Voxelized Shadow Volumes

Chris Wyman

Department of Computer Science
University of lowa

High Performance Graphics 2011

Problem: Visibility In Volumes

* Quickly solve the guery:
— Which points in volume see some point P?

« Example application: volumetric lighting
— When integrating scattering with shadows

« Without loss of generality:

— Use volume lighting for concrete examples |
THE

— Our algorithm is not limited to this problem UNIVERSITY
OF lowa
I

L

Imagine: Want Volume Lighting

THE
UNIVERSITY

OF lowAa

[

Why Is This Hard?

» Alternatively:
— Why not use shadow maps?
— Why not use shadow volumes?

 After all, many propose just that:
— Shadow volumes [Max86] [BiriO6]

— Shadow maps [DobashiO2] [Englehardt10] [Chenll]
— Combine both [Wyman08] [Billeter10] L

Tue WL
UNIVERSITY
OF lowa

Why Is This Hard?

* Rendering without visibility:
— [Sun et al. 05] takes << 1ms (~1000+ fps)
— [Pegoraro et al. 09] takes < 3 ms (~300+ fps)

* Rendering with visibility:
— [Chen et al. 11] takes 7-24 ms
— [Billeter et al. 10] takes 9-100 ms
— Older techniques even slower
— Most slow with increased geometric complexity

* Obviously, visibility is quite costly!

L

Tue WL
UNIVERSITY
OF lowa

Why Is This Hard?

* Both SMs and SVs designed for surfaces

— Shadow volumes scale more naturally
« As they bound regions
« Require significant fill rate
« Fill rate increases with higher frequency shadows

— Shadow maps simply sample more
« Sample at points in volume, not just on surfaces
« Leads to incoherent memory access

L
» Leads to redundant memory access

Tue WL
UNIVERSITY
OF lowa

Why Is This Hard?

THE
UNIVERSITY

Shadow map samples likely have poor cache coherence.

OF lowa

Why Is This Hard?

L

THE ﬁ

Independently computed samples along adjacent rays look UNIVERSITY
into same set of shadow map texels. And there is no OF lowA
guarantee values are still in the texture cache. I

Voxelized Shadow Volume Goals

* Develop a cache coherent visibility lookup
— Eye ray lookups should be efficient
— Lookups for nearby eye rays near in texture

* Eliminate redundancy between lookups
— Less important

— But falls out naturally
L

Tue WL
UNIVERSITY
OF lowa

What Are VSVs? (The Basics)

* Imagine voxelizing
— To 3D voxel grid

Light direction
 Parallel scan D —

— Along a grid axis

— Use an bitwise OR L

THE ﬁ

UNIVERSITY
OF lowAa
[]

What Are VSVs? (The Basics)

« Each pixel corresponds to:

{3 — Set of binary voxels, where
1 — inside geometry
* 0 — outside geometry

« Each pixel corresponds to:

— Set of binary voxels, where
e 1 — inside shadow volume
e 0 — outside shadow volume

L
THE ﬁ

UNIVERSITY
OF lowAa
[]

Seems Too Simple...

* Why has it never been done?
— Need to scan along grid axis — very limiting

* But, if possible... What advantages?
— Voxelization & render resolution independent
— Voxelization occurs Iin different pass
— Implies:

« Shadow volume fill rate decouples from :

geometric complexity & screen resolution Tre ML
UNIVERSITY

OF lowa
.

Seems Too Simple...

« Other advantages?
— Lookup logistics:
* One “pixel” (at right) gives shadow
visibility at many volume samples

 Store 128 binary visibility samples
In a texel on GPU

« Significantly reduces lookups for
dense visibility sampling

« Used anywhere visibility needed

How Do We Generalize?

* Need parallel scan to run along grid axis
— l.e., light direction runs along axis

— Similar idea from ray tracing literature
« [Hunt O8] Perspective-space accel structures

* Need per-pixel lookup along grid axis
— To stash row of visibility samples in a texel

— Done frequently in GPU computing

« [Eisemann 06] Screen-space voxel grid -
Tre ML

« Novel: Need them simultaneously — UNyES™
]

Creating VSVs

* \WWe propose epipolar space voxelization

L

THE ﬁ

UNIVERSITY
OF lowAa
I

Creating VSVs

« Straightforward parameterization:

Given eye-space light and vertex position: esLPos, esVPos

vec3 toLight = normalize(e sLPos);

vec3 toVert = normalize(esVPos);

vec3 upVec = normalize(cross(toLight, vec3(0,0,-1)));
vec3 forwardVec = cross(upVec, toLight);

float @ = acos(dot(toLight, toVert));
float & = atan(dot(forwardVec, toVert), dot(upVec, toVert));

float @ = acos(dot (-toLight, normalize(esVPos-esLPos)));

e Satisfies our constraints:

— One axis (constant a) parallel to view rays
— One axis (constant @) parallel to light rays

Tue WL
UINIVERSITY
OF lowa

Creating VSVs

lar plane

ipo

der an epi

Cons

plane of constant 0)

e

THE
UNIVERSITY

OF lowa

Creating VSVs

Just like before:

1) Voxelize geometry

Voxelized
object

THE
UNIVERSITY

OF lowa

R

Create VSVs

Just like before:

1) Voxelize geometry
2) Scan along light axis

: .
- OIS .. .
K -,
D . .
: .
.. ‘e
- = / e,

'Voxelized //
J object

Voxelized
shadow volume

l l THEﬁ

UNIVERSITY
OF lowAa
I

Using Voxel Shadow Volumes

Just like before:

1) Voxelize geometry
2) Scan along light axis
3) Look up visibility

o s g 0 ., e,
0 0 s, . .
Y 0
% . ., ., 7 ..
_ s, . e
. K %, S . .
s ' X X .
" ' g .
> . *, *, *, >
0 s, 0 ., .
" 0 s, . .
Y . 3 o, ., .
S 0 *, . 2 e,
" 0 0 ., A .
s, 0 ., .,
K ., * * i
" ., . g . .
Y ‘. s, A . g
“ ’ . 3 .
P . . 0
0 0
0) . .
< , ; o eN .
. s, s, ., .
" 0 .
Y *s * ., ., .
" " kS s * 2
" s, 0 ® 2
) " s, 0 .
" . ., N .
B . . * K
5 Y 0 .,
" 1 . .,
“ o 0 3 .
s 5 P .,
o 3 ", . s,
: s,
Ky * . s,
“ ", s,
" s, 0
" . .,
o " ",
K s kS *,
" 0 0
0 . ", 0
. . 0
. ",
‘ i :

Each lookup returns a row of visibility values (red)

Each bit returned in lookup corresponds to visibility
at one sample (blue) along view ray.

VSV Implementation

* Map epipolar space into a 2D GPU texture

rrrrrr

= n
Vs -

Each texel represents
128 samples in ®
stored in 32-bit

uint RGBA texture

VSV Implementation

Perform a parallel scan (pre

fix

sum) along the a axis using

a bitwise OR, rather than a + operator, to create the VSV.

VSV Implementation

Corresponding epipolar planes

Lookup visibility at every pixel and use
In desired application

(Note: We do not compute scattering in epipolar
space. This computation is for clarity of explanation)

Final Rendering

Tricky Detalls

 How to voxelize into epipolar space?

— Paper proposes 3 approaches:

« [Eisemann 06] screen space voxelization
— Blazing fast, requires watertight models
— Requires fixes to handle epipolar singularities

» [Schwarz 10] conservative voxelization
— Significantly slower, better quality for thin geometry
— Requires fixes to handle epipolar singularities

« Resampling shadow map to epipolar space

— Similar to approach used by [Chan 11]

— Blazing fast, naively handles all singularities. THE

UNIVERSITY

OF lowa
.

Tricky Detalls

« See paper for details on first 2 methods

* Voxelization via resampling:
— For each (8;, ®;) in epipolar space
» Create the light ray in direction (6;, @)
 Locate the corresponding shadow map texel
* Lookup nearest surface, compute its q; value
- Set the bit at (6;, ®,, q;)
THE

L

UNIVERSITY
OF lowA

Results

(Reported on a GeForce 580 GTX, 512 x 2048 x 512 voxel volume)

| frame cost: 10.1 ms

Shadow map: 0.8 ms Shadow map: 0.3 ms
Voxelization: 3.1 ms Other rendering: 3.5 ms Voxelization: 1.4 ms Other rendering: 1.9 ms
Parallel scan: 2.7 ms Parallel scan: 2.7 ms

Results

(Reported on a GeForce 580 GTX, 512 x 2048 x 512 voxel volume)

Total frame cost 9:8ims™ Total frame cost: Zgrﬁs;
(1.7 million polygons) /‘/ gf/‘

B

1

Y

;!
J
/7 &
- \)‘;;' ‘\.-;‘ l‘ \ \ : ':"'-"r»
/E Y ‘ & ‘\‘
Shadow map: 2.6 ms Shadow map: 1.1 ms

Voxelization: 1.9 ms Other rendering: 2.6 ms Voxelization: 2.0 ms Other rendering: 2.1 ms
Parallel scan: 2.7 ms Parallel scan: 2.7 ms

Video / Demo

L

THE ﬁ

UNIVERSITY
OF lowAa
I

Aliasing Issues

 Aliasing occurs, as with all sampling

— Can focus on important samples
« Paper talks about selecting good a, @, and 6 ranges

— Can do adaptive sampling
« Paper explores briefly, but more work needed

— Can brute force by adding more samples

e Our performance — 512 x 2048 x 512 volumes
 Parallel scan decreases roughly linearly in size

— Filtering Iin epipolar space L
» Perhaps similar to PCF, needs more exploration. Tue ML
UNIVERSITY
OF lowa

Aliasing Issues

« Our worst aliasing occurs @ singularity
— Geometry seen occluding light
— Geometry seen behind light (less problematic)

Summary

* Proposed voxelized shadow volumes for visibility queries
— Voxelize using a new epipolar space parameterization
— Prefix sum along light rays in epipolar space
— Gives a discrete sampling of shadow volumes
— Lookup 128 binary visibility samples with single texture lookup

« Advantages
— Decouples geometric complexity & visibility cost
— Cache coherent lookups
— Drop into existing participating media techniques for visibility

« Disadvantages o 1

— Some aliasing near singularity UNIVERSITY

— Some care in implementation details for robustness (see paper) O_F lowa

Acknowledgements

« People who have listened

to this idea in progress

— My students (Greg Nichols, Rajeev
Penmatsa, and Thomas Hansen)
and too many others to list...

* Funding sources:
— DARPA: HR001-09-1-0027
— ARO: W911NF-10-1-0338

« Hardware donations:
— NVIDIA Corporation
L

ThE ﬁ

UNIVERSITY
OF lowa

Comparison To Ground Truth

VSV visibility Ray traced visibility

