
Imperfect Voxelized Shadow Volumes

Chris Wyman∗

NVIDIA
Zeng Dai†

University of Iowa

Figure 1: (Left) A scene with no participating media, media with no shadows, and with imperfect voxelized shadow volumes. (Right) A more
complex scene without and with volumetric shadows. All images also use imperfect voxelized shadow volumes for surface shadows.

Abstract

Voxelized shadow volumes [Wyman 2011] provide a discretized
view-dependent representation of shadow volumes, but are limited
to point or directional lights. We extend them to allow dynamic vol-
umetric visibility from area light sources using imperfect shadow
volumes. We show a coarser visibility sampling suffices for area
lights. Combining this coarser resolution with a parallel shadow
volume construction enables interactive rendering of dynamic vol-
umetric shadows from area lights in homogeneous single-scattering
media, at under 4x the cost of hard volumetric shadows.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: shadows, area lights, participating media, voxelization

1 Introduction

Interactive shadow algorithms typically work in either image- or
object-space (e.g., shadow maps [Williams 1978] or volumes [Crow
1977]). Generally, the cost-performance tradeoff favors shadow
mapping, as constant-time shadow lookups make up for z-buffer
memory overhead. But shadow maps were designed for surfaces;
volumetric variants (e.g., [Dobashi et al. 2002]) require redundant
and incoherent z-buffer lookups.

While shadow volumes analytically identify shadowed regions,
cost depends on geometric complexity and robustness requires
care [Everitt and Kilgard 2002]. However, lighting participating
media with shadow volumes is straightforward [Biri et al. 2006].

Hybrid techniques seek the benefits of both image- and object-space
shadows. McCool [2000] and Billeter [2010] robustly generate

∗e-mail:chris.wyman@acm.org
†e-mail:zeng-dai@uiowa.edu

Figure 2: Shadows from (left) a point and (right) an area light.

shadow volumes from a z-buffer, but do not address the fill rate
required to render. Chan [2004] applies shadow volumes only near
aliased shadow map discontinuities, but no longer provides volu-
metric visibility. Wyman [2008] reduces incoherent shadow map
accesses but introduces a dependence on geometric complexity.
More recently, voxelized shadow volumes (VSVs) [Wyman 2011]
create a discrete shadow volume, maintaining both a constant-time
query and volumetric shadow representation.

Current interactive methods cannot shadow participating media
from area lights, though many approximations exist for surfaces
[Woo and Poulin 2012] and offline volumetric shadows are well
understood [Kulla and Fajardo 2012]. Our imperfect voxelized
shadow volumes allow dynamic soft shadows inside media, giving
dramatically different results from hard shadows (see Figure 2).

We take a slow, brute-force approach (summing voxelized shadow
volumes results at many samples on an area light) and identify
its inefficiencies. This provides insights to help reduce overhead
and amortize costs over samples: an appropriate volume resolution
avoids oversampling and allows parallel VSV creation; a fast in-
terpolation scheme improves quality; and imperfect VSVs reduces
geometry sampling costs. These allow rendering shadows from 256
virtual point lights (VPLs) at under 4x the cost of a single, high
quality voxelized shadow volume.

This paper has four main contributions:
• a novel soft shadow algorithm for participating media;
• an approach for parallel construction of hundreds of VSVs;
• outlining trade-offs in VSV resolution vs. quality;
• a fast VSV interpolation that reduces shadow banding.

2 Background

Substantial recent research has explored media rendering (e.g.,
[Novák et al. 2012]). While giving stunning results, many meth-
ods focus on quality over performance. Below we focus on work
prioritizing interactivity, in addition to a brief theory review.

2.1 Light Transport in Media

Radiance along a ray through media depends on the scattering co-
efficient σs(x), absorption coefficient σa(x), extinction coefficient
σ(x)=σs(x)+σa(x), phase function p(~ω, ~ω′), and field radiance
Lin(x, ~ω

′):

L(x, ~ω) =

∫ d

0

σs(u) E(u)

∫
Ω

p(~ω, ~ω′)Lin(u, ~ω
′)d~ω′du, (1)

where E(u) = e−
∫ u
0 σ(t)dt and d the distance to the nearest sur-

face along ray ~ω. For homogeneous media σs, σa, and σ are con-
stant. With a point light the inner integral disappears, replaced by
V (u, ~ω′) to query light visibility in direction ~ω′. This leads to the
standard airlight equation [Nishita et al. 1987]:

L(x, ~ω) =

∫ d

0

σse
−σuV (u, ~ω′)p(~ω, ~ω′)Lin(u, ~ω

′)du. (2)

In this paper we sample an area light as multiple VPLs, turning the
second integral into a sum:

L(x, ~ω) =

∫ d

0

σse
−σu

∑
`i∈A

V (u, ~ωi)p(~ω, ~ωi)Lin(u, ~ωi)

du, (3)

whereA is the light’s surface. Reversing integration and summation
order allows us to apply Equation 2 once per VPL:

L(x, ~ω) =
∑
`i∈A

[∫ d

0

σse
−σuV (u, ~ωi)p(~ω, ~ωi)Lin(u, ~ωi)du

]
. (4)

Equations 2 and 4 integrate quite smooth functions, allowing coarse
SVD approximation [Chen et al. 2011] to replace the integral by
the sum of a few terms. We use a somewhat cruder approximation
suggested by Dobashi et al. [2002]:

L(x, ~ω) ≈
∑
`i∈A

[∫ d

0

V (u, ~ωi)du

∫ d

0

σse
−σup(~ω, ~ωi)Lin(u, `i)du

]
,

which factors per-VPL visibility and scattering. The second integral
can be computed analytically (e.g., Sun et al. [2005]), and since
VSVs discretize visibility the first integral becomes a sum.

