= thrive
/EJ/ SIGGRAPH2019

LOS ANGELES « 28 JULY - 1 AUGUST

Open Problems in Real-Time Rendering

THE PATH TO PERFORMANCE:
SCALING GAME PATH
TRACING

Chris Wyman

Principal Research Scientist
NVIDIA

Presenter
Presentation Notes
While speaking, I absolutely cannot read speaker notes. So all notes were written later.

Main story: In general, it seems that most physically-based ray tracing research comes from researchers working with an offline perspective. There’s nothing wrong with this, but for offline the primary focus is typically on meeting quality targets. Performance is at best a secondary goal. Thus offline algorithms may not be optimal for real-time rendering or designed with their needs and constraints in mind. Of course, many constraints are the same between these worlds, but as we advance with hardware ray tracing acceleration and optimized software libraries, instead of trying to repurpose these offline algorithms, perhaps we should revisit the algorithm design to focus on performance first.

This talk provides a (non-exhaustive) list of constraints I think are important and outlines some of our teams’ observations. But to help ensure people don’t dismiss the talk as just high-level, unarguable platitudes, I walk through the basics of a paper from High Performance Graphics 2019 (by my colleagues Moreau et al.) to help demonstrate some of these ideas in action. Furthermore, the talk ended with a demo of some early, in-progress, unpublished research that relies on some of this talks’.

[Note: The live demo was very well received, but due to its unpublished nature, we are unable to provide a permanent video until after the work’s publication.]

&
=
=
L
-
=

GOALS

Presenter
Presentation Notes
So what are the key takeaways?

benefits fi

i
[] .

an rowde
1]

>

nv\uv
=
<
L
K.._
-
_m
7
—
<
O
O

l
\

Inspiratibn: Path tracing ¢
||

Presenter
Presentation Notes
First I hope to inspire you: path tracing (not just simple ray casting or ray tracing) can provide benefits for games and other real-time apps.

GOALS: TALK TAKEAWAYS

= Inspiration: Path tracing can provide benefits for r

w Demonstrate: Some may arrive sooner than you expect

-

Presenter
Presentation Notes
Second, I hope to demonstrate via demos: these benefits may arrive sooner than you expect.

_,-\.'.r-""

» Inspiration: Path tracing can provide benefits for r

w Demonstrate: Some may arrive sooner than you expect

w Problem: Re-envision light transpo,_rjt_ "algo'r'.j@né under real-time constraints

L =

Presenter
Presentation Notes
Third, I hope you agree with me: re-envisioning light transport algorithms while specifically constraining the problem based on real-time needs is a valuable direction to investigate.

GOALS: TALK TAKEAWAYS

|-y

— . ;. = ﬁ.ﬁk

w Demonstrate: Some may arrive sooner than you expect

w Problem: Re-envision light transpo_rt ”algorit‘lig_r_-.ns under real-time constraints

T

)

@ Reminder: What constraints are im”po'rtant'fQ.i; real time?

Presenter
Presentation Notes
Fourth, I want to remind you what sort of constraints are important for real time.

GOALS: TALK TAKEAWAYS

\ I e

o
« Inspiration: Path tracing can provide beneflts for real-time

w Demonstrate: Some may arrive sooner than you expect

w Problem: Re-envision light transport algorithms under real-time constraints
« Reminder: What constraints are important for real time?

« Observations: Insights useful for redesigning algorithms

Presenter
Presentation Notes
Finally, I want to provide some observations that I assert can be useful in helping to redesign path tracing algorithms for real-time

REVISIT: WHY DO YOU CARE?

== thrive
@SIGGRAPHZM?

8 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Probably I’m preaching to the choir; most of you listening/reading probably already know why this is important. But in case you’re a skeptic, let’s revisit: why should you care?

REVISIT: WHY DO YOU CARE?

® Maybe we’re already there??
— Better shadows, reflections, diffuse Gl

@Sleéimpuznw

LOS ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
After all, maybe we’re already done? There’s now multiple games that demonstrate the usefulness of ray tracing in the context of games.

Maybe high quality shadows, reflection, and diffuse global illumination is the extent of ray tracing’s application in games?

Of course, I don’t think many reading this would buy that. Obviously, these are visual improvements over what people did before. But these all use a very small number of rays per pixel (some even at 0.5 or 0.25 rays per pixel), and with such limited budgets there’s a limit to the benefits of ray tracing.

REVISIT: WHY DO YOU CARE?

