Decoupled Coverage Anti-Aliasing

Yuxiang Wang1
Chris Wyman2
Yong He3
Pradeep Sen1

UC Santa Barbara1
NVIDIA2
Carnegie Mellon University3
Motivation

• Geometric anti-aliasing is a long standing problem

• MSAA as gold standard
 • Idea: decoupled shading and visibility
 • Reduce shading cost

• For high quality rendering, storage is costly
Motivation

- Estimate:
 - 4 byte/sample color
 - 4 byte/sample depth
 - No compression

- Linear growth with # samples

- 64x MSAA 1080p:
 - ~1 GB for RGBA8
 - 2+ GB for G-Buffer
Related Work

• Simple/Complex [Lauritzen 2010]
 • Analyze planar features shared in G-Buffer
 • Amortize shading cost

• Large memory footprint with sizeable depth and color information

Source: [Lauritzen 2010]
Related Work

• Surface Based AA (SBAA) [Salvi & Vidimče 2012], Streaming G-Buffer [Kerzner & Salvi 2014]
 • Only store N important surfaces

• Aggregate Geometry AA (AGAA) [Crassin et al. 2015]
 • Filter & compression

• Rely on MSAA depth sampling -> large memory footprint @ high sample rates
Motivation

• Observations from prior G-Buffer compression work [Salvi & Vidimče 2012]
 • 2-3 shading surfaces are enough for each pixel

• Can we use a higher fidelity coverage for compressed surfaces?
 • High fidelity coverage mask easy to get [Waller et al. 2000][Wyman et al. 2015]
 • Model contribution of each surface more precisely

• Or, in other words...
 • Can we decouple coverage from visibility?

Higher anti-aliasing quality in less storage by decoupling coverage and visibility rates
Algorithm Overview

Superposition Result

Raster

Visibility Test

Resolved Framebuffer

Coverage Mask + Depth

Current Framebuffer

4x MSAA
Algorithm Overview

Superposition Result

Analytical Result

Raster

Visibility Test

Resolved Framebuffer

Coverage Mask + Depth

Current Framebuffer

4x MSAA
Algorithm Overview

- Superposition Result
- Analytical Result
- Raster
- Visibility Test
- Coverage Mask + Depth
- Current Framebuffer
- Resolved Framebuffer

4x MSAA
Algorithm Overview

1. Superposition Result
2. Analytical Result
3. Raster
4. Visibility Test
5. Resolved Framebuffer
6. Coverage Mask + Depth
7. Current Framebuffer

4x MSAA
Algorithm Overview

Decoupled Coverage AA

Superposition Result

Analytical Result

High Quality Coverage Mask

Raster

First Merge w/ HQ-Coverage

Second Merge Attempt

Modified Surface List

Final Depth Resolve

Resolved Framebuffer

Surface 1
Surface 2
Surface 3
Surface 4

Current Surface List

Surface 1
Surface 2
Surface 3
Surface 4
Algorithm Overview

Decoupled Coverage AA

Superposition Result

Analytical Result

Raster

Modified Surface List

Final Depth Resolve

Resolved Framebuffer

First Merge w/ HQ-Coverage

Second Merge Attempt

Current Surface List

High Quality Coverage Mask

Surface 1
Surface 2
Surface 3
Surface 4
Algorithm Overview

- Generate coverage samples
- Arbitrary number of samples per pixel
- Low cost on storage
Algorithm Overview

- Merge fragments into few shading surfaces
- Shade at fixed rate

Modified Surface List:
- Surface 1
- Surface 2
- Surface 3
- Surface 4

Final Depth Resolve

Resolved Framebuffer
Algorithm Overview

- Second merge attempt
- Merge before discard to save more information

Decoupled Coverage AA

Superposition Result

Analytical Result

Raster

First Merge w/ HQ-Coverage

Second Merge Attempt

Modified Surface List

Surface 1
Surface 2
Surface 3
Surface 4

Final Depth Resolve

Resolved Framebuffer

Current Surface List

Surface 1
Surface 2
Surface 3
Surface 4
Algorithm Overview

Decoupled Coverage AA

Superposition Result

Raster

High Quality Coverage Mask

First Merge w/ HQ-Coverage

Surface 1
Surface 2
Surface 3
Surface 4

Current Surface List

Modified Surface List

Surface 1
Surface 2
Surface 3
Surface 4

Second Merge Attempt

Final Depth Resolve

Resolved Framebuffer

Analytical Result
Coverage map generation

• MSAA: \(\leq 8 \) sample/pixel
 • Depth + colors replicated per sample (e.g., 8 bytes/sample RGBA8 and 16-20 bytes/sample deferred)

• Coverage mask is cheaper than MSAA sample (depth+coverage)
 • 1 coverage sample \(\rightarrow \) 1 bit
 • High sampling rate supported
Coverage map generation
Coverage map generation