2.2 Analytic Scattering Computations

Solving the airlight integral can be costly, so many researchers have
sought methods for interactive airlight evaluation. Sun et al. [2005]
tabulate solutions for isotropic phase functions (p= 1

4π
). Hong et al.

[2006] represent anisotropic phase functions via Legendre polyno-
mial series. Pegoraro et al. [2009; 2009; 2010] analytically solve
the airlight equation and generalize for anisotropic media and lights
(e.g., spotlights). Unfortunately all these neglect visibility, leaving
the scattering too bright in shadowed regions.

2.3 Shadows in Homogeneous Participating Media

Building on unshadowed airlight, numerous researchers have added
visibility. Max [1986], James [2003], and Biri et al. [2006] split
Equation 2 in separate intervals (for V (u, ~ω′) entirely 0 or 1) via
shadow volumes, computing analytic airlight in illuminated inter-
vals. They differ in interval computation: Max sorts offline, James
orders via depth peeling, and Biri uses stenciled shadow volumes.
Billeter et al. [2010] generate shadow volumes from a shadow map,
separating rendering costs from geometric complexity.

Ray casting emits rays through each pixel, sampling light visibil-
ity along each. Either slicing via screen-aligned quads [Dobashi
et al. 2002] or marching each pixel’s ray [Lefebvre and Guy 2002]
can generate these samples; both query shadow map visibility once
per sample before summing their contributions. Without guaran-
teed sampling on shadow boundaries, only dense sampling avoids
aliasing. But querying the shadow map every sample is costly.

To reduce visibility queries, Wyman and Ramsey [2008] coarsely
bound shadowed regions with shadow volumes, but this introduces
costs that vary with scene complexity. Toth and Umenhoffer [2009]
apply interleaved sampling in image space. Engelhardt and Dachs-
bacher [2010] sample and interpolate along epipolar planes, where
volumetric shadows only change at depth discontinuities. Chen et
al. [2011] use min-max mipmaps to non-uniformly step along view
rays and approximate the airlight integral with a coarse sum.

Voxelized shadow volumes [Wyman 2011] densely sample per-ray
visibility via a cache-coherent data structure storing many visibility
samples in each texel. We build on voxelized shadow volumes.

2.4 Heterogeneous Participating Media

While not our focus, similar techniques can apply to heteroge-
neous media. Kim and Neumann [2001] create a multi-layer light-
space map, with opacity rather than depth, allowing approximate
reconstruction of light transmittance. Jansen and Bavoil [2010]
store opacity using Fourier coefficients and sample via per-pixel ray
marching. Delalandre et al. [2011] improve transmittance sampling
from such maps. Salvi et al. [2010] compute a piecewise constant
opacity function for each shadow map texel. Unfortunately, these
methods scale poorly with additional lights.

Some techniques [Zhou et al. 2007; Zhou et al. 2008] use radial
basis functions to represent heterogeneous media, allowing preinte-
gration of extinction and inclusion of complex lighting via spherical
harmonic PRT. However, these require substantial precomputation.

2.5 Direct Illumination from Area Lights

Various research aims for interactive soft shadows [Woo and Poulin
2012], mostly split between object- and image-space methods.
Penumbra wedges [Akenine-Möller and Assarsson 2002] consume
significant fill rate, as do shadow volumes, though recent work uses
wedges to shadow participating media at near-interactive rates [For-
est and Segovia 2011].

Shadow mapping can generate soft shadows by blurring [Reeves
et al. 1987], precomputing visibility [Ritschel et al. 2007], or gen-
erating many imperfect shadow maps (ISMs) [Ritschel et al. 2008].
These methods do not currently work in media, but we leverage im-
perfect shadow maps to generate many voxelized shadow volumes.

Voxel-based shadow queries work for hierarchical ray-based
[Nichols et al. 2010] and cone-based lighting [Crassin et al. 2011],
but neither illuminates participating media from area lights.

Figure 3: Voxelized shadow volume review. (Top) Geometry is vox-
elized to an epipolar grid specified by angles (α, θ, φ). A prefix sum
extrudes occlusion along the axis of constant φ. Each texel stores
all binary visibility sampled along a ray of constant (α,θ), e.g., the
blue ray. (Bottom) A 2D uvec4 texture stores epipolar space, with
(α, θ) corresponding to (x, y) and φ to individual texel bits. Eye
rays map to a single texel, with each texel bit representing light vis-
ibility at a ray sample. Rectification resamples the shadow map for
every (θi, φi), converts the depth to αi, and sets voxel (αi, θi, φi).

Figure 4: A naive area lighting approach could render new VSVs
for each VPL. But costs scale linearly, at roughly 7.2 ms for cre-
ation and use of each 5122 VSV (up to 1850 ms with 256 VPLs).

