up of tiny triangles, in-
cluding sliver triangles and complex occlusion. TENTACLES is a
2.5 million triangle grass model. SPONZA is a scene with textures.
SIBENIK is a scene with more complex material (Cook-Torrance
model) and with textures. Table 1 shows our initial prototype’s per-
formance using DCAA.

All results were rendered on a GeForce GTX 980 at 1920 × 1080,
using extended OpenGL 4.5. We compare, variously, with SBAA
using “merge” strategy and 4 surfaces per pixel [Salvi and Vidimče
2012], 8×MSAA, and a 512× samples per pixel ground truth.

Table 1: Performance for major steps of DCAA, and MSE value for comparison methods. Note that we merge fragments into surfaces in a
single pass, so Merge includes all merge steps from in Sec. 3.

Scene Z-prepass Merge Resolve & Total MSE
Render 4S SBAA 8×MSAA DCAA

CITADEL 1.3 ms 23.2 ms 6.4 ms 30.9 ms 2.47× 10−4 1.32× 10−4 6.40× 10−5

BAMBOO 4.1 ms 39.3 ms 9.5 ms 52.9 ms 7.93× 10−4 4.65× 10−4 1.63× 10−4

VILLA 0.6 ms 8.7 ms 5.2 ms 14.5 ms 2.67× 10−4 2.20× 10−4 6.90× 10−5

TENTACLES 1.3 ms 574.5 ms 6.2 ms 582.0ms 2.28× 10−3 6.05× 10−4 5.65× 10−4

SPONZA 0.4 ms 12.8 ms 2.5 ms 15.7ms 1.00× 10−4 9.70× 10−5 9.60× 10−5

SIBENIK 0.3 ms 6.8 ms 2.7 ms 9.8ms 1.18× 10−4 1.03× 10−4 1.01× 10−4

R8 G8 B8 A8
Stencil

Emissive
Roughness

Depth
Normal U Normal V
Diffuse Albedo RGB

Metal

R8 G8 B8 A8

Emissive

Depth

Metal

Normal U Normal V

Coverage Mask 1
Coverage Mask 2

Diffuse Albedo RGB
Roughness

Stencil

Face Equ U Face Equ V

(a) A typical G-Buffer layout (per sample)

(b) DCAA G-Buffer layout (per surface)

Figure 6: (a) A typical G-Buffer layout per sample for deferred
rendering. (b) Our DCAA G-buffer layout per surface with same
information as the reference. Note that though DCAA takes more
space per surface, it has few surfaces (4 in our experiments), com-
paring to the number of samples for MSAA.

5.1 Image quality

Figures 1 and 7 compare DCAA, 8×MSAA, and our ground truth.
Along small details and near vertical and horizontal edges, our algo-
rithm approaches our ground truth. In general, we generate higher
quality weights, allowing small geometry to fade out more slowly
as coverage decreases; 8× MSAA is limited to multiples of 1

8
for

weights, leading to higher magnitude flickering for fine details.

In general DCAA provides higher image quality than 8× MSAA
and SBAA with 4 surfaces, preserving fine geometry almost as well
as ground truth. DCAA has similar quality to the ground truth re-
sult, while using only 11% as much memory as 64x supersampling.
Note that DCAA can process texture and non-diffuse material, as
shown in SIBENIK scene in Fig. 7.

5.2 Compression

To improve performance we can compress geometry into fewer sur-
faces. Fig. 9 shows the number of surfaces need for CITADEL. Most
of the scene only require 1 surface per pixel, but for regions such as
the towers in CITADEL, we need more surfaces to correctly describe
the scene with high quality coverage. We found 4 surfaces provided
a sweet spot, capturing the most important layers in complex pixels
and avoids discarding key geometry. Note that Crassin et al. [2015]

Surfaces Stored

0 1 2 3 4

Figure 9: Number of surfaces stored per pixel for CITADEL.

use 2 aggregates; Kerzner and Salvi [2014] use 3 surfaces. Our
method needs more surfaces because we have much more coverage
samples in each pixel, which can capture more details and tremen-
dously increase the complexity of clustering. The top row in Fig. 8
shows the effect of varying surface count in CITADEL.

The second and third rows in Fig. 8 compare various methods for
compressing normal and depth information. We tried various bit
representations for the normal using both 2- and 3-component rep-
resentations, using two 16-bit components provided reduced stor-
age without a significant reduction in image fidelity. We found
a 32-bit depth plane is unnecessary, but further compression be-
yond a standard 24-bit depth plane introduces errors when merging
smaller, nearby surfaces.