A Maybe we're already there?
— Path traced game, simple assets and limit path types

=
\,

Tt

1(;1"-

Quake Il RTX > Quake Il RTX

4= thrive
£522 SI66RAPH2019

10 LOS ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Maybe we’re already done?

NVIDIA has announced and released Quake II RTX that uses path tracing. Of course, this isn’t exactly “path tracing” as you’d recognize as defined from any graduate light transport path. I encourage you to go look at replays of the Quake II RTX talks from NVIDIA for more details (there’s one from a SIGGRAPH 2019 sponsored session you can watch online, for example), but it leverages ray tracing plus some new clever twists and some other well known light transport algorithms to get really cool multi-bounce dynamic lighting. In fact, you could take Quake II RTX as another example of the work that I hope to motivate: redesign your light transport algorithms with real-time in mind.

But even so, we’re not done. This is a path traced game, but the assets are simple (> 20 years old) with relatively sample materials, relatively static scenes, and relatively simple lighting environments (compared to what one might want to do in a new AAA game today). But it definitely shows the potential.

REVISIT: WHY DO YOU CARE?

® Promises of path tracing
— Simpler asset creation
— Simpler rendering / fewer rendering combinatorics
— Enables new artistic looks & dynamism

’ thrive
@SIGGRAPHZM?

11 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So what are some of the promises of path tracing?

I’d argue they include:
Simpler asset creation. Just like physically based rendering helped simplify the pipeline, by using a single unified rendering algorithm, hopefully various special and corner cases can be eliminated.
You could have a simpler rendering pipeline with fewer rendering combinatorics. What if your engine didn’t need to have 25 shadow algorithms – it just falls out of path tracing.
It enables new looks and environments and dynamicism that are very difficult to achieve using raster.

REVISIT: WHY DO YOU CARE?

® Promises of path tracing
— Simpler asset creation
— Simpler rendering / fewer rendering combinatorics
— Enables new artistic looks & dynamism

® Is it possible to achieve these promises?

’ thrive
@SIGGRAPHZM?

12 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So, I’ve painted a lovely story. But is this just a dream? Or can we actually achieve these promises?

REVISIT: WHY DO YOU CARE?

® Promises of path tracing
— Simpler asset creation
— Simpler rendering / fewer rendering combinatorics
— Enables new artistic looks & dynamism

® Is it possible to achieve these promises?
— That’s the big open problem

® This talk:
— Suggests maybe not be as distant as you imagine...

’ thrive
@SIGGRAPHZM?

13 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
That’s of course the big “open problem” fitting the theme of this course.

But rather than leaving it there, I’d like to suggest achieving these promises might not be as distant as you might imagine. It’s probably not coming tomorrow, but soon.

at this talk is not...

= ’.-

J

LF]

.
-
e
B—

-«
.:jﬁ,rﬁl‘ »
s

"

't
; ||‘__ \i" '..j,;—m-

3

\Y

14
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
But as a researcher largely from the academic world, let me preface the rest of the talk by explicitly saying what this talk is *NOT*.

I’m not going to show you an image like this (which is actually my rendering from last years’ SIGGRAPH course “Introduction to DirectX Ray Tracing”) and suggest to you that this represents the “promise” of ray/path tracing. It’s not.

& What this talk is not...

—

gl

- :I“—b-i "

e

St '

| Often see path traced images '
4+ How long did it take?
We could do with raster

Presenter
Presentation Notes
It’s perfectly reasonable to look at this image and think “how long did it take to render?” (A: a long time; minutes with a naïve path tracer) or to think “we could basically do that all with raster” (almost certainly true).

BUT WAIT!

S What if...
— Artist simply paints light via emissive textures and materials?

16 ' , 2,2 44 ‘ | SPE R | ‘ ‘, \ 3 =2 v §SIA§69ESRABPJUIL.YI-219U]U?T
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
But… What if…

What if you could let your artist loose on this scene, with instructions to go light this scene for night? And they can do this by simply editing the materials so lights now have an emissive term. No marking them as “lights” (other than adding emissivity). No specifying points lights. No looking through a toolbox for line or cylinder lights. Any surface can be a light, just add emissivity. If they want, they can use textures to modulate the light intensity over a surface. And they can add as many light sources as they want.

Presenter
Presentation Notes
It entirely changes the look!

And even we, a team of ~10 rendering researchers with no artistic support (beyond one talented art intern), can easily modify our assets to achieve this, from what you saw in the prior slides!

“.-—
:

ajor_ Component

Presenter
Presentation Notes
Please note, the shadows here make a *huge* difference, and are really a key component to the look. Without the shadows from all these lights makes it look a lot more unrealistic. (Even the regions in the distance, e.g., down the tunnel.)

