
Voxelized Shadow Volumes

Chris Wyman
Department of Computer Science

University of Iowa

High Performance Graphics 2011

Problem: Visibility In Volumes

• Quickly solve the query:

– Which points in volume see some point P?

• Example application: volumetric lighting
– When integrating scattering with shadows

• Without loss of generality:
– Use volume lighting for concrete examples

– Our algorithm is not limited to this problem

Imagine: Want Volume Lighting

Creative Commons Image: Mila Zinkova

Why Is This Hard?

• Alternatively:

– Why not use shadow maps?

– Why not use shadow volumes?

• After all, many propose just that:
– Shadow volumes [Max86] [Biri06]

– Shadow maps [Dobashi02] [Englehardt10] [Chen11]

– Combine both [Wyman08] [Billeter10]

Why Is This Hard?

• Rendering without visibility:
– [Sun et al. 05] takes << 1ms (~1000+ fps)

– [Pegoraro et al. 09] takes < 3 ms (~300+ fps)

• Rendering with visibility:
– [Chen et al. 11] takes 7-24 ms

– [Billeter et al. 10] takes 9-100 ms

– Older techniques even slower

– Most slow with increased geometric complexity

• Obviously, visibility is quite costly!

Why Is This Hard?

• Both SMs and SVs designed for surfaces

– Shadow volumes scale more naturally

• As they bound regions

• Require significant fill rate

• Fill rate increases with higher frequency shadows

– Shadow maps simply sample more

• Sample at points in volume, not just on surfaces

• Leads to incoherent memory access

• Leads to redundant memory access

Why Is This Hard?

Object

Shadow map samples likely have poor cache coherence.

Light

Why Is This Hard?

Object

Independently computed samples along adjacent rays look

into same set of shadow map texels. And there is no

guarantee values are still in the texture cache.

Light

Voxelized Shadow Volume Goals

• Develop a cache coherent visibility lookup

– Eye ray lookups should be efficient

– Lookups for nearby eye rays near in texture

• Eliminate redundancy between lookups

– Less important

– But falls out naturally

• Imagine voxelizing

– To 3D voxel grid

• Parallel scan

– Along a grid axis

– Use an bitwise OR

Light direction

What Are VSVs? (The Basics)

• Each pixel corresponds to:

– Set of binary voxels, where

• 1 → inside geometry

• 0 → outside geometry

• Each pixel corresponds to:

– Set of binary voxels, where

• 1 → inside shadow volume

• 0 → outside shadow volume

What Are VSVs? (The Basics)

A voxelized shadow volume!

Seems Too Simple…

• Why has it never been done?

– Need to scan along grid axis → very limiting

• But, if possible… What advantages?

– Voxelization & render resolution independent

– Voxelization occurs in different pass

– Implies:

• Shadow volume fill rate decouples from

geometric complexity & screen resolution

Seems Too Simple…

• Other advantages?

– Lookup logistics:

• One “pixel” (at right) gives shadow

visibility at many volume samples

• Store 128 binary visibility samples

in a texel on GPU

• Significantly reduces lookups for ant

dense visibility sampling

• Used anywhere visibility needed

How Do We Generalize?

• Need parallel scan to run along grid axis

– I.e., light direction runs along axis

– Similar idea from ray tracing literature

• [Hunt 08] Perspective-space accel structures

• Need per-pixel lookup along grid axis

– To stash row of visibility samples in a texel

– Done frequently in GPU computing

• [Eisemann 06] Screen-space voxel grid

• Novel: Need them simultaneously

Creating VSVs

• We propose epipolar space voxelization

Creating VSVs

• Straightforward parameterization:

• Satisfies our constraints:
– One axis (constant α) parallel to view rays

– One axis (constant Φ) parallel to light rays

Creating VSVs

Consider an epipolar plane

(i.e., plane of constant θ)

Creating VSVs

Voxelized

object

Just like before:

1) Voxelize geometry

Create VSVs

Voxelized

object

Just like before:

1) Voxelize geometry

2) Scan along light axis

Voxelized

shadow volume

Using Voxel Shadow Volumes

Just like before:

1) Voxelize geometry

2) Scan along light axis

3) Look up visibility

Each lookup returns a row of visibility values (red)

Each bit returned in lookup corresponds to visibility

at one sample (blue) along view ray.