2.6 Voxelized Shadow Volume Review

Before introducing our work we review voxelized shadow volumes,
a discrete shadow volume sampled in epipolar space. VSVs use
brute force sampling, optimizing computations and lookups for
GPUs rather than suggesting a faster algorithmic approximation.
The volume is parameterized by epipolar angles, using axis-aligned
light and eye rays.

VSVs use three passes (see Figure 3): voxelize geometry to epipo-
lar space, extrude occluded voxels away from the light, and lookup
all visibility samples along a view ray simultaneously. Many tech-
niques can voxelize geometry; for our work, the fastest and most ro-
bust method resamples a shadow map to fill in the nearest occluder
along every light ray (i.e., the nearest α for each (θ, φ)-pair).

3 Imperfect Voxelized Shadow Volumes

We initially implemented a brute force area lighting scheme, sam-
pling VPLs on the light and using independent voxelized shadow
volumes for each (see Figure 4). The costs for this naive approach
increase linearly with VPL count. While one VSV runs interac-
tively, eliminating banding requires at least 64 VPLs (costing over
450 ms per frame), making this naive approach infeasible.

3.1 Algorithm Overview

In this naive approach, the parallel scan clearly proves the key bot-
tleneck (see results in Table 1); however, other stages also take con-

Figure 5: VSVs convert each shadow map to a voxelized shadow
volume (left). Imperfect shadow maps store many depth buffers
in one framebuffer; imperfect voxelized shadow volumes turn each
into a shadow volume in its own epipolar space (right).

siderable time. Our new approach speeds all stages by at least an
order of magnitude, and is split into five steps:

1. Sample VPLs to a buffer
2. In parallel, render imperfect shadow maps for all VPLs
3. In parallel, rectify ISMs into a voxel grid for each VPL
4. In parallel, perform voxel-space prefix sum to create VSVs
5. To gather, index all VSVs and accumulate visibility

At a high level, this is a simple improvement to the original VSV
algorithm. We describe efficient parallelization of steps 2 through 5
over hundreds of VPLs, avoiding the brute force serial implemen-
tation needed to individually accumulate contributions from each.

3.1.1 Step 1: Sample VPLs

Before computing visibility, we need to identify VPLs. This can
occur many ways: precomputing samples, importance sampling, or
regular or jittered sampling. In this paper, we sample (via a Halton
sequence) a rectangular area light textured with a video, storing per-
VPL position, color, and normal into a buffer. This easily extends
to environment maps or other complex lights.

3.1.2 Step 2: Render Imperfect Shadow Maps

To create VSVs we need voxelized geometry in separate, per-VPL
epipolar spaces. Currently, the fastest epipolar voxelization method
resamples shadow maps. To generate shadow maps for each VPL
we use imperfect shadow mapping [Ritschel et al. 2008], which
efficiently render a multiview z-buffer in a single framebuffer.

We use the ISM algorithm unmodified: creating a point cloud rep-
resentation of the scene, rendering a subset of the points to each
shadow map, and a push-pull algorithm for hole filling. Some
well-sampled scenes may not need hole filling; imperfect voxelized
shadows degrade gracefully for poor samplings, which causes grad-
ually increasing light leakage.

3.1.3 Step 3: Resample Imperfect Shadow Maps

After generating imperfect shadow maps, we resample in parallel
(see Figure 5). Rectification cost depends on epipolar space θ and φ
resolutions, as each (θ, φ)-pair generates one voxel (see Figure 3).
As (θ, φ)-resolution decreases, pass overhead becomes significant.
Combining all rectification passes into one over a buffer containing
all epipolar spaces reduces overhead significantly. Resampling to
one 1283 epipolar grid takes 0.15 ms; amortizing overhead on 32,
64, or 256 epipolar spaces provides a speedup of 7x, 9x, or 10x,
respectively. (I.e., rectification costs 0.020, 0.017, and 0.015 ms.)

3.1.4 Step 4: Parallel Scan to Create VSVs

After Section 3.1.3, our framebuffer now stores the geometry vox-
elized to multiple epipolar spaces. We now need a per-space paral-
lel scan (with bitwise OR operator) to extrude occlusion away from
each VPL. As above, separate per-VPL passes incur a big overhead.

Figure 6: Simultaneously varying the shadow map and α, θ, and φ
VSV resolutions, all using 128 VPLs on the area light.

We run the VSV prefix sum simultaneously over all epipolar spaces,
allowing the GPU to extract additional parallelism.

Along each row in a single epipolar space, the scan runs across the
entire image width. In a tiled imperfect voxelized shadow volume,
we run a single segmented parallel scan along each row; the number
of segments depends on the tiled width of each epipolar space (see
Figure 5). A scan on one 1283 epipolar space takes 0.41 ms. Amor-
tizing over 32, 64, or 256 VPLs provides a speedup of 15x, 19x, or
23x. (I.e., scans require 0.028, 0.022, and 0.018 ms per space.)

