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Abstract

Area lights add tremendous realism, but rendering them interactively proves challenging. Integrating visibility is

costly, even with current shadowing techniques, and existing methods frequently ignore illumination variations at

unoccluded points due to changing radiance over the light’s surface. We extend recent image-space work that re-

duces costs by gathering illumination in a multiresolution fashion, rendering varying frequencies at corresponding

resolutions. To compute visibility, we eschew shadow maps and instead rely on a coarse screen-space voxelization,

which effectively provides a cheap layered depth image for binary visibility queries via ray marching. Our tech-

nique requires no precomputation and runs at interactive rates, allowing scenes with large area lights, including

dynamic content such as video screens.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—

1. Introduction

Interactive rendering has long relied on illumination from
infinitesimal points, where efficient lighting and visibility
are well understood. Illumination from more complex area
sources requires integrating both visibility and radiance over
the light’s surface. Given framerate constraints in interactive
applications, per-pixel computation of such integrals is in-
feasible. Current solutions include precomputing light trans-
fer [SKS02], discretely sampling the light source [Kel97],
and caching samples in object-space data structures [KG09]
that require updates for dynamic geometry.

Researchers have developed numerous algorithms for soft
shadows that integrate light over an area light [HLHS03], but
most break with larger lights and few allow radiance fluctu-
ations over the emitter. A few sophisticated algorithms ac-
count for radiance variations in penumbral regions using 4D
lookup tables [AAM03] or summed area tables [GBP06], but
they generally treat unoccluded radiance as coming from a
single-colored emitter, using the average source radiance.

This paper presents a novel image-space technique for
interactive lighting from area lights that draws inspiration
from recent global illumination research. In particular, re-
cent techniques demonstrate that rendering of slowly varying

Figure 1: Our multiresolution image-space approach en-

ables illumination from dynamic area lights. (Top) Compare

with and without area lighting. (Bottom) No precomputation

is needed, allowing fully dynamic geometry. Image-space

computations decouple algorithmic and geometric complex-

ity, maintaining interactivity with over 500,000 polygons.
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lighting can be accelerated via multiresolution image-space
computations [NSW09], and can rely on crude visibility ap-
proximations [RGK∗08].

We present three main contributions:

1. A multiresolution approach that gathers illumination
from dynamic area lights without visibility. This runs in
real time for diffuse and non-diffuse BRDFs.

2. A multiresolution algorithm using screen-space voxeliza-
tion to quickly compute per-pixel area light visibility.

3. An incremental refinement that considers both illumina-
tion and visibility variations when choosing an appropri-
ate resolution for rendering illumination.

Since we avoid precomputation, our work handles dynamic
lights, viewpoint, and geometry (see Figure 1). Image-space
computations allow our algorithm to scale with visual com-
plexity rather than geometric complexity. Additionally, iter-
ative refinement provides a clear quality/performance trade-
off: simply stop sooner for improved performance. However,
our discrete geometric representation can introduce aliasing.

2. Previous Work

Researchers have long developed techniques to interactively
compute light visibility. Until recently, these focused on vis-
ibility from point lights and approximate methods for uni-
form area lights. Due to space constraints, we focus on the
most relevant of these techniques, and discuss recent work
for area lights and global illumination with characteristics
similar to our work.

2.1. Single Shadow Map Visibility Approximations

Standard shadow maps [Wil78] quickly compute visibility
from point lights. The image-space computations scale well
with increased scene complexity and enable efficient post
processing [RSC87,Fer05] for approximating more complex
effects, such as soft shadows. Most soft shadow map algo-
rithms [HLHS03] rely on crude, but plausible, visibility ap-
proximations and ignore radiance variations over the light.

Recent work aims to improve accuracy. Backprojection
soft shadows [GBP06] replace each shadow map texel by a
micropolygon, allowing computation of analytical per-patch
visibility. Disjoint micropolygons introduce light leakage
and overshadowing, but more sophisticated meshing reduces
the problem [SS07]. Backprojection creates a per-fragment
list of potential occluders; to avoid searching all micropoly-
gons, hierarchical shadow maps [GBP06, SS07] accelerate
identification. While these hierarchies break for large lights,
subdividing the lights [YFGL09] improves quality.