Presenter
Presentation Notes
And please note: this direct light only. No global illumination. No rays past the primary hit points, except for shadow rays. Of course, in this type of scene (outdoors, many fairly bright direct lights) GI frequently contributes little. But I’d argue this is already a look that is difficult to achieve today in raster without a lot of artist effort. It literally fell out of our renderer after a couple hours of adding emissive terms to appropriate materials.

A
e

=

— s e
g = —

E. 0,00 emissive triales e
Hard to do with shadow maps =

Presenter
Presentation Notes
This scene has around 20,000 emissive triangles (in about 100 unique mesh lights. And I’d argue this is really difficult to achieve with shadow maps. Notice how many of those lights cast shadows…

ORS I, ¥

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
And of course, ray tracing skeptics might argue that similar quality is achievable by baking lightmaps. This is definitely true if you have a good scene parameterization and lots of precomputation time (and recomputation time when artists change things).

But it’s very hard to get high-quality varying specular effects with baking in these sorts of scenes. With real-time ray tracing, it just falls out naturally. Note the moving specular highlights on the Vespa clear coat and the varying glossy highlights on the leather seat. But also the shadows change. Since the bricks have a specular component, illumination (and shadows) from certain directions are more prominent. And this leads to view-dependent shadowing effects that I’ve never seen in a baked solution.

Presenter
Presentation Notes
Ok. Nice story, Chris. But you’ve been remarkably sparse on performance details and projections. Is this feasible?

S

B s

Presenter
Presentation Notes
Ok. Nice story, Chris. But you’ve been remarkably sparse on performance details and projections. Is this feasible?

It might not be as far away as you think. Of course this image has worse quality (and certainly hasn’t yet had a denoising pass). But it was rendered with 8 shadow rays per pixel in about 20ms total frame time (including G-buffer, shadow ray sampling, shadow ray tracing, and final pixel shading). To me, that’s totally something you could imagine using in game within at least a few years.

BUT WITH OLD ASSETS, HARD TO MAKE STORY

® Today’s research assets are backward looking
— Built with today’s restrictions in mind

’ thrive
@SIGGRAPHZM?

24 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
One big problem, as I see it, is it’s hard to make a compelling story with research assets that are backwards looking.

The Amazon Bistro that I was just showing is (in some ways) a fairly complex asset, in that it was build for a tech demo, rather than for an actual game. But even so it’s fairly backwards looking. The number of surfaces with significant specularity is remarkably low, it’s fairly static, there’s a limited amount of dynamisicm. Even if we apply path tracing here, it’s limited in which of the “promises” of path tracing it can highlight, since the asset was *designed* to be run in an engine that couldn’t meet those promises. And that’s true of virtually all assets we have as real-time rendering researchers. As a rule, people build assets for things they know how to render.

BUT WITH OLD ASSETS, HARD TO MAKE STORY

® Today’s research assets are backward looking
— Built with today’s restrictions in mind

® E.g., what if all the lights moved, every frame?

’ thrive
@SIGGRAPHZM?

25 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
For instance, what if we had a scene where *all* the lights moved *every frame* and they all consisted of emissive triangles that cast area shadows and were reflected dynamically off glossy surfaces? Somehow that becomes way more compelling. How do you bake that? If you can design an algorithm for that context, it’ll work for the simpler Bistro scene.

BUT WITH OLD ASSETS, HARD TO MAKE STORY

® Today’s research assets are backward looking
— Built with today’s restrictions in mind

® E.g., what if all the lights moved, every frame?

® Draw inspiration from artists’ without time constraints

’ thrive
@SIGGRAPHZM?

26 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Where might we find such assets (since our team doesn’t have the resources to create them)? Well, why don’t we draw inspiration for artists who don’t build assets with real-time constraints in mind?

BUT WITH OLD ASSETS, HARD TO MAKE STORY

® Today’s research assets are backward looking
— Built with today’s restrictions in mind

® E.g., what if all the lights moved, every frame?

® Draw inspiration from artists’ without time constraints
— Zero Day video from Mike Winkelmann (aka beeple) available on Vimeo
— Freely provides assets from his videos
— Most lights dynamic
— ~10,500 emissive triangles
— ~350 emissive meshes

27
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Where might we find such assets (since our team doesn’t have the resources to create them)? Well, why don’t we draw inspiration for artists who don’t build assets with real-time constraints in mind?

For instance, the “Zero Day” shore video from Mike Winkelmann is available on Vimeo (as a rendered video), and the assets to recreate it are all available on his webpage. In this scene here, for instance, there are 350 unique emissive meshes that (mostly) move every frame, consisting of over 10,000 emissive triangles. That would be impressive to render!

https://vimeo.com/140163198

Qendered offline

See full original on Vimeo: Zero Day from beeple

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Here’s a clip, demonstrating the sort of dynamism this scene has.