3.1.5 Step 5: Accumulating Scattering from All VPLs

After Section 3.1.4, we have one buffer containing all our VSVs.
Our final step sums per-VPL visibility and scattering in a final
gather. As discussed in Section 2.1, each fragment needs to solve:

L(x, ~ω) ≈
∑
`i∈A

[∫ d

0

V (u, ~ωi)du

∫ d

0

σse
−σup(~ω, ~ωi)Lin(u, `i)du

]
,

where
∫
V (u, ~ωi)du becomes a weighted average of visibility bits

between [0..d] in the per-VPL shadow volume texel (α,θ). We com-
pute the second integral using an analytic airlight solution, such as
Sun et al. [2005].

While straightforward, we provide shader pseudocode for clarity:
F← FragmentPosition()
~N ← FragmentNormal()
d← DistanceToVisibileFragment()
vec3 volColor = 0, surfColor = 0
for i ∈ [0..numVPLs] do

ci, ~Ni, Li ← LoadVPLColorNormalPosition(i)
vsvCoordi ← ComputeVSVCoordinate(i,Li,F)
visi ← ReadImperfectVSV(vsvCoordi)
surfi ← QueryVisibilityAtFragment(visi,d)
surfColor += surfi * ci * PhongColor(F, ~N , ~Ni,Li)
voli ← 1− [CountBitsBeforeFrag(visi,d) / TotalBitsBeforeFrag(d)]
volColor += voli * ci * AnalyticAirlight(d, ~Ni,Li)

end for
trans← ComputeMediaTransmittance(d)
return (trans*surfColor + (1− trans)*volColor)

Here, CountBitsBeforeFrag counts all shadowed bits in front
of a fragment at distance d and TotalBitsBeforeFrag counts
the total bits to a fragment at d. For clarity, this pseudocode uses a
uniform average of visibility bits, but adding a weighted average is
straightforward.

3.2 Speeding VSVs: Lower Resolution Sampling

Above we parallelized voxelized shadow volume creation, but a key
question is appropriately sizing each VSV. Resolution affects per-
formance for all steps from Section 3.1. Z-buffer size influences
shadow map creation; epipolar sampling costs vary with θ and φ; α
and θ counts impact the prefix sum; and φ sampling varies texture

Figure 7: Shadow detachment for a single VSV with varying α res-
olution. Media density and image contrast increased for visibility.

bandwidth when gathering. Ideally, we would select the minimal
resolutions that avoids significant quality degradation after averag-
ing the contributions of many VPLs.

Figure 6 shows quality at various resolutions with 128 VSVs. Over
numerous scenes, two key artifact types appear with lower resolu-
tion: occluder shadow detachment and aliased shadow boundaries.
Interestingly, these are the same artifacts introduced by shadow
mapping. Using VSVs for surface shadows, both problems arise.

In media, detached shadows have little visual impact. Thin occlud-
ers cast faint shadows, barely visible even when correct. And only
large detachment affects bigger objects, as back faces occlude er-
rors from small detachments (see Figure 7). Averaging errors over
many VPLs, shadows detach only at the coarsest resolutions.

As with all sampling methods, low resolutions introduce aliasing.
With over 128 VPLs, averaging eliminates most aliasing if epipo-
lar grids are uncorrelated. ISMs often need 1024 VPLs to converge
[Ritschel et al. 2008], but media has less visual impact, allowing
convergence with fewer uncorrelated samples. But our queries need
to avoid sample correlation throughout the volume, not just on sur-
faces. Even intelligently sampled VPLs can have correlated sam-
ples in select regions (see Figure 6, inset), leading to strong band-
ing. Interpolation of VSV samples is vital to avoid these artifacts.

Figure 8 shows a single VSV under varying resolutions. Good hard
shadows need at least 512 samples on all axes. For area lights,
sampling gross shadow structure is key, as averaging usually blurs
aliasing from individual VSVs. To maximize speed, no dimension
should be sampled too finely; final quality depends on the worst-
sampled axis, so adding samples on other axes slows performance
without improving quality. A resolution of 128 in all dimensions
(shadow map size, α, θ, and φ) works well for imperfect VSVs.

3.3 VSV Interpolation

Reducing shadow aliasing improves visual quality. Adding VPLs
or increasing resolution clearly achieves this, albeit at high cost.
One cheaper alternative is interpolation. Unlike non-linear z-buffer
depths, binary VSV visibility can be naively interpolated. But the
binary payload makes prefiltering (e.g., mipmaps) impossible; in-
stead interpolation must occur after the query.

Consider the binary epipolar grid (see Figure 9). Initially, one might
consider interpolating along all three axes (α, θ, and φ). But by con-
struction, visibility changes at most once along α (at the frontmost
occluder); interpolating across such boundaries is incorrect. Also
by construction, voxels of varying φ occupy multiple bits in a sin-
gle VSV texel. Thus, φ interpolation requires no additional texture
lookups, just additional bit-twiddling on existing texels.

This means instead of trilinear interpolation, VSVs only need two
texel lookups. We do not interpolate along α, we read two adjacent
texels along θ, and use bit-twiddling to interpolate along φ.

Figure 8: Evaluating quality versus sampling rate for individual voxelized shadow volumes. (Left) Varying only shadow map resolution;
(center left) only φ resolution; (center right) only θ resolution; and (right) simultaneously varying α,θ,φ, and shadow map resolutions.