VSV Implementation

• Map epipolar space into a 2D GPU texture

θ

α

Each texel represents

128 samples in Φ

stored in 32-bit

uint RGBA texture

Voxelize

VSV Implementation

Perform a parallel scan (prefix sum) along the α axis using

a bitwise OR, rather than a + operator, to create the VSV.

VSV Implementation

Lookup visibility at every pixel and use

in desired application

(Note: We do not compute scattering in epipolar

space. This computation is for clarity of explanation)

Final Rendering

Corresponding epipolar planes

Tricky Details

• How to voxelize into epipolar space?

– Paper proposes 3 approaches:

• [Eisemann 06] screen space voxelization

– Blazing fast, requires watertight models

– Requires fixes to handle epipolar singularities

• [Schwarz 10] conservative voxelization

– Significantly slower, better quality for thin geometry

– Requires fixes to handle epipolar singularities

• Resampling shadow map to epipolar space

– Similar to approach used by [Chan 11]

– Blazing fast, naively handles all singularities.

Tricky Details

• See paper for details on first 2 methods

• Voxelization via resampling:

– For each (θi , Φj) in epipolar space

• Create the light ray in direction (θi , Φj)

• Locate the corresponding shadow map texel

• Lookup nearest surface, compute its αij value

• Set the bit at (θi , Φj , αij)

Results

Total frame cost: 10.1 ms

(Reported on a GeForce 580 GTX, 512 x 2048 x 512 voxel volume)

Total frame cost: 6.3 ms

Shadow map: 0.8 ms

Voxelization: 3.1 ms Other rendering: 3.5 ms

Parallel scan: 2.7 ms

Shadow map: 0.3 ms

Voxelization: 1.4 ms Other rendering: 1.9 ms

Parallel scan: 2.7 ms

Results

Total frame cost: 9.8 ms
(1.7 million polygons)

Total frame cost: 7.9 ms

Shadow map: 2.6 ms

Voxelization: 1.9 ms Other rendering: 2.6 ms

Parallel scan: 2.7 ms

Shadow map: 1.1 ms

Voxelization: 2.0 ms Other rendering: 2.1 ms

Parallel scan: 2.7 ms

(Reported on a GeForce 580 GTX, 512 x 2048 x 512 voxel volume)

Video / Demo

Aliasing Issues

• Aliasing occurs, as with all sampling

– Can focus on important samples
• Paper talks about selecting good α, Φ, and θ ranges

– Can do adaptive sampling
• Paper explores briefly, but more work needed

– Can brute force by adding more samples
• Our performance → 512 x 2048 x 512 volumes

• Parallel scan decreases roughly linearly in size

– Filtering in epipolar space
• Perhaps similar to PCF, needs more exploration.

Aliasing Issues

• Our worst aliasing occurs @ singularity

– Geometry seen occluding light

– Geometry seen behind light (less problematic)

Summary

• Proposed voxelized shadow volumes for visibility queries
– Voxelize using a new epipolar space parameterization

– Prefix sum along light rays in epipolar space

– Gives a discrete sampling of shadow volumes

– Lookup 128 binary visibility samples with single texture lookup

• Advantages
– Decouples geometric complexity & visibility cost

– Cache coherent lookups

– Drop into existing participating media techniques for visibility

• Disadvantages
– Some aliasing near singularity

– Some care in implementation details for robustness (see paper)

Acknowledgements

• People who have listened

to this idea in progress
– My students (Greg Nichols, Rajeev

Penmatsa, and Thomas Hansen)

and too many others to list…

• Funding sources:
– DARPA: HR001-09-1-0027

– ARO: W911NF-10-1-0338

• Hardware donations:

– NVIDIA Corporation

Total frame cost: 13.2 ms

Comparison To Ground Truth

VSV visibility Ray traced visibility