Please go to Vimeo to watch the full clip, to avoid embedding the video into this PPT.

https://vimeo.com/140163198

endered offline

See full original on Vimeo: Zero Day from beeple

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
And here’s another clip showing an extremely hard case, with strobe lights. Imagine if we can render a scene like this in real time. Strobe lights like this would probably destroy any temporal accumulation tricks in your toolbox, suggesting your algorithm may need to rely on only spatial information (or numerous samples) when rendering this scene.

Again, please watch on Vimeo.

https://vimeo.com/140163198

RENDERING “ZERO DAY”

® So what does this asset look like?

= thrive
1542' SIGGRAPH2019

30 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Ok. So you’ve said you can get this asset online. Stop talking about it and show it in real time!

RENDERING “ZERO DAY”

® So what does this asset look like?
— We imported asset, finessed for our framework
* Thanks to Maxon and OTOY
— Not yet captured all details (no flashing lights)
— Will release FBX later this year

== thrive
@SIGGRAPHZM?

31 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
We imported the asset into Falcor (our rendering framework) and have an FBX formatted version internally. We’re planning on releasing this version publicly, since it’s taken a fair amount of effort to convert the offline asset into something we could use. We’d like others to use this scene too, without going through that pain. Unfortunately, we haven’t figured out how to capture all the details (the strobe lights are proving difficult to extract). We’ll release an FBX once we update the public open-source version of Falcor with all the changes stemming from our work importing this asset.

RENDERING “ZERO DAY”

® So what does this asset look like?
— We imported asset, finessed for our framework
* Thanks to Maxon and OTOY
— Not yet captured all details (no flashing lights)
— Will release FBX later this year

® “Dynamic Many-Light Sampling for Real-Time Ray Tracing”
— Pierre Moreau, Matt Pharr, and Petrik Clarberg, HPG 2019

— Pierre giving more technical detalils:
* Wednesday 2pm - 5:15, Room 501AB
» During “Ray Tracing Gems” NVIDIA sponsored session

== thrive
@SIGGRAPHZM?

32 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So let’s look at that asset in the context of this HPG paper from my colleagues.

(Gratuitous forward reference to another SIGGRAPH talk occurring after mine.)

NOTE: RECENT FOCUS ON MANY-LIGHT SOLUTIONS

® Ranging from offline to real-time:

— “Adaptive BRDF-Oriented Multiple Importance Sampling of Many Lights,” Liu et al., EGSR 2019

— “Stochastic Lightcuts,” Yuksel, HPG 2019

— “Dynamic Many-Light Sampling for Real-Time Ray Tracing,” Moreau et al., HPG 2019

— “Real-Time Rendering with Lighting Grid Hierarchy,” Lin and Yuksel, 13D 2019

— “Sampling Projected Spherical Caps in Real Time,” Peters and Dachsbacher, 13D 2019

— “Importance Sampling of Many Lights with Adaptive Tree Splitting,” Esteves and Kulla, HPG 2018

— “Bayesian Online Regression for Adaptive Direct Illumination Sampling,” Vevoda et al., SIGGRAPH 2018
— “Real-Time Polygonal-Light Shading with Linearly Transformed Cosines,” Heitz et al., SIGGRAPH 2016

— And many others...

== thrive
@SIGGRAPHZM?

33 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Note: There’s many other recent papers focusing on many-light solutions. Here’s a bunch that loosely fit that criteria.

I chose this one because I already had the source in house, but also because it demonstrates this notion of tweaking an offline algorithm to fit in an application with more real-time constraints.

RENDERING “ZERO DAY” ’;\/ |

Using “Dynamic Many-Light Sampling for Real-Time Ray Tracing” by Moreau et al., HPG 2019

Why? We already have fast implementation
1 bounce path tracing
4 paths per pixel, 1 shadow ray per hit

— 16 rays in total

(This is one path)

L5 siseraphns

OPE F’ROBLM IN REAL-TIME RENDERI COURSE

Presenter
Presentation Notes
Here’s part of the Zero Day asset running with the Moreau et al. HPG paper.

It uses 1 bounce path tracing, 4 paths per pixel. Just in case you’re familiar with ray tracing (but not path tracing), a 1-bounce path trace shoot each of the 4 rays shown here for each path (i.e., 16 rays in total). One primary ray, one indirect ray, plus one shadow ray from each of those two hit points.