Figure 9: (Left) Epipolar space has axes α, θ, and φ. α only varies
at occluder surfaces (orange voxels); blurring here introduces light
leakage. Voxels with varying φ reside in one texel, so VSV interpo-
lation needs just two texel lookups (at adjacent θ values). (Center)
A very coarse VSV without and (right) with shadow interpolation.

But naive interpolation for surface shadows gives extremely poor
performance. We view uvec4 texels as streams of 128 individ-
ually accessible bits. Current GPUs are not designed for this us-
age pattern, resulting in convoluted ASM from simple GLSL. Ap-
pendix A provides our fast implementation and insights into these
performance issues.

Unlike surface shadows, interpolating volume visibility is straight-
forward and naive implementations perform efficiently. Volumet-
ric visibility along θ can usually be interpolated after accumulating
scattering (i.e., in the last pseudocode line in Section 3.1.5). Inter-
polating visibility between samples along φ is often unnecessary;∫
V (u, `i)du is the same independent of linear interpolation (ex-

cept in the partial voxel from bdc to d).

3.4 Gathering at Low Resolution and Upsampling

After significantly speeding shadow volume creation, the final scat-
tering accumulation (described in Section 3.1.5) becomes the bot-
tleneck at 80% of render time. While we saw a speedup over the
naive approach due to common computation reuse and better use of
texture resources, this proved fairly minor (only 2x).

Given that scattering in media changes smoothly, various common
approaches reduce final gather costs. We tested both interleaved
sampling and a low resolution gather. Our interleaved sampling ac-
cumulates from 1

9
the VPLs per pixel (so every 3× 3 screen-space

window samples all VPLs) and a bilateral filter gives our final re-
sult. For our downsampled gather, we found accumulating at 1

4
res-

olution followed by a bilateral upsample works well. Because VSV
texture bandwidth is the major accumulation cost, sampling fewer
pixels or using fewer VPLs per pixel provide near-linear speedups
(e.g., 9x for interleaved and 4x for low resolution sampling).

Figure 10: Comparison of scattering with and without shadows in
a sequence of images with a moving light; runs at 25.7 fps.

4 Results

We implemented imperfect voxelized shadow volumes in OpenGL.
All timings use a Core i7-3820 with a Quadro K5000. Unless other-
wise specified, images are captured at 10242 with each VPL using
a 1282 shadow map and 1283 voxelized shadow volume.

Table 1 compares performance of imperfect voxelized shadow vol-
umes with the brute force application of per-VPL shadow volumes
for the scene in Figure 4. Note the timings differ from those in Fig-
ure 4 due to differing VSV resolution. Using 256 VPLs, we achieve
a 20x speedup for VSV creation. For the final gather, we achieve a
1.5-2x performance improvement, from reduced pass overhead and
OpenGL state changes. Interleaved and low resolution sampling
provide a further speedup for the final gather, shown in Table 2.

With careful implementation, all our steps scale linearly with in-
creasing VPL counts. As all 256 epipolar spaces reside in a single
20482 framebuffer (i.e., 16 × 16 tiles of 1282), the shadow map
push-pull, rectification, and parallel scans should only execute on
buffer regions containing valid VPLs. With hundreds of VPLs, the
incremental cost of new lights is ∼0.1 ms in typical scenes.

Figures 1, 2, 6, 10, 11, 12, and 13 show imperfect voxelized shadow
volumes cast from large area lights. The light acts like a large tele-
vision, with color specified by a video texture. Figures 1 and 10
compare media with and without volumetric shadows; Figure 11 is

Step Timings (in msec) and Speedup Ratios Total Frame Cost
Shadow map Voxelization Parallel scan Final render (full res)

Naive IVSV Speedup Naive IVSV Speedup Naive IVSV Speedup Naive IVSV Speedup Naive IVSV Speedup
1 VPL 0.44 1.66 0.3x 0.24 0.24 1.0x 0.47 0.47 1.0x 0.39 0.39 1.0x 1.54 2.76 0.6x
4 VPLs 1.22 1.23 1.0x 1.01 0.30 3.4x 1.99 0.48 4.2x 1.57 0.92 1.7x 5.79 2.93 2.0x
16 VPLs 4.31 1.12 3.7x 3.89 0.44 8.8x 7.73 0.62 12.5x 6.19 3.26 1.9x 22.12 5.44 4.1x
64 VPLs 16.73 2.00 8.4x 15.67 1.20 13.1x 30.94 1.55 20.0x 24.89 12.63 2.0x 88.23 17.38 5.1x
256 VPLs 66.25 3.58 18.6x 62.37 3.75 16.6x 123.73 4.79 25.8x 99.48 50.26 2.0x 351.83 62.38 5.6x

Table 1: Performance for Figure 4 using naive, per-VPL VSVs and imperfect voxelized shadow volumes (both with 1283 epipolar grids).
We achieve speedups over an order of magnitude, except for our full-screen gather. Our shadow map performance initially underperforms;
all VPL counts use a fixed point set to generate ISMs and timings include the push-pull. Performance initially improves for higher VPLs, as
framebuffer contention decreases when points are scattered more sparsely through a larger set of shadow maps.