While backprojection soft shadow maps accurately com-
pute visibility from area lights, they largely ignore variations
due to multicolored lights. A few techniques use 4D lookup
tables [AAM03] or summed area tables [GBP06] to repre-
sent varying radiance. Bitmask soft shadows [SS07] use a

bitmask approach that inspires our work. However, none of
these algorithms consider how radiance variations affect un-
occluded fragments.

One common problem for all single map algorithms stems
from use of a single silhouette edge to approximate occlu-
sions. While sufficient for small lights, it presents challenges
for large lights, especially as occluders approach the light.

2.2. Multiple Shadow Map Visibility Approximations

Using many shadow maps avoids this problem, at the cost of
additional render passes. Heckbert and Herf [HH97] suggest
rendering shadow maps from many samples. While this con-
verges for increasing sampling density, rendering hundreds
of shadow maps proves a serious bottleneck.

Annen et al. [ADM∗08] split lights into multiple samples
and use fast per-sample soft shadowing [AMB∗07], though
they handle an order of magnitude fewer samples than our
work due to memory limits and shadow map construction
costs. Coherent shadow maps [RGKM07] precompute and
compress shadow map per-object visibility, enabling mov-
ing geometry and complex lighting if object convex hulls
do not overlap [RGKS08]. However, this requires substan-
tial precomputation and memory overhead.

An ingenious way to accelerate multi-shadow map illumi-
nation uses crude, imperfect maps [RGK∗08] and relies on
averaging over thousands of shadow lookups to remove low-
resolution shadow map artifacts. To efficiently create imper-
fect shadow maps, a preprocess densely point-samples the
scene. While relatively inexpensive, this preprocess limits
dynamic scenes to deformations that need no resampling.
Recent work [REG∗09] shows point primitives also work
with more complex illumination and material properties, al-
beit at significantly increased cost.

2.3. Multi-Layer Visibility Approximations

Shadow maps help accelerate many complex illumination
problems, but extending the depth buffer to contain 3D
data, e.g., using layered depth images [SGwHS98], provides
an interesting alternative. Agrawala et al. [ARHM00] pre-
compute visibility for interactive rendering, and Im et al.
[IHK05] achieve near-interactive soft shadowing with lay-
ered depth.

Multi-layer techniques often use depth peeling [Eve01] to
achieve interactivity, and recent work simultaneously peels
many layers [LHLW09]. One visibility approximation us-
ing layer depth is screen-space ambient occlusion [Mit07,
BS09]. While it interactively captures visibility from large
area lights, it poorly handles highly directional lighting.

We use another layered visibility approximation: image-
space scene voxelization [DCB∗04,ED06]. Voxelization dis-
cretizes the volume enclosed by the view frustum, with
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view direction

red green blue alpha

view direction

Figure 2: An example of voxelization, viewed from the side.

Each quanta of depth, represented by a single bit in the color

buffer, identifies whether geometry is present in the voxel.

each framebuffer pixel representing multiple single-bit vox-
els (see Figure 2). Voxelization occurs in a single render
pass, requiring under a millisecond even for relatively com-
plex scenes. This representation proves useful for numerous
applications [ED08], such as refraction, translucency, and
collision detection. We observe that screen-space voxeliza-
tion efficiently creates a perspective grid [HM08], suitable as
a simple ray acceleration structure (similar to Woo [WA90]).

2.4. Interactive Global Illumination

While our work computes only direct light from area
sources, we drew inspiration from interactive global il-
lumination research that explores similar techniques. Nu-
merous precomputed radiance transport algorithms [SKS02,
NRH03] use area or environmental lights, but also impose
strict limits on scene dynamism. Recent work [SR09] ob-
tains interactive scene relighting by relaxing limits on view-
point and light movement; however, substantial precompu-
tation still precludes dynamic geometry.

