Decoupled Coverage Anti-Aliasing

Yuxiang Wang¹ Chris Wyman² Yong He³ Pradeep Sen¹

UC Santa Barbara¹ NVIDIA² Carnegie Mellon University³

Carnegie Mellon University

Motivation

- Geometric anti-aliasing is a long standing problem
- MSAA as gold standard
 - Idea: decoupled shading and visibility
 - Reduce shading cost
- For high quality rendering, storage is costly

Feature Film

Source: DICE

Motivation

Estimate:

- > 4 byte/sample color
- > 4 byte/sample depth
- No compression
- Linear growth with # samples
- >64x MSAA 1080p:
 - ~1 GB for RGBA8
 - 2+ GB for G-Buffer

Related Work

- Simple/Complex [Lauritzen 2010]
 - Analyze planar features shared in G-Buffer
 - Amortize shading cost
 - Large memory footprint with sizeable depth and color information

Related Work

- Surface Based AA (SBAA)[Salvi & Vidimče 2012], Streaming G-Buffer [Kerzner & Salvi 2014]
 - Only store N important surfaces
- Aggregate Geometry AA (AGAA) [Crassin et al. 2015]
 - Filter & compression

 Rely on MSAA depth sampling -> large memory footprint @ high sample rates

Source: [Salvi & Vidimče 2012]

Source: [Crassin et al. 2015]

Motivation

- Observations from prior G-Buffer compression work [Salvi & Vidimče 2012]
 - 2-3 shading surfaces are enough for each pixel
- Can we use a higher fidelity coverage for compressed surfaces?
 - High fidelity coverage mask easy to get [Waller et al. 2000] [Wyman et al. 2015]
 - Model contribution of each surface more precisely
- Or, in other words...
 - Can we decouple coverage from visibility?

UCSB

Higher anti-aliasing quality in less storage by decoupling coverage and visibility rates

Decoupled Coverage AA

Decoupled Coverage AA

Decoupled Coverage AA

Decoupled Coverage AA

HPG 2015

Surface List

Decoupled Coverage AA

HPG 2015

High Quality Coverage Mask

Decoupled Coverage AA

- MSAA: <= 8 sample/pixel
 - Depth + colors replicated per sample (e.g., 8 bytes/sample RGBA8 and 16-20 bytes/sample deferred)

- Coverage mask is cheaper than MSAA sample (depth+coverage)
 - 1 coverage sample -> 1 bit
 - High sampling rate supported

Projection

Coverage Mask

Look-up table for per-edge coverage

• Look-up table for per-edge coverage

Fragment Merging

- Try to merge fragment into existing shading surfaces
 - Satisfy merge rules
 - Combine the coverage mask
 - Weighted average normal, depth, etc., based on coverage bits
 - Fail: add fragment into list
- Aggregates geometry information
- Without losing high fidelity coverage information

Merge heuristics

- Merge rules
 - Aligned normal

• Overlapping depth intervals

Fragment Merging

- Keep 4 surfaces at most
 - 2-3 surfaces for Streaming G-Buffer [Kerzner & Salvi 2014]
 - 2 surfaces for AGAA [Crassin et al. 2015]
- Sufficient to handle sophisticated scenes
 - High fidelity coverage mask catches small geometry
 - Discard rules vs. Clustering approach

- When the surface list is full, we need to discard
 - Discard the one with smallest visible coverage
- Discard loses information...
 - Leaking to background

Blue as background color

Only merge once

Reference

- How does the leaking happen with single merge?
- Consider this complex pixel:
 - The eye should see only the blue surfaces
 - Consider this primitive order
 - Large derivatives result in big bounding box
 - No accurate coverage determination...
 - But only have room for 4 surfaces

• How does the leaking happen with single merge?

- Discarding small, nearby surfaces likely to cause leaks
- Prefer to avoid discarding important geometry
 - Prevent loss of nearby sub-pixel geometry
 - Potential cost of blurring color on small surfaces

- Give the smallest surface a second chance!
- Merge before discard:
 - Select the smallest coverage surface after first merge
 - Never try discard the front most one
 - Try to merge it with others using relaxed rule
 - Apply only overlapping depth interval rule
 - If mergeable, average all attributes as usual

(a)

(b)

Implementation

- Conservative rasterizer
 - Process partially covered fragments

- Pixel shader interlock
 - Ensure primitive ordering
 - Fragment shader lock
 - Resolve discard & temporal artifact

• Z-prepass

Results

512x Supersampling

512x Supersampling

4S DCAA

fil les

4S SBAA

4S DCAA

512x Supersampling

Evaluation

- 28 bytes/surface × 4 surfaces/pixel = 112 bytes/pixel
- 8x MSAA: 16 bytes/sample \times 8 = 128 bytes/pixel (1.14x of DCAA)
- 64x SuperSampling: 16 bytes/sample × 64 = 1024 bytes/pixel (9.14x of DCAA)

	Z-Prepass	Merge	Resolve & Render	Total	MSE		
					4S SBAA	8x MSAA	DCAA
Citadel	1.3 ms	23.2 ms	6.4 ms	30.9 ms	2.47*10-4	1.32*10 ⁻⁴	6.40*10 ⁻⁵
Tentacles	1.3 ms	574.5 ms	6.2 ms	582.0 ms	2.28*10 ⁻³	6.05*10 ⁻⁴	5.65*10 ⁻⁴

Υ**Π**

Limitation

- Rendering speed
 - Pixel Shader Interlock with Conservative Rasterizer
 - Better synchronization would help
- Merging artifacts

merge

Limitation

- Rendering speed
 - Pixel Shader Interlock with Conservative Rasterizer
 - Better synchronization would help
- Merging artifacts

discard

Limitation

- Rendering speed
 - Pixel Shader Interlock with Conservative Rasterizer
 - Better synchronization would help
- Merging artifacts

Z-prepass

leak

Conclusion

- A streaming compression algorithm for geometric anti-aliasing
- Achieves close to 512x SS result with storage of 8x MSAA

- Decouple visibility into depth and coverage
 - Higher sample rates in reasonable memory footprint
 - Other applications
- Performance limitation

Acknowledgments

- Anonymous reviewers
- NVIDIA hardware donation
- Aaron Lefohn and Anjul Patney for helpful discussions
- Zi Wang, Chieh-Chi Kao, Ekta Prashnani, and Abhishek Badki for help with the paper
- Funding:
 - National Science Foundation (IIS-1342931 and IIS-1321168)
 - NVIDIA internship

Thank you!