Projection

Coverage Mask Generation

Coverage Mask
Coverage map generation

- Look-up table for per-edge coverage
Coverage map generation

- Look-up table for per-edge coverage
Fragment Merging

• Try to merge fragment into existing shading surfaces
 • Satisfy merge rules
 • Combine the coverage mask
 • Weighted average normal, depth, etc., based on coverage bits
 • Fail: add fragment into list

• Aggregates geometry information
• Without losing high fidelity coverage information
Merge heuristics

• Merge rules
 • Aligned normal

• Overlapping depth intervals
Fragment Merging

• Keep 4 surfaces at most
 • 2-3 surfaces for Streaming G-Buffer [Kerzner & Salvi 2014]
 • 2 surfaces for AGAA [Crassin et al. 2015]

• Sufficient to handle sophisticated scenes
 • High fidelity coverage mask catches small geometry
 • Discard rules vs. Clustering approach
Second merge attempt

• When the surface list is full, we need to discard
 • Discard the one with smallest visible coverage

• Discard loses information...
 • Leaking to background

Blue as background color

Only merge once
Reference
Second merge attempt

• How does the leaking happen with single merge?

• Consider this complex pixel:
 • The eye should see only the blue surfaces
 • Consider this primitive order
 • Large derivatives result in big bounding box
 • No accurate coverage determination...
 • But only have room for 4 surfaces
Second merge attempt

• How does the leaking happen with single merge?
 • Discarding small, nearby surfaces likely to cause leaks

• Prefer to avoid discarding important geometry
 • Prevent loss of nearby sub-pixel geometry
 • Potential cost of blurring color on small surfaces
Second merge attempt

• Give the smallest surface a second chance!

• Merge before discard:
 • Select the smallest coverage surface after first merge
 • Never try discard the front most one
 • Try to merge it with others using relaxed rule
 • Apply only overlapping depth interval rule
 • If mergeable, average all attributes as usual
Implementation

• Conservative rasterizer
 • Process partially covered fragments

• Pixel shader interlock
 • Ensure primitive ordering
 • Fragment shader lock
 • Resolve discard & temporal artifact

• Z-prepass
Results
512x Supersampling

4S SBAA 8x MSAA
4S DCAA 512x SS
512x Supersampling

- 8x MSAA
- 4S DCAA
- 512x SS
• Memory consumption
 • 28 bytes/surface × 4 surfaces/pixel = 112 bytes/pixel
 • 8x MSAA: 16 bytes/sample × 8 = 128 bytes/pixel (1.14x of DCAA)
 • 64x SuperSampling: 16 bytes/sample × 64 = 1024 bytes/pixel (9.14x of DCAA)
Evaluation

System Performance

<table>
<thead>
<tr>
<th></th>
<th>Z-Prepass</th>
<th>Merge</th>
<th>Resolve & Render</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citadel</td>
<td>1.3 ms</td>
<td>23.2 ms</td>
<td>6.4 ms</td>
<td>30.9 ms</td>
</tr>
<tr>
<td>Tentacles</td>
<td>1.3 ms</td>
<td>574.5 ms</td>
<td>6.2 ms</td>
<td>582.0 ms</td>
</tr>
</tbody>
</table>

MSE

<table>
<thead>
<tr>
<th></th>
<th>4S SBAA</th>
<th>8x MSAA</th>
<th>DCAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citadel</td>
<td>2.47*10^{-4}</td>
<td>1.32*10^{-4}</td>
<td>6.40*10^{-5}</td>
</tr>
<tr>
<td>Tentacles</td>
<td>2.28*10^{-3}</td>
<td>6.05*10^{-4}</td>
<td>5.65*10^{-4}</td>
</tr>
</tbody>
</table>
Limitation

• Rendering speed
 • Pixel Shader Interlock with Conservative Rasterizer
 • Better synchronization would help

• Merging artifacts

Incorrectly merge

DCAA

512x Supersampling
Limitation

• Rendering speed
 • Pixel Shader Interlock with Conservative Rasterizer
 • Better synchronization would help

• Merging artifacts

Incorrectly discard
Limitation

• Rendering speed
 • Pixel Shader Interlock with Conservative Rasterizer
 • Better synchronization would help

• Merging artifacts
Conclusion

- A streaming compression algorithm for geometric anti-aliasing
- Achieves close to 512x SS result with storage of 8x MSAA

- Decouple visibility into depth and coverage
 - Higher sample rates in reasonable memory footprint
 - Other applications

- Performance limitation
Acknowledgments

- Anonymous reviewers
- NVIDIA hardware donation
- Aaron Lefohn and Anjul Patney for helpful discussions
- Zi Wang, Chieh-Chi Kao, Ekta Prashnani, and Abhishek Badki for help with the paper

- Funding:
 - National Science Foundation (IIS-1342931 and IIS-1321168)
 - NVIDIA internship
Thank you!