Instant radiosity [Kel97] approximates indirect light as a
sum of direct illumination from point lights. While initially
unsuitable for real time rendering, Dachsbacher and Stam-
minger [DS05] developed an interactive shadow map-based
approximation, which also works with imperfect shadow
maps [RGK∗08].

Naive reflective shadow mapping [DS05] has fill-rate lim-
itations, due to the cost of gathering illumination at all vis-
ible fragments. Light propagation volumes [KD10] reduce
costs by projecting lights to an spherical harmonic basis and
using only these SH coefficients during rendering, though
this limits the illumination frequencies achievable. Nichols
et al. [NSW09] introduce a multiresolution gather that, in
effect, acts as an image-space illumination cache. This re-
duces costs in regions with slowly changing illumination.
Direct area illumination exhibits similar behavior, and we
adapt their image-space hierarchy. Object-space illumina-
tion caches, common in radiance caching [KG09] may also
work; however, we prefer to avoid object-space data struc-
tures requiring updates for dynamic geometry.

3. Multiresolution Light from Area Sources

Direct illumination from an area light requires integrating
over the light for each pixel, combining light contributions,

material reflectance, and any occlusions. Using an area for-
mulation of the rendering equation [Kaj86], we write this:

L(x,~ω) =
Z

y∈S
fr(~ω,x�y)I(y)V (x�y)G(x�y)dA, (1)

where x is the point to shade, ~ω the viewing direction, S the
light surface, I the light intensity, x�y the vector from x to
the light sample y, V the binary visibility between x and y,
and G(x�y) the geometry term:

G(x�y) =
cos(x�y,~Nx)cos(y�x,~Ny)

||x�y||2
.

~Nx and ~Ny are the surface normals at x and y. In an interac-
tive context, sampling provides the only feasible solution, so
we rewrite Eq. 1 as a sum over discrete light samples:

L(x,~ω) ≈
N

∑
i=0

fr(~ω,x�yi)I(yi)V (x�yi)G(x�yi)A(yi). (2)

Here, light samples yi can be thought of as virtual point
lights, allowing algorithms akin to recent global illumination
research (e.g., [Kel97, DS05]).

3.1. Overview

We have three main contributions. Section 3.2 ignores the
visibility in Eq. 2 and adapts recent multiresolution image-
space rendering [NSW09] to interactively gather from vir-
tual point lights (VPLs) on the area light. While this retarget-
ing is relatively straightforward, area illumination enables
opportunities for improved performance and, unlike Nichols
et al. [NSW09], allows rendering of non-diffuse materials.
Section 3.3 considers only the visibility from Eq. 2 and ap-
plies screen-space voxelization [ED08] to coarsely repre-
sent the scene. We introduce an incremental, multiresolution
ray marching approach that interactively approximates light
visibility. Section 3.4 combines these into a multiresolution
approach to interactively render area illumination, allowing
both visibility and radiance variations over the light.

3.2. Multiresolution Gathering Without Visibility

Illumination from area sources generally changes smoothly,
giving low frequency lighting where coarser than per-
pixel illumination sampling should suffice. One could ap-
ply object-space caching [KG09], but this requires data
structures that incur expensive updates in dynamic environ-
ments. We instead build on recent multiresolution image-
space work [NW09], akin to an image-space cache, with a
cheap per-frame build cost that allows dynamic geometry.

First we simplify area illumination in Eq. 2 by ignoring
visibility (setting V = 1) and assuming a diffuse material
with albedo ρ, giving the following equation:

L(x,~ω) ≈
ρ

π

N

∑
i=0

I(yi)A(yi)cos(x�y,~Nx)cos(y�x,~Ny)

||x�y||2
.
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This per-sample contribution resembles the per-VPL con-
tribution used by Nichols and Wyman [NW09], suggesting
a similar multiresolution approach also works for direct area
lighting. Their approach works as follows:

1. Render an eye-space G-buffer [ST90];
2. Compute multi-scale image-space depth and normal vari-

ations by creating a mipmap structure over the G-buffer;
3. In parallel, set stencil bits in a multiresolution buffer at

the texels where illumination will be gathered (where
depth & normal variations exceed a threshold);

4. In parallel, gather illumination only at specified texels;
5. Combine and upsample to full-screen resolution.

We observe that illumination discontinuities for area
sources occur at locations similar to indirect light: at image-
space depth and normal boundaries. We use the depth and
normal metrics from prior work, computing per-pixel depth
derivatives (in Step 2) as

√

(dz/dx)2 +(dz/dy)2, and creat-
ing a max-mipmap. We use a similar computation for nor-
mals, performed on a per-component basis; normal discon-
tinuities occur when at least one component of the normal
changes significantly.