RENDERING “ZERO DAY”

Using “Dynamic Many-Light Sampling for Real-Time Ray Tracing” by Moreau et al., HPG 2019

Why? We already have fast implementation
1 bounce path tracing

4 paths per pixel, 1 shadow ray per hit

— 16 rays in total

~135 ms / frame

7 2 SIGGRAPH2019

4 LOS ANGELES = 28 JULY - 1 AUGUST

OPE F’ROBLM IN REAL-TIME RENDERI COURSE

Presenter
Presentation Notes
Today, this is relatively slow at 135 ms per frame (though these guys are continuing to try to improve performance).

RENDERING “ZERO DAY” ’;\/ |

Using “Dynamic Many-Light Sampling for Real-Time Ray Tracing” by Moreau et al., HPG 2019

Why? We already have fast implementation
1 bounce path tracing

4 paths per pixel, 1 shadow ray per hit

— 16 rays in total

~135 ms / frame

A bit noisy...

@éleéiiAPHznw

4 LOS ANGELES = 28 JULY - 1 AUGUST

OPE F’ROBLM IN REAL-TIME RENDERI COURSE

Presenter
Presentation Notes
And it’s also a bit noisy…

RENDERING “ZERO DAY”

Using “Dynamic Many-Light Sampling for Real-Time Ray Tracing” by Moreau et al., HPG 2019

Why? We already have fast implementation
1 bounce path tracing

4 paths per pixel, 1 shadow ray per hit

— 16 rays in total

~135 ms / frame

A bit noisy...

Applying a prototype DL denoiser

(for a total of 150 ms _
[,L thrive
"7 SIGGRAPH2019

: LOS ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So what if we add a denoiser to it? Here we’ve added a prototype research DL denoiser that takes about 15 ms / frame, so in 150 ms we get something that looks like this. Pretty good!

e ey

Presenter
Presentation Notes
Here’s that in motion. Note: 150 ms / frame is about 7 Hz. We recorded this video to playback at 30 Hz to show the quality (and be comparable to later videos).

Note the video alternates back and forth between “noisy” and “denoised” to show what the denoising adds.

[Note: To avoid embedding a large video here, we link to a YouTube video that the identical scene and rendering method. However, it does not switch back and forth between noisy and denoised results.]

https://www.youtube.com/watch?v=3-DTB18tf4I

®endered at ~7 Hz |nput 4s pp]
1 bounce AR
16 rays per pixel

3

s YouTube Video of presented video is here:

OPEN PROBLEMS IN REAL-TIME RENDERIN’G‘

Presenter
Presentation Notes
Here’s a more complex scene from Zero Day, showing side-by-side comparisons with noisy/denoised and reference/denoised.

And, of course, part of the magic in some of these DL denoisers is that you can combine denoising with other effects like depth-of-field. This is the same scene show using a denoiser that also adds depth-of-field (for no additional cost).

We point to a YouTube video to reduce the size of this PowerPoint. This is the exact video shown in the presentation. Consider downloading it rather than watching directly on YouTube, for best quality.

https://www.youtube.com/watch?v=zaOR22Q0RPc

BUT...

® Full path tracing won’t emerge overnight
— Using ray budgets of 1 or 2 paths per pixel

= thrive
1542' SIGGRAPH2019

40 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
But, of course, this is costly. At 150 ms / frame, this won’t be used in the near future.

BUT...

® Full path tracing won’t emerge overnight
— Using ray budgets of 1 or 2 paths per pixel

® Start with something simpler, yet still useful

= thrive
1542' SIGGRAPH2019

41 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So maybe we should start with some simpler light transport that would still be useful and improve real-time quality.

BUT...

® Full path tracing won’t emerge overnight
— Using ray budgets of 1 or 2 paths per pixel

® Start with something simpler, yet still useful
— Dynamic, many-light direct illumination (aka “next event estimation™)

== thrive
@SIGGRAPHZM?

42 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So maybe we should start with some simpler light transport that would still be useful and improve real-time quality.

Perhaps direct illumination (from many lights). A fancy term for this is “next event estimation.”

BUT...

® Full path tracing won’t emerge overnight
— Using ray budgets of 1 or 2 paths per pixel

® Start with something simpler, yet still useful
— Dynamic, many-light direct illumination (aka “next event estimation™)

o,

® Do this efficiently: = O

99

©
‘ F thrive
_jJ]'SIGGRAPHZUW

43 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So maybe we should start with some simpler light transport that would still be useful and improve real-time quality.

Perhaps direct illumination (from many lights). A fancy term for this is “next event estimation.”

At least my thought is: if we can do direct illumination quickly by sampling efficiently from many sources…

BUT...