Hairball Angel City
(Figure 2) (Figure 1) (Figure 10)

Shadow Map 9.7 ms (30x) 9.1 ms (29x) 16.5 ms (26x)
Voxelization 4.3 ms (30x) 4.3 ms (30x) 4.1 ms (26x)
Scan 4.8 ms (26x) 4.8 ms (26x) 4.8 ms (26x)
Full Res Gather 77.7 ms (1.6x) 77.7 ms (1.6x) 77.7 ms (1.6x)
3x3 Interleaved 12.4 ms (n/a) 11.8 ms (n/a) 11.8 ms (n/a)
1
4 Upsample 19.0 ms (n/a) 19.1 ms (n/a) 19.0 ms (n/a)
Total Frame 33.6 ms (21x) 32.5 ms (20x) 38.9 ms (20x)
(w/ Interleaved)

Table 2: Timings for various scenes using 256 VPLs, with speedups
versus brute force in parenthesis. We did not implement interleaved
or low-resolution gathers for our brute-force approach. Total frame
times include shadow map creation, voxelization, scan, 3× 3 inter-
leaved gather, plus some overhead (e.g., G-buffer creation).

Figure 11: Imperfect shadow volumes under varying sized lights.

illuminated by a subset of the light (part of the light texture is black)
and shows how our shadows behave with increasing light size. Fig-
ure 13 compares IVSVs with and without voxel interpolation.

Figure 12 compares our results with a ground truth ray tracing. We
also timed this scene with varying resolution IVSVs to show per-
formance scaling. For simplicity, our imperfect shadow volume
implementation is hardcoded to use 128 samples in φ. When using
322× 128, 642× 128, 1283, and 2562× 128 volumes, frame costs
were 19.5, 19.7, 26.8, and 43.8 ms, respectively. Of this, around
15.8 ms was for the 1

4
resolution gather pass.

Figure 12: (Left) Imperfect voxelized shadow volumes, (center)
ground truth ray tracing, (right) a 4x difference image.

Figure 13: Using 8 VPLs, shadows are quite aliased. Our interpo-
lation for (left) surface and (right) volumetric shadows.

5 Discussion: Robustness and Performance

As in analytic shadow volumes, voxelized shadow volumes use
some tricks to achieve robustness. Dynamic range selection for all
epipolar angles (α, θ, φ) is vital, especially for low resolution voxel
grids. For offscreen lights, only a small subset of epipolar space is
visible; shadow samples should focus in the visible subset of space.

Adding a bias to voxel indices reduces aliasing, similar to a shadow
map bias. Shadowed samples should be slightly pushed away from
the light and the eye. We found a αbias of -2.25 voxels and φbias
of -1 voxels to work well for most resolutions.

On some GPUs, the 128th bit of a uvec4 is unaddressable. This
causes light leakage in regions of epipolar space. Imperfect VSVs
average away this artifact and in 1283 epipolar grids this φ bit rarely
impacts pixel color, so we ignore the issue. For larger grids or fewer
VPLs, we suggest using only 127 bits per texel in a render target.

At the epipole, voxels become extremely elongated; only a single
voxel contains the epipole in any epipolar plane, causing extreme
undersampling. Fortunately, here a shadow query logically means,
”is anything between the eye and light?” Comparing the fragment
position along the epipole with the light location answers this ques-
tion more accurately than a VSV query.

Our imperfect shadow map code uses a simple point sampling of
geometry, treating all samples the same. Using a point-LOD (e.g.,
[Hollander et al. 2011]) would improve quality by ensuring geom-
etry close to the light appears in all shadow maps. Currently, we
oversample geometry (slowing ISM creation) to avoid light leaks
caused by missing occluders near the light.

6 Conclusion

We introduced imperfect voxelized shadow volumes, an algorithm
combining voxelized shadow volumes and imperfect shadow maps
that allows interactive volumetric visibility from area lights, en-
abling shadows inside homogeneous single-scattering participat-
ing media. Our key contributions include parallelizing voxelized
shadow volume creation from multiple point lights to reduce pass

overhead, exploring appropriate volume resolutions for area lights,
and a fast VSV interpolation scheme to efficiently eliminate volu-
metric and surface banding.

There are numerous ways to improve imperfect voxelized shadow
volumes. We see applications to dynamic heterogeneous media,
perhaps using non-binary voxel payloads. Additionally new gath-
ering techniques may speed scattering computations, reducing the
current bottleneck.

Acknowledgments

The authors would like to thank Hang Dou, Ethan Kerzner, Yajie
Yan, Peter-Pike Sloan, Pete Shirley, and Dave Luebke for feedback
on the ideas, implementation, and paper drafts. Models come from
the Stanford, AIM@Shape, and Utah 3D Animation repositories.
We also thank the anonymous reviewers for their feedback.

References

AKENINE-MÖLLER, T., AND ASSARSSON, U. 2002. Approxi-
mate soft shadows on arbitrary surfaces using penumbra wedges.
In Eurographics Rendering Workshop, 309–318.

BILLETER, M., SINTORN, E., AND ASSARSSON, U. 2010. Real
time volumetric shadows using polygonal light volumes. In High
Performance Graphics, 39–45.

BIRI, V., ARQUES, D., AND MICHELIN, S. 2006. Real time ren-
dering of atmospheric scattering and volumetric shadows. Jour-
nal of WSCG 14, 65–72.

CHAN, E., AND DURAND, F. 2004. An efficient hybrid shadow
rendering algorithm. In Eurographics Symposium on Rendering,
185–196.