5.3 Merge and discard heuristics

Our merge and discard heuristics reduce the surfaces needed for
most of the scene, while using more surfaces for geometrically
complex regions. This allows high quality anti-aliasing while re-
ducing memory usage. Fig. 7 shows our merge and discard heuris-
tics are effective and robust for different shading situations, e.g.,
texturing and non-diffuse materials. Though our method is order
dependent, we use fragment shader interlock to ensure the atomic
operation when merge and discard fragments. It also guarantees
that the interlocked fragments are processed in application call or-
dering, which is unlikely to change from frame to frame. Thus, our
method has no temporal artifact in general cases.

However, compression based on heuristics is lossy and introduces
errors that fall into two major categories: merge errors and dis-
card errors. Fig. 10(a) shows the blurred texture artifact. Having
a maximum of 4 surfaces, our method shades up to 4 times per
pixel, which may not be enough for high frequency textures in some
scenes. Additionally, our merge heuristic may blend textures from
different surfaces together, further blurring the result. Note that
8×MSAA also suffers from the low shading sampling rates. Using

MSAA8x DCAA GT
(a
) B
lu
rre
d

te
xt
ur
e

(b
) I
nc
or
re
ct
ly

m
er
ge
d

(d
) Z
-p
re
pa
ss

ar
tif
ac
ts

(c
) I
nc
or
re
ct
ly

di
sc
ar
de
d

Figure 10: Artifacts introduced by different phases of our method,
comparing with MSAA and ground truth. In those cases, MSAA has
more aliasing than the our method, but introduces less artifacts,
e.g., wrongly merged surfaces and missing geometry, as discussed
in Sec. 5.3.

proper shading anti-aliasing technique will reduce such artifacts.

We target merging spatially aligned surfaces in close proximity. But
this also averages merged normals, smoothing the normal changes.
In Fig. 10(b), two walls intersects in a small angle; our method gen-
erates pixels in averaged color of the two walls at the intersection,
which is caused by blurred normal. Using more strict normal com-
parisons reduces this artifact, but also generates more surfaces.

Discarding visible surfaces obviously can introduce artifacts. How-
ever, for highly complex pixels where a large number of fragments
contribute, discarding barely visible surfaces saves a lot of mem-
ory with only small noticeable errors. Our second merge attempt is
designed to reduce the impact of discards as much as possible. In
Fig. 10(c) the vertical part of the window frame covers very small
portion on the pixel, but visually contributes to the final result. Our
heuristic tends to discard the frame and reveals the white wall, in-
troducing mild artifacts compared to ground truth. Another similar
possibility, though not observed in our experiments, is that small
surfaces with high contribution may be discarded. More precise
discard heuristics considering material information may alleviate
this artifact.

5.4 Limitations and hardware implications

Our major limitation is performance, mainly due to simultane-
ous use of conservative rasterization and fragment interlock, which
forces serialized processing of more fragments than common ren-
dering techniques; disabling either introduces artifacts but improves
performance by an order of magnitude in simple scenes. Perfor-
mance degrades more in scenes with sub-pixel triangles, like TEN-
TACLES, where partially-covered pixels that require synchroniza-
tion with neighbors form a larger percent of fragments. If GPUs ex-
posed finer grained synchronization at the fragment level or merg-
ing to reduce the additional synchronization from conservative ras-
terization, performance would dramatically improve by reducing
the percentage of threads needing serialization. We use shaders to

generate coverage maps and face plane equations; exposure of this
information at a lower level would benefit our algorithm.

Due to the fragment synchronization issues noted above, overdraw
in areas of high depth complexity introduces serialization that has
a large performance impact. We minimize this with a z-prepass
to cull triangles. Our prototype uses an 8× MSAA pass to find
the maximum z per pixel, and we discard more distant fragments
during our merge. Because of the difference in sampling rates, this
is not fully conservative and can cause the background to leak along
geometric cracks (see Figure 10(d)). A more conservative z-prepass
would solve this issue; either higher hardware MSAA, analytically
computing the maximal depth per-pixel, or matched sample rates
would work.

6 Conclusion and Future Work

We introduce decoupled coverage anti-aliasing, a streaming com-
pression algorithm for geometric anti-aliasing. Our method ap-
proaches the quality of our 512 sample per pixel ground truth while
using less memory than 8×MSAA.