® Full path tracing won’t emerge overnight
— Using ray budgets of 1 or 2 paths per pixel

® Start with something simpler, yet still useful
— Dynamic, many-light direct illumination (aka “next event estimation™)

Q
® Do this efficiently: e

— Another bounce looks similar: O O =

> ‘ smssssssEsssEEEssEEEsEEEEEEEEES [N TTTTETTEEEEELLLLL o/
nanm
TLLLLLELEELE)

== thrive
@SIGGRAPHZM?

44 7 LOS ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So maybe we should start with some simpler light transport that would still be useful and improve real-time quality.

Perhaps direct illumination (from many lights). A fancy term for this is “next event estimation.”

At least my thought is: if we can do direct illumination quickly by sampling efficiently from many sources… adding another bounce seems fairly straightforward. It’s just one more ray (similar to another primary ray) plus an additional direct lighting pass.

BUT...

® Full path tracing won’t emerge overnight
— Using ray budgets of 1 or 2 paths per pixel

& Start with something simpler, yet still useful
— Dynamic, many-light direct illumination (aka “next event estimation™)

® Do this efficiently:
— Another bounce looks similar:

« Incrementally approach path tracing
Naturally extend with more compute

thrive
SIGGRAPH2019

45 LOS ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
And of course you can incrementally extend this past once bounce to 2, 3, 4, … N bounce naturally as you have access to more compute resources. So starting simple is appealing not just because it promises to get something good-looking up and running sooner, but it also holds out the promise of building an algorithm that scales up and down based on the hardware your user has available.

RENDERING “ZERO DAY”

Using “Dynamic Many-Light Sampling for Real-Time Ray Tracing” by Moreau et al., HPG 2019

A With direct light only...
— Costs 35ms with 4 shadow rays
— 50ms with denoising

thrive

@smGRAPHzm

46 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So going back to the Moreau et al. HPG paper, using just direct light only, with 4 shadow rays per pixel, the costs drop to 50 ms / frame (including 15 ms of denoising).

RENDERING “ZERO DAY”

Using “Dynamic Many-Light Sampling for Real-Time Ray Tracing” by Moreau et al., HPG 2019

A With direct light only...
— Costs 35ms with 4 shadow rays
— 50ms with denoising
— Still expensive, but more reasonable

thrive

@smGRAPHzm

47 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
This is, of course, much cheaper than with indirect light, but is a more reasonable performance level.

Presenter
Presentation Notes
So, again, here’s that same scene with direct light only. As before, this runs in 50 ms (20 Hz), which is sped up on playback.

[To reduce the size of this powerpoint, we’re linking to a YouTube video. It’s the same scene and algorithm, though it doesn’t alternate back and forth between noisy and denoised results (it only shows the denoised results).]

https://www.youtube.com/watch?v=d1GiLKxtGIA

CASE STUDY:

® Let’'s do a quick overview to extract insights
— “Dynamic Many-Light Sampling for Real-Time Ray Tracing”

== thrive
@SIGGRAPHZM?

49 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
In case you’re not familiar with this paper, let’s briefly walk through it to extract some insights. (The paper is available online if you’d like more details.)

CASE STUDY:

® Let’'s do a quick overview to extract insights
— “Dynamic Many-Light Sampling for Real-Time Ray Tracing”

® Takes offline many-light algorithm
— Designed for importance sampling
— Using only shadow rays (for direct light)
— Refactors light BVH for efficient, parallelizable updates

’ thrive
@SIGGRAPHZM?

50 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
My take is that this paper takes a standard offline many-light algorithm that accelerates selection of lights (for importance sampling) in a scene with thousands or millions of lights by using a bounding volume hierarchy over the light geometry. This paper then refactors that light BVH for efficient, parallelizable updates so sources can move around the scene dynamically without requiring a full-cost rebuild of the data structure every frame.

DYNAMIC MANY-LIGHT SAMPLING
(Moreau et al., HPG 2019)

® Basics of light BVH:
— Traverse tree of lights based roughly on contribution
— Allow light PDF to vary per shade and per light cluster
— Traversal is logarithmic with number of sources

£ =0.692183

08/ \0.2 / \ / N\ /N
[\ [\ 04/ N\os [/ [\)\ [\)\

/\ /\ 05/ \ 05 /\ .
ooz Lo sicoraphanny

. .) y LOS ANGELES = 28 JULY - 1 AUGUST
Figure from Ray Tracing Gems chapter “Importance Sampling of Many Lights on the GPU”

Presenter
Presentation Notes
In most of these offline light BVH techniques, you traverse a tree of lights (here represented by points; but that need not be the case) based roughly based on each light’s contribution. Essentially this allows you to get a probability density function that varies uniquely for each shad point and each cluster of lights in the tree. Of course, the advantage with trees is traversal is logarithmic in number of light sources, so this approach scales well as you throw large numbers of lights into your scene.