CHEN, J., BARAN, I., DURAND, F., AND JAROSZ, W. 2011. Real-
time volumetric shadows using 1d min-max mipmaps. In Inter-
active 3D Graphics and Games, 39–46.

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S., AND EISE-
MANN, E. 2011. Interactive indirect illumination using voxel
cone tracing. Computer Graphics Forum 30, 7, 1921–1930.

CROW, F. 1977. Shadow algorithms for computer graphics. In
Proceedings of SIGGRAPH, 242–248.

DELALANDRE, C., GAUTRON, P., MARVIE, J.-E., AND
FRANÇOIS, G. 2011. Transmittance function mapping. In In-
teractive 3D Graphics and Games, 31–38.

DOBASHI, Y., YAMAMOTO, T., AND NISHITA, T. 2002. Inter-
active rendering of atmospheric scattering effects using graphics
hardware. In Graphics Hardware, 99–107.

ENGELHARDT, T., AND DACHSBACHER, C. 2010. Epipolar sam-
pling for shadows and crepuscular rays in participating media
with single scattering. In Interactive 3D Graphics and Games,
119–125.

EVERITT, C., AND KILGARD, M. 2002. Practical and robust sten-
ciled shadow volumes for hardware-accelerated rendering. Tech.
rep., NVIDIA, http://arxiv.org/abs/cs.GR/0301002.

FOREST, V., AND SEGOVIA, B., 2011. Object-based shad-
owed volumetric single-scattering for point and area lights.
http://vaplv.free.fr/vsv.php.

HOLLANDER, M., RITSCHEL, T., EISEMANN, E., AND
BOUBEKEUR, T. 2011. Manylods: Parallel many-view level-

of-detail selection for real-time global illumination. Computer
Graphics Forum 30, 4, 1233–1240.

HONG, R., HO, T.-C., CHUANG, J.-H., SHIU, R.-M., AND KUO,
R. 2006. A real-time analytic lighting model for anisotropic
scattering. In Computer Graphics Workshop.

JAMES, R. 2003. Graphics Programming Methods. Charles River
Media, ch. True volumetric shadows, 353–366.

JANSEN, J., AND BAVOIL, L. 2010. Fourier opacity mapping. In
Interactive 3D Graphics and Games, 165–172.

KIM, T.-Y., AND NEUMANN, U. 2001. Opacity shadow maps. In
Eurographics Rendering Workshop, 177–182.

KULLA, C., AND FAJARDO, M. 2012. Importance sampling tech-
niques for path tracing in participating media. Computer Graph-
ics Forum 31, 4, 1519–1528.

LEFEBVRE, S., AND GUY, S., 2002. Volumetric lighting and shad-
owing. http://sylefeb.aracknea-core.net/cgshaders/vshd/.

MAX, N. 1986. Atmospheric illumination and shadows. In Pro-
ceedings of SIGGRAPH, 117–124.

MCCOOL, M. 2000. Shadow volume reconstruction from depth
maps. ACM Transactions on Graphics 19, 1, 1–26.

NICHOLS, G., PENMATSA, R., AND WYMAN, C. 2010. Inter-
active, multiresolution image-space rendering for dynamic area
lighting. Computer Graphics Forum 29, 4, 1279–1288.

NISHITA, T., MIYAWAKI, Y., AND NAKAMAE, E. 1987. A shad-
ing model for atmospheric scattering considering luminous dis-
tribution of light sources. In Proceedings of SIGGRAPH, 303–
310.

NOVÁK, J., NOWROUZEZAHRAI, D., DACHSBACHER, C., AND
JAROSZ, W. 2012. Progressive virtual beam lights. Computer
Graphics Forum 31, 4.

PEGORARO, V., AND PARKER, S. G. 2009. An analytical so-
lution to single scattering in homogeneous participating media.
Computer Graphics Forum 28, 2, 329–335.

PEGORARO, V., SCHOTT, M., AND PARKER, S. 2009. An analyt-
ical approach to single scattering for anisotropic media and light
distributions. In Graphics Interface, 71–77.

PEGORARO, V., SCHOTT, M., AND PARKER, S. G. 2010. A
closed-form solution to single scattering for general phase func-
tions and light distributions. Computer Graphics Forum 29, 4,
1365–1374.

REEVES, W., SALESIN, D., AND COOK, R. 1987. Rendering
antialiased shadows with depth maps. In Proceedings of SIG-
GRAPH, 283–291.

RITSCHEL, T., GROSCH, T., KAUTZ, J., AND MUELLER, S.
2007. Interactive illumination with coherent shadow maps. In
Eurographics Symposium on Rendering, 61–72.

RITSCHEL, T., GROSCH, T., KIM, M., SEIDEL, H.-P., DACHS-
BACHER, C., AND KAUTZ, J. 2008. Imperfect shadow maps
for efficient computation of indirect illumination. ACM Trans-
actions on Graphics 27, 5, 1–8.

SALVI, M., VIDIMCE, K., LAURITZEN, A., AND LEFOHN, A.
2010. Adaptive volumetric shadow maps. Computer Graphics
Forum 29, 4, 1289–1296.