Step 3 stencils all resolutions in parallel, via a full-screen
pass over a flattened multiresolution buffer:

for all (fragments f ∈ quad) do

if ( ∀i, f /∈MipmapLevel( i ) ) then

continue; // Fragment not actually in multires buffer
i← CurrentMipmapLevel( f );
if ( HasDepthOrNormalDiscontinuity( f, i ) ) then

continue; // Patch not valid (needs subdivision)
if ( NoDiscontinuity( f, i + 1 ) ) then

continue; // Coarser patch did not need subdivision
SetStencil( f );

The resulting stencil has bits set for fragments to be sampled:

We gather illumination from VPLs on the area light, using
the stencil to cull unneeded computations. Figure 3 shows
the resulting area lighting, with coarse samples in slowly
varying regions and denser samples near discontinuities.

For area lighting, a priori knowledge of the source lo-
cation enables multiresolution improvements infeasible for
global illumination. First, gathering light on emitters is un-
necessary; we stencil them out, resulting in dramatic perfor-
mance improvements in scenes with large light sources.

Second, while indirect light often arrives incoherently, di-
rect light often has a preferred direction. For point sources, a
cheap ~N ·~L < 0 identifies unlit fragments. For area lights, we

2562

162 322

5122

642

10242

1282

Not Rendered

Stencil Colors:

72 fps 81 fps 96 fps

Figure 3: The indoor garden with diffuse (left, center) and

Phong (right) materials. We show the final rendering above

a pseudocolor image depicting the resolution we rendered

each region. Our naive approach (left) gathers illumina-

tion everywhere. Discarding fragments on or facing away

from the light (center) improves performance. Phong sur-

faces (right) are refined extensively or trivially discarded.

detect geometry facing away from the light by testing ~N ·~L j

for vectors~L j towards the corners (or bounding box) of the
light. If ~N ·~L j < 0 for all j, we trivially discard the fragment.
Additionally, for one-sided lights, such as television screens,
we also discard fragments behind the source.

3.2.1. Non-Diffuse Materials

Non-diffuse materials require keeping the BRDF inside the
sum in Eq. 2. This complicates multiresolution rendering,
as shiny materials introduce high frequencies not considered
by image-space depth and normal metrics. Specular surfaces
need additional refinement to capture these frequencies.

Seemingly, further refinement degrades performance by
adding additional samples. But while shiny materials reflect
high frequencies near the reflection direction, they often re-
flect little light in others. This suggests traditional impor-
tance sampling techniques directly translate into material-
specific refinement metrics for multiresolution rendering.

Consider a Phong BRDF without a diffuse component, re-
flecting light according to the term (~R ·~L)n. For even low
shininess n, this reduces off-specular illumination signifi-
cantly. We discard fragments where the Phong lobe misses
the light. We identify these fragments by locating where the
reflection vector ~R misses the light, and checking that the
Phong lobe does not overlap the source (by guaranteeing
(~R ·~L j)

n falls below a threshold for all j).

Frequencies in a Phong reflection depend on lobe size.
Large lobes give blurry reflections representable via coarser
sampling. When we create our depth and normal mipmaps,
we also compute the cross-sectional Phong lobe size at the

c© 2010 The Author(s)
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light. Image-space sample spacing must be denser than the
lobe width, which we add as a Phong-specific refinement
metric. We separate diffuse and Phong components into sep-
arate gather passes (see Figure 3), which should work for
many other BRDFs (e.g., Ashikhmin-Shirley [AS00]).