DYNAMIC MANY-LIGHT SAMPLING
(Moreau et al., HPG 2019)

® During light sampling:
— Traverse light tree based on various factors
— Distance, source flux, light orientation, visibility, node importance

= thrive
1542' SIGGRAPH2019

52 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
When you’re sampling the lights using this structure, you traverse the nodes stochastically using various factors to modulate the probabilities. These include: distance from the cluster to the shade point, the light’s flux, the surface or light orientation, visibility of the light (if known), and potentially precomputed aggregate “node importance”.

DYNAMIC MANY-LIGHT SAMPLING
(Moreau et al., HPG 2019)

® During light sampling:
— Traverse light tree based on various factors
— Distance, source flux, light orientation, visibility, node importance

® Traversal gives:
— Randomly selected light
— Probability of sampling selected light

= thrive
1542' SIGGRAPH2019

53 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
The outcome of this traversal is you get a randomly selected light somewhere in your scene and also the probability at which that selected light is returned. This gives you enough information to pipe back into the light transport computations and allows you to focus samples on more important lights by tweaking the tree traversal.

DYNAMIC MANY-LIGHT SAMPLING
(Moreau et al., HPG 2019)

® During light sampling:
— Traverse light tree based on various factors
— Distance, source flux, light orientation, visibility, node importance

® Traversal gives:
— Randomly selected light
— Probability of sampling selected light

® Key insights:
— Fast BVH refits possible without much quality loss
— Use a multi-level BVH
— Similar to structure used in DirectX

== thrive
@SIGGRAPHZM?

54 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
The key insights from the Moreau et al. paper are that:
Fast BVH refits of these light structures are possible without much quality loss. This might not be terribly surprising, given refits work on geometry BVHs, but nobody had really explored how to refit existing light BVHs quickly.
To improve this refit cost and quality, it makes sense to use a multi-level BVH using top-level and bottom-level BVHs.
This is similar to the structure used in DIrectX for geometry BVHs

DYNAMIC MANY-LIGHT SAMPLING
(Moreau et al., HPG 2019)

® Multi-level light BVH

— Top level
» Good for large scale motion
» Cheap to rebuild each frame

— Bottom level
* Good for small-scale local motion
 Refit quickly on GPU assuming tree topology static

= thrive
1542' SIGGRAPH2019

55 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
With multi-level BVHs, the “top level” closest to the root is good for aggregating large-scale rigid motion. Due to the relatively small number of top level entities, this tree is fairly cheap to rebuild entirely from scratch each frame.

The “bottom level” BVH, is good for smaller-scale local motion, e.g., for skinned emissive characters. Here rather than rebuilding, they develop a quick refit process to update this BVH that assumes the tree topology is static.

DYNAMIC MANY-LIGHT SAMPLING
(Moreau et al., HPG 2019)

® Multi-level light BVH Top level BVH
— Top level Light A Light B Light C
° Good fOI' |arge Scale motlon ___-:
- Cheap to rebuild each frame S L]
mm o PHEaE ot

— Bottom level 2
» Good for small-scale local motion
 Refit quickly on GPU assuming tree topology static

e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o*
. *
. R o*
v - o*
.
.
.
.
.
.
.
.
.
.
.
e
e
Y
\‘
o

— Observed each emissive mesh goes in its own top level node

F thrive
) 27 SIGGRAPH2019

y LOS ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
In particular, they observed that each light mesh (e.g., a streetlight, explosion, or other logical object that emits light in part or in total) should go into its own top-level BVH.

DYNAMIC MANY-LIGHT SAMPLING
(Moreau et al., HPG 2019)

4 Multi-level light BVH Top level BVH

— Top level
» Good for large scale motion
» Cheap to rebuild each frame

— Bottom level :
» Good for small-scale local motion o
 Refit quickly on GPU assuming tree topology static '

ot
.
.
.
.
.
.
.
.
.
.
.
.
o

e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. R o
D . o
o
.
.
.
.
.
.
.
.
.
.
.
e
e
“
\
o

— Observed each emissive mesh goes in its own top level node

— Refit: Bottom-up approach parallelizing over tree nodes at same level

= thrive
5 SIGGRAPH2019

57 LOS ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
In particular, they observed that each light mesh (e.g., a streetlight, explosion, or other logical object that emits light in part or in total) should go into its own top-level BVH.

And within each top level BVH (and, in fact, across all top level BVHs) the bottom level nodes are refit in a bottom-up manner, first processing the lowest notes, then the next lowest nodes, etc. By refitting all top-level BVHs in parallel, this helps maintain GPU utilization over many cores.