SUN, B., RAMAMOORTHI, R., NARASIMHAN, S., AND NAYAR,
S. 2005. A practical analytic single scattering model for real

time rendering. ACM Transactions on Graphics 24, 3, 1040–
1049.

TOTH, B., AND UMENHOFFER, T. 2009. Real-time volumetric
lighting in participating media. In Eurographics (Short Papers),
57–60.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
In Proceedings of SIGGRAPH, 270–274.

WOO, A., AND POULIN, P. 2012. Shadow Algorithms Data Miner.
A. K. Peters/CRC Press.

WYMAN, C., AND RAMSEY, S. 2008. Interactive volumetric shad-
ows in participating media with single-scattering. In Symposium
on Interactive Ray Tracing, 87–92.

WYMAN, C. 2011. Voxelized shadow volumes. In High Perfor-
mance Graphics, 33–40.

ZHOU, K., HOU, Q., GONG, M., SNYDER, J., GUO, B., AND
SHUM, H.-Y. 2007. Fogshop: Real-time design and rendering
of inhomogeneous, single-scattering media. In Pacific Graphics,
116 –125.

ZHOU, K., REN, Z., LIN, S., BAO, H., GUO, B., AND SHUM,
H.-Y. 2008. Real-time smoke rendering using compensated ray
marching. ACM Transactions on Graphics 27, 3, 36:1–36:12.

A Fast Bit-Twiddling For VSV Interpolation

While GPUs now treat integers as first-class datatypes, each vec-
tor element is treated separately. VSVs use a uvec4 as a 128-bit
voxel stream and extract single bits based on a [0..127] index. This
means component-wise GLSL functions (and underlying hardware
instructions) like bitfieldExtract and bitCount are insuf-
ficient; additional logic is needed to select individual VSV voxels.

At first we did not consider this issue, but our initial interpolation
code increased gather costs by a factor of three! Given our gather
remains a bottleneck, this significantly reduced performance.

Three issues contributed to this cost: our voxelized shadow volume
code [Wyman 2011] uses older GLSL shaders without bitCount
and many float-to-int and int-to-float conversions; GPUs are opti-
mized for floats, so integer performance is subpar; and dynamic
vector-component selection is not allowed. Writing a fast interpo-
lator balancing register pressures, datatype conversions, and com-
ponent selection was actually quite challenging.

Listing 1 shows our best two individual VSV voxel queries. Ver-
sion A selects the uvec4 component containing the queried bit,
zeros out other bits, and compares to 0. However, voxels[x]
may compile inefficiently (for us, it alone generated 24 ASM in-
structions), so manual component selection (version B) performs
significantly better.

Based on this efficient voxel query, we designed an efficient func-
tion to interpolate surface shadows from a VSV. Listing 2 shows
this code. Much is similar, including the bit selection and dynamic
component indexing. To avoid numerous type conversions when
multiplying voxel values and their interpolation weights, we lever-
age the binary voxel values to use mix (to perform an equivalent
selection) and then use a dot product to sum the weights.

// Clean version. Compiles to 35 ASM instructions
bool isShadowed_A(uvec4 voxels, int phiBit)
{

return (voxels[phiBit>>5] & (1<<(phiBit&31))) != 0;
}

// Fast version. Compiles to 20 ASM instructions
bool isShadowed_B(uvec4 voxels, int phiBit)
{

uint comp = phiBit>>5, compBit = 1<<(phiBit&31);
uvec2 val = (comp>1) ? voxels.zw : voxels.xy;
val.x = (comp&1)==0 ? val.x : val.y;
return (val.x & compBit) != 0;

}

Listing 1: Two GLSL functions to query a voxel’s binary VSV visi-
bility. Input voxels is a texel with specific (α, θ) from the epipo-
lar texture. phiBit contains φ ∈ [0..127].

// Fast version. Compiles to 56 ASM instructions
float litPercent(uvec4 vox0, uvec4 vox1,

int φBit, float wθ, float wφ)
{

// Data needed to select correct phiBits
uint comp0 = φBit>>5, bit0 = 1<<(φBit&31);
uint comp1 = (φBit+1)>>5, bit1 = 1<<((φBit+1)&31);

// Interpolation weights for 4 voxels
float wθφ = wθ * wφ;
vec4 weights = vec4(1.0 - wφ - (wθ - wθφ),

wθ - wθφ, wφ - wθφ, wθφ);

// Select 2 bits from each of the input texels
uvec4 vox, tmp;
tmp = comp0>1 ? uvec4(vox0.zw,vox1.zw)

: uvec4(vox0.xy,vox1.xy);
vox.xy = ((comp0&1)==0?tmp.xz:tmp.yw) & uvec2(bit0);
tmp = comp1>1 ? uvec4(vox0.zw,vox1.zw)

: uvec4(vox0.xy,vox1.xy);
vox.zw = ((comp1&1)==0?tmp.xz:tmp.yw) & uvec2(bit1);

// Identify set bits (store as true in bvec4)
bvec4 voxSet = greaterThan(vox, uvec4(0));

// Multiply w/weights (mix), sum all 4 (dot)
return dot(mix(coefs, vec4(0), voxSet), vec4(1));

}

Listing 2: Fast VSV interpolation for surface shadows. Inputs: two
voxels with adjacent θ values, φ ∈[0..127], and two interpolation
weights along the θ and φ axes.