As we use 256 VPL samples, highly specular materials
can show reflections of individual VPLs. We avoid this using
a simplistic adaptive strategy: when a specular lobe includes
too few VPLs (we used a threshold of 9) we directly sam-
ple the light texture 25 times inside the lobe using a mipmap
level dependent on the lobe size when it hits the light. We
sample on a regular 5× 5 grid centered on the reflection di-
rection, with sample spacing dependent on lobe width.

3.3. Voxel-Space Visibility Computations

Interactive rendering algorithms frequently rely on depth
maps to approximate the visibility in Eq. 2. Creation of a
z-buffer as a rasterization byproduct encourages this ubiq-
uity, and algorithmic improvements naturally start from prior
shadow mapping work. However, creation of multi-layer
buffers [LHLW09] or thousands of shadow maps [RGK∗08]
is costly, and accessing the results strains bandwidth and tex-
ture cache without providing true 3D data.

Fortunately, screen space voxelization [DCB∗04, ED06]
provides a compelling alternative. Voxelization is efficient,
taking under a millisecond even in complex scenes, and pro-
duces a 3D structure where each bit represents the presence
or absence of geometry in a single voxel (see Figure 2). Yet,
there is a clear tradeoff. 32-bit z-buffers uniquely store 232

depth values, whereas 32-bit voxelizations uniquely repre-
sent just 32. But the voxelization can simultaneously store 32
depths while the z-buffer stores just one. We found a 128-bit
voxelization worked well for our scenes, though additional
render targets could extend this to 2048 bits.

3.3.1. Naive Voxel-Space Visibility

Inspired by the visibility quality attained using imperfect
shadow maps [RGK∗08], we suggest that image-space vox-
elization, a similarly crude approximation, can achieve sim-
ilar quality. Instead of creating thousands of shadow maps
and querying each, we propose marching rays through a
coarse scene voxelization.

Our naive query spawns a ray traversal between every
light sample at each pixel (see Figure 4). Ideally, we would
perform a 3D DDA for each traversal, checking all interme-
diate voxels for intersections. This performed poorly on our
GPU, due to varying numbers of loop iterations, so we in-
stead sample the ray uniformly between each fragment and
VPL. While a sparse sampling may miss occlusions from
thin geometry, we partially compensate for missed occlu-
sions by checking multiple bits in texels fetched from the
voxel buffer. This essentially thickens the ray.

Incremental VisibilityPer-Pixel Visibility

2562

5122

10242

54.1 fps

10242

5122

2562

3.0 fps

9.1 fps

28.5 fps

12821282 54.4 fps

10.0 fps

19.8 fps

40.4 fps

Figure 4: Compare (left) brute force visibility and (right)

our incremental refinement. Brute force computations ray

march from each pixel to every VPL, whereas incremental

computations reuse results from coarser visibility passes.

3.3.2. Incremental Voxel-Space Visibility

While we need per-pixel visibility to each VPL, this visibil-
ity, like illumination, changes slowly throughout our image.
We leverage this observation, introducing two algorithms
that incrementally refine visibility from sparser samples.

Consider shadows from a point light. By definition, these
are coherent except at shadow boundaries. A coarse shadow
sampling is correct at low resolution, except near these
boundaries. Clearly, this also holds for any single VPL. In-
stead of computing visibility to each VPL at every pixel, we
first sample on a coarser pixel grid (e.g., 642) and incremen-
tally refine only near visibility discontinuities (see Figure 5).

When refining, we reuse a VPL’s visibility when coarse
samples in a 3× 3 region agree, only spawning a new visi-
bility ray when inconsistencies arise. When using hundreds
of VPLs, usually fewer than 5% vary in any region, signif-
icantly reducing the rays needed. To this end, our visibility
passes output a binary bitstream (as in bitmask soft shad-
ows [SS07]) with one bit per VPL, allowing identification of
regions needing additional queries.