The key insight is a decoupling of visibility into depth and coverage
samples, allowing much higher resolution coverage samples in a
usable memory footprint. Our prototype demonstrates only a few
surface shades per pixel can provide quality comparable to highly
supersampled images.

Our implementation relies on early hardware conservative raster-
ization and fragment shader interlocks, limiting performance due
to artificial serialization. Additional hardware support, such as na-
tive high-sample coverage masks of finer grained synchronization
would significantly improve performance. Additionally, we hope
to explore combinations with aggregate anti-aliasing [Crassin et al.
2015] to simultaneously address shader and geometric aliasing.

Acknowledgements

We thank NVIDIA for the hardware donation of a GeForce GTX
980, as well as the following artists for providing the scenes: Erik
Sintorn (CITADEL, VILLA), Dylan Lacewell (BAMBOO), Crytek
(SPONZA) and Marko Dabrovic (SIBENIK). We also thank Aaron
Lefohn and Anjul Patney for helpful discussions, Zi Wang for mak-
ing the illustrations, and Chieh-Chi Kao, Ekta Prashnani, and Ab-
hishek Badki for helping to put together the results. This project
was funded by NSF grants IIS-1342931 and IIS-1321168, and by
an NVIDIA internship.

References

AKELEY, K. 1993. Reality engine graphics. In Proceedings of
SIGGRAPH ’93, ACM, New York, NY, USA, 109–116.

AMD. 2012. EQAA modes for AMD 6900 series graphics cards.
Tech. rep., AMD.

CARPENTER, L. 1984. The A-buffer, an antialiased hidden surface
method. ACM Siggraph Computer Graphics 18, 3, 103–108.

CIGOLLE, Z., DONOW, S., EVANGELAKOS, D., MARA, M.,
MCGUIRE, M., AND MEYER, Q. 2014. A survey of efficient
representations for independent unit vectors. Journal of Com-
puter Graphics Techniques 3, 2, 1–30.

CLARBERG, P., TOTH, R., AND MUNKBERG, J. 2013. A
sort-based deferred shading architecture for decoupled sampling.
ACM Trans. Graph. 32, 4 (July), 141:1–141:10.

CRASSIN, C., MCGUIRE, M., FATAHALIAN, K., AND LEFOHN,
A. 2015. Aggregate G-Buffer anti-aliasing. In Proceedings of
the ACM Symposium on Interactive 3D Graphics and Games,
11.

FUCHS, H., GOLDFEATHER, J., HULTQUIST, J. P., SPACH, S.,
AUSTIN, J., BROOKS, JR., F. P., EYLES, J., AND POUL-
TON, J. 1986. Fast spheres, shadows, textures, transparen-
cies, and image enhancements in pixel-planes. In Advances in
Computer Graphics I (Tutorials from Eurographics’84 and Eu-
rographics’85 Conf.), Springer-Verlag, London, UK, UK, 169–
187.

HAEBERLI, P., AND AKELEY, K. 1990. The accumulation buffer:
Hardware support for high-quality rendering. SIGGRAPH Com-
put. Graph. 24, 4 (Sept.), 309–318.

JIMENEZ, J., GUTIERREZ, D., YANG, J., RESHETOV, A., DE-
MOREUILLE, P., BERGHOFF, T., PERTHUIS, C., YU, H.,
MCGUIRE, M., LOTTES, T., MALAN, H., PERSSON, E., AN-
DREEV, D., AND SOUSA, T. 2011. Filtering approaches for
real-time anti-aliasing. In ACM SIGGRAPH Courses.

JOUPPI, N. P., AND CHANG, C.-F. 1999. Z3: an economical hard-
ware technique for high-quality antialiasing and transparency. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on Graphics hardware, ACM, 85–93.

KERZNER, E., AND SALVI, M. 2014. Streaming G-buffer com-
pression for multi-sample anti-aliasing. In Eurographics/ACM
SIGGRAPH Symposium on High Performance Graphics, The
Eurographics Association, 159–164.

LAURITZEN, A. 2010. Deferred rendering for current and fu-
ture rendering pipelines. SIGGRAPH Course: Beyond Pro-
grammable Shading, 1–34.

LIKTOR, G., AND DACHSBACHER, C. 2012. Decoupled deferred
shading for hardware rasterization. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games,
ACM, New York, NY, USA, I3D ’12, 143–150.

LOTTES, T., 2009. Fast approximate anti-aliasing. http:
//developer.download.nvidia.com/assets/
gamedev/files/sdk/11/FXAA_WhitePaper.pdf.