While our incremental approach can converge to a cor-
rect solution, this is rarely necessary. For instance, imperfect
shadow maps have inaccurate per-VPL visibility that gets
averaged out, and ambient occlusion algorithms often sam-
ple coarsely and then apply a blur. Given our multiresolution
approach from Section 3.2 essentially blurs illumination, we
seek to avoid computing per-pixel visibility prior to blurring.

c© 2010 The Author(s)
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Figure 5: Each pixel stores a bitstream of visible and oc-

cluded VPLs. When refining, we only resample lights whose

visibility changes between neighboring pixels. Even at sig-

nificant discontinuities (top), only a subset of VPL visibili-

ties change. Often visibility changes more slowly (bottom);

here only a few VPLs need resampling during refinement.

Instead of refining visibility everywhere, we only gener-
ate denser samples near discontinuities. It turns out that most
visibility discontinuities occur at image-space depth and nor-
mal boundaries, so we can use the same refinement criteria
from Section 3.2. However, these metrics miss discontinu-
ities caused by contact shadows. To detect these disconti-
nuities, we add a bit-counting metric. When enough VPLs
change visibility in an image-space neighborhood, refine-
ment is needed. Surprisingly, this threshold can be quite
high: in our scenes, we captured light discontinuities by re-
fining only when at least half the VPLs (i.e., 128) were par-
tially visible in a neighborhood. We compare naive voxel-
space visibility with a combination of both our incremental
improvements in Figure 4.

Given the gradual visibility variations in most scenes, we
found interleaved sampling [KH01] on 2 × 2 pixel blocks
worked at all our sampling resolutions. This allows a 4-
channel 16-bit render target to store visibility to all 256
VPLs used in our implementation. Interleaved sampling is
essentially orthogonal to the incremental refinements pro-
posed above, so our results include all three.

3.3.3. Visibility with Sharp BRDFs

While visibility from a fixed set of 256 VPLs gives good
results for diffuse surfaces, for sharper BRDFs individual
shadows are clearly visible for the few VPLs reflected in
the specular highlight. We propose an alternative for such
materials based on the simple adaptive strategy proposed in
Section 3.2.1. We send visibility rays to the 25 samples cho-
sen in the specular lobe.

This improves shadow quality, but with only 25 visibility
samples some shadow banding remains. We could add addi-
tional visibility queries in the lobe, but this increases cost,
potentially highlights voxel aliasing, and behaves poorly us-

ing our incremental visibility. Instead we use a variance
shadow query, inspired by variance shadow maps [DL06].

Instead of storing a single bit per visibility query, we store
the distance (and distance squared) to the nearest occluder
along the ray. We then estimate the per-query distance vari-
ance using a screen space blur, applying the equations de-
scribed by Donnelly [DL06] to compute the per-VPL light
intensity. This eliminates the shadow banding from individ-
ual shadows (see Figure 6), as it essentially performs per-
query percentage closer filtering.

Unfortunately, this greatly increases storage for visibility
queries—from 1 bit to 2 floats per VPL. We manage by send-
ing only 24 visibility queries (ignoring one corner on the
5× 5 grid), for a total of 48 floats. Using 2× 2 interleav-
ing, this requires only 12 floats per pixel, which fits in three
4-channel render targets.

3.4. Incremental Stencil Rendering

While our algorithms from Sections 3.2 and 3.3 give either
area illumination or visibility, we need both simultaneously.
Additionally, the algorithms refine image-space regions dif-
ferently, so separate evaluation of lighting and visibility fol-
lowed by a per-fragment combination is infeasible. Shadows
introduce high frequencies where illumination varies slowly,
and for specular materials the reverse can hold.

To address this, we propose an incremental approach to
multiresolution rendering. We still rely on a stencil mask
to identify which mulitresolution fragments to render. But
instead of creating the stencil masks simultaneously before
rendering, we create the masks and render one resolution at
a time, from coarsest to finest. This allows each stencil mask
to depend on illumination variations at coarser levels, in ad-
dition to prior metrics (e.g., depth and normal). This requires
only minor changes from sequential stenciling:

i← CurrentMipmapLevel( f );
for all (fragments f ∈ quad( mip-level( i ) ) ) do

if ( HasIlluminationDiscontinuity( f, i + 1 ) ) then

SetStencil( f ); // Coarse patch had light discontinuity;
continue; // re-render at higher resolution

if ( HasDepthOrNormalDiscontinuity( f, i ) ) then

continue; // Patch not valid (needs subdivision)
if ( NoDiscontinuity( f, i + 1 ) ) then

continue; // Coarser patch did not need subdivision
SetStencil( f );

Rapid color changes between coarse samples indicates
that higher sampling may capture higher frequencies. When
iterating, we compare the light variations between computed
samples to a user threshold to determine if additional sam-
pling is needed (see Figure 7).

Our incremental rendering iterates the following steps
once per rendering resolution, beginning at the coarsest level
and progressing through the finest:

c© 2010 The Author(s)
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20 fps 76 fps

n = 300

n = 2000

No Visibilityn = 200

Figure 6: Two examples of our method with a Phong BRDF, with and without visibility, and varying levels of shininess.

642 1282 2562 5122 10242

Figure 7: An example of incremental stencil refinement. (Top) The refinement stencil for each resolution. Areas in blue are not

rendered; areas in white are refined due to depth or normal discontinuities, and areas in red are refined due to illumination

discontinuities. (Bottom) The resulting image after each step, with unrendered areas in blue.

1. Create a stencil based on image-space depth, normal, and
BRDF frequency metrics and any illumination disconti-
nuities observed in coarser levels,

2. At set stencil bits, incrementally compute visibility and
illumination to locally approximate Eq. 2.

3. When the stencil is not set, upsample and interpolate any
coarser results.

Figure 7 depicts incremental stencil rendering. At the low-
est resolution, we create a stencil based solely on depth and
normal discontinuities. At higher resolutions, observed illu-
mination discontinuities (shown in red) supplement regions
known to require refinement. At each level, we upsample
and interpolate unrendered areas using prior work [NW09],
essentially an edge-aware bilinear interpolation that avoids
using uncomputed fragments (those shown in blue).

This enables adaptive refinement at shadow boundaries.
Furthermore, the illumination metric can capture high fre-
quency BRDFs. Discontinuities introduced by specularities
naturally trigger refinement, though we find that material
specific metrics (e.g., Section 3.2.1) typically provide better
quality, performance, and avoid aliasing.

4. Results and Discussion

Our timings come from a dual-core 3GHz Pentium 4 and a
GeForce GTX 280, using OpenGL. Unless otherwise stated,
all images and reported results were for an output resolution

of 10242. Key GPU functionality required includes integer
textures (for voxelization) and early stencil culling (to cull
unnecessary fragments).

Figure 1 demonstrates the realism area sources add to a
scene. The top compares a living room with and without our
area lighting. Figure 6 shows surfaces with a Phong BRDF,
comparing our results with and without visibility. The selec-
tive stenciling described in Section 3.2 allows us to discard
many fragments unprocessed, improving performance.

Figure 8 compares our work, with and without visibil-
ity, to a path traced reference and a rendering using 1024
coarse (642) shadow maps, similar to rendering with imper-
fect shadow maps. We created the coarse shadow maps via
traditional rasterization, leading to higher quality but poorer
performance than ISMs. In general, our work compares fa-
vorably to path tracing, and captures higher shadow frequen-
cies than those possible with coarse shadow maps.

4.1. Performance

Ultimately, multiresolution rendering performance depends
on refinement quality. Illuminating each fragment requires
gathering light from hundreds of VPLs and many visibil-
ity queries; thus, speed depends on the number of fragments
rendered. We require only a few passes over the geometry, so
geometric complexity plays a relatively minor performance
role. Like prior multiresolution image-space algorithms, per-
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Figure 8: Two complex scenes (left) without visibility, using our multiresolution approach; (center left) our incremental visibil-

ity; (center right) coarse, 642 shadow maps, with quality similar to imperfect shadow maps; and (right) path tracing.

formance varies with visual complexity. Scenes with high
frequency details require more rendered fragments with a
corresponding performance hit, regardless of polygon count.