MAMMEN, A. 1989. Transparency and antialiasing algorithms
implemented with the virtual pixel maps technique. Computer
Graphics and Applications, IEEE 9, 4 (July), 43–55.

MITTRING, M. 2011. The technology behind the Unreal Engine
4 Elemental demo. SIGGRAPH Course: Advances in Real-Time
Rendering in 3D Graphics and Games.

NVIDIA, 2010. Coverage sampling antialiasing. http://www.
nvidia.com/object/coverage-sampled-aa.html.

NVIDIA, 2014. NVIDIA OpenGL extensions speci-
fications. https://developer.nvidia.com/
nvidia-opengl-specs.

NVIDIA, 2014. TXAA technology documentation. http:
//www.geforce.com/hardware/technology/
txaa/technology.

OLANO, M., KUEHNE, B., AND SIMMONS, M. 2003. Auto-
matic shader level of detail. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware,
Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, HWWS ’03, 7–14.

RAGAN-KELLEY, J., KILPATRICK, C., SMITH, B. W., EPPS, D.,
GREEN, P., HERY, C., AND DURAND, F. 2007. The lightspeed
automatic interactive lighting preview system. ACM Transac-
tions on Graphics (Proc. SIGGRAPH) 26, 3 (July).

RESHETOV, A. 2009. Morphological antialiasing. In Proceedings
of the Conference on High Performance Graphics 2009, ACM,
New York, NY, USA, HPG ’09, 109–116.

RESHETOV, A. 2012. Reducing aliasing artifacts through re-
sampling. In Proceedings of the Fourth ACM SIGGRAPH /
Eurographics Conference on High-Performance Graphics, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
EGGH-HPG’12, 77–86.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering
of 3-D shapes. SIGGRAPH Comput. Graph. 24, 4 (Sept.), 197–
206.

SALVI, M., AND VIDIMČE, K. 2012. Surface based anti-aliasing.
In Proceedings of the ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games, ACM, 159–164.

SALVI, M. 2013. Pixel synchronization: Solving old graphics
problems with new data structures. SIGGRAPH Course: Ad-
vances in Real-Time Rendering in Games.

SHANNON, C. E. 1949. Communication in the presence of noise.
Proceedings of the IRE 37, 1, 10–21.

TATARCHUK, N., TCHOU, C., AND VENZON, J. 2013. Des-
tiny: From mythic science fiction to rendering in real-time. SIG-
GRAPH 2013 Advances in Real-Time Rendering in 3D Graphics
and Games Course.

WALLER, M., EWINS, J., WHITE, M., AND LISTER, P. 2000.
Efficient coverage mask generation for antialiasing. Computer
Graphics and Applications, IEEE 20, 6 (Nov), 86–93.

WILLIAMS, L. 1983. Pyramidal parametrics. SIGGRAPH Comput.
Graph. 17, 3 (July), 1–11.

WYMAN, C., HOETZLEIN, R., AND LEFOHN, A. 2015. Frustum-
traced raster shadows: Revisiting irregular z-buffers. In Pro-
ceedings of the ACM Symposium on Interactive 3D Graphics and
Games.

http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://www.nvidia.com/object/coverage-sampled-aa.html
http://www.nvidia.com/object/coverage-sampled-aa.html
https://developer.nvidia.com/nvidia-opengl-specs
https://developer.nvidia.com/nvidia-opengl-specs
http://www.geforce.com/hardware/technology/txaa/technology
http://www.geforce.com/hardware/technology/txaa/technology
http://www.geforce.com/hardware/technology/txaa/technology

Si
be
ni
k

Sp
on
za

Te
nt
ac
le
s

Vi
lla

Ba
m
bo
o

8x MSAA4S SBAA DCAA 512
samples/pixel

Figure 7: Image quality comparison between Decoupled Coverage Anti-Aliasing (DCAA), Surface Based Anti-Aliasing (SBAA), 8× MSAA
and the reference. DCAA provides results close to 512× supersampling, especially for fine-scale geometry.

Normal Compression
 10bits XYZ 16bits UV 32bits UV 32bits XYZ

64x
Supersampling

Depth Compression
 16bits 20bits 24bits 32bits

64x
Supersampling

DCAA / # surfaces
 1S 2S 3S 4S 8S

64x
Supersampling

Figure 8: Comparison of different compression settings. The insets are cropped from the corresponding scenes shown in Figs. 1 and 7. The
settings with a box are the ones that gave us the best compromise of quality and performance, and were the ones we used for our experiments.