Figure 9 explores this effect for a moving camera in the
scene atop Figure 8. While polygon count stays constant, the
motion provides varying visual complexity and causes the
fragment count to fluctuate each frame. The top graph shows
the percentage of fragments rendered at each resolution. At
642, we render roughly half of the fragments. Finer resolu-
tions cheaply interpolate and reuse many of these; only 10-
15% of the final image needs per-pixel computation.

While we process a small percentage at high resolution,
10% of 10242 is significantly larger than 50% of 642. The
bottom graph of Figure 9 reveals the cost for each refinement
level. The quantity of fragments at higher resolutions still
contribute much of our overall cost. To improve speed, some
applications might render at only 2562 or 5122 and apply
edge-preserving bilateral filters to upsample for final display.

As refinement thresholds directly affect fragment count,
they greatly impact performance, as shown in Figure 10.
Both strongly affect performance, but the lowest relative
threshold has the strongest impact; with a color threshold
of 0.005 the normal threshold has a minor impact, whereas
the normal threshold dominates for higher color thresholds.

4.2. Voxel Buffer Resolution

We achieve compelling visibility using surprisingly coarse
voxelizations. Figure 11 shows a closeup of the 755k trian-
gle, genus 131 YeahRight model with six different voxel res-
olutions. All our results use 128 bits of depth, via a 32-bit per
channel buffer. Visibility from a 1282 ×128 buffer is almost
indistinguishable to the 10242×128 visibility. While coarser
resolutions give noticeably different results, this may be ac-
ceptable for large geometry with low-frequency visibility.
Additionally, small voxel buffers increase cache coherence
during ray traversal and significantly improve performance.

4.3. Limitations

Coarse voxelization, especially in the z dimension, leads to
self occlusions. This occurs when initial visibility ray steps
remain inside voxels representing the originating surface
(see Figure 12). This is a variant of the “shadow acne” prob-
lem that plagues shadow mapping. We address it similarly,
adding a bias to push the ray origin away from the surface.

While reducing self-occlusion errors, a bias causes missed
contact shadows for thin geometry. In general, our method
yields best results for geometry occupying multiple vox-
els; such geometry exhibits less aliasing during ray march-
ing. Increasing steps per visibility query reduces aliasing as
does increasing voxel resolution, though both impact perfor-
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Figure 9: Percentage of fragments rendered from each reso-

lution (top) and the per-frame costs for each refinement (bot-

tom) as the camera moves through the “Yeah Right” scene.

The lower graph also displays the framerate at 10242.
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mance. Using additional render targets would capture higher
fidelity voxels (for up to 2048-bit z-resolution). Though, sur-
prisingly, we found a single 128-bit buffer sufficient for all
but the thinnest geometry (e.g., the furniture in Figure 3).

As visual complexity dramatically impacts performance,
naively adding normal or bump mapping may refine a lot
of pixels, degrading performance. We see numerous ways to
mitigate this, which we plan to address in future work.

5. Conclusions

We introduced a multiresolution image-space rendering al-
gorithm able to compute direct illumination from dynamic
area lights. We described refinement methods to accelerate

10242
10 fps

322
22 fps

642
18 fps

1282
16 fps

2562
15 fps

5122
12 fps

Figure 11: The basket of the YeahRight model (also in Fig-

ure 8) rendered with varying voxel buffer dimensions.

Figure 12: A dragon with self-occlusion artifacts due to lim-

ited voxel resolution. A bias helps alleviate the problem.

the rendering of diffuse and non-diffuse surfaces, proposed
a method of coarsely approximating visibility using screen
space voxelization, and combined them using incremental
refinement. We achieve interactive speeds for a variety of
scenes, require no precomputation, and impose no restric-
tions on the light, camera, or geometry.

We see many interesting future directions. As visibil-
ity dominates our computation, additional refinement tech-
niques may prove more efficient. Additionally, illumina-
tion refinement is orthogonal from our proposed visibility
queries; incremental lookups into, say, imperfect shadow
maps may work better. We uniformly sample the light,
which works for many environments, but more complex
materials may require adaptive light sampling (e.g. Light-
cuts [WFA∗05]) to maintain quality. Finally, we believe mul-
tiresolution rendering can accelerate other problems, such as
ambient occlusion and illumination in participating media.
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