DYNAMIC MANY-LIGHT SAMPLING
(Moreau et al., HPG 2019)

1 level BVH (0.2 ms BVH, 10.8 total) 2 level BVH (1.1 ms BVH, 12.0 ms total) Reference (Computed offline)

Presenter
Presentation Notes
Here’s some results from the paper. At right is a reference. At left is a 1-level light BVH that is refit each frame. This is somewhat cheaper, but it loses a fair amount of quality especially near light sources after a lot of motion has occurred (here the car has been driving around for a while).

The 2-level light BVH is slightly more expensive because of the top-level rebuild each frame, but it maintains quality much better.

THAT’S ONE DATA POINT

® Possible to migrate offline algorithm to interactive context

== thrive
@SIGGRAPHZM?

59 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
OK. So that’s one data point. It *is* possible to take an offline algorithm and re-envision it so it works in an interactive context.

MOVING TO GAME-READY ALGORITHMS

® Not always clear:
— How to take offline algorithm from minutes or hours — milliseconds?
— Offline research rarely considers constraints of real-time

’ thrive
@SIGGRAPHZM?

60 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
But I’d like to encourage people to do this more generally, and with more complex rendering problems that might not be immediately obvious how to parallelize and ensure the algorithm meets framerate.

So if it’s not clear how to take algorithms from minutes or hours down to milliseconds, how might we think about this problem?

MOVING TO GAME-READY ALGORITHMS

® Not always clear:
— How to take offline algorithm from minutes or hours — milliseconds?
— Offline research rarely considers constraints of real-time

« Major open problem:

(Re-)Design path tracing algorithms with real-time constraints

1 r %/g
\ 1R iR A"

@SIGGRAPHZM?

61 " LOS ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Again, this is what I think is the key “open problem” here: re-designing and re-envisioning path tracing and light transport algorithms more generally with real-time constraints.

MOVING TO GAME-READY ALGORITHMS

® Not always clear:
— How to take offline algorithm from minutes or hours — milliseconds?
— Offline research rarely considers constraints of real-time

« Major open problem:

(Re-)Design path tracing algorithms with real-time constraints

® What do | mean?

1 r %/g
\ 1R iR A"

@SIGGRAPHZM?

62 " LOS ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So what do I mean by real-time constraints?

IMPORTANT REAL-TIME CONSTRAINTS:

== thrive
@SIGGRAPHZM?

63 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So what do I mean by real-time constraints?

IMPORTANT REAL-TIME CONSTRAINTS:

® Compute until time constraint (rather than quality)

== thrive
@SIGGRAPHZM?

64 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
First, in real-time apps, we compute until we reach the limited time budget we’ve been allotted for this frame. We need to achieve the maximal quality we can in this budget, but the primary goal is to stay under our allotted time budget.

IMPORTANT REAL-TIME CONSTRAINTS:

® Compute until time constraint (rather than quality)
® Desire tunable quality

== thrive
@SIGGRAPHZM?

65 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Second, for games we’re targeting a wide variety of computational budgets. Some consumers have low-end GPU, some have multiple top-end GPUs. We’d like to scale performance and quality across this spectrum, giving outstanding high-quality images at the high end of the spectrum without impeding the playability or artistic look/vision for consumers at the low end.

IMPORTANT REAL-TIME CONSTRAINTS:

® Compute until time constraint (rather than quality)
® Desire tunable quality

® Time-to-image is key metric
— l.e., data structures build times & per-frame preprocesses count

’ thrive
@SIGGRAPHZM?

66 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Next, algorithmic complexity is often split into “build” and “use” phases.

For instance, building a tree is O(N log N), but traversing is only O(log N). The advantage of these structures is, by assuming build and use phases use different buckets of compute, this variation in algorithmic complexity (specifically the reduction in use cost) can be a big performance win.

But in real-time, this assumption may not hold. When you render an image, the cost we care about is total time to image from the beginning of the frame. If geometry, camera, lighting, or other changes necessitate rebuilding or refitting data structures every frame, we need to consider total costs of building *and* using our data structures. This potentially changes which data structures make sense, and may mean we’d rather use structures with cheaper build costs but poorer performance during traversal.

Also, since there is a limited compute budget in real time, that may mean you use the data structure fewer times per pixel (and per frame) than you would in an offline context. This means build costs are amortized over fewer uses.

IMPORTANT REAL-TIME CONSTRAINTS:

® Compute until time constraint (rather than quality)
® Desire tunable quality
® Time-to-image is key metric
— l.e., data structures build times & per-frame preprocesses count
® Assume scenes are dynamic

’ thrive
@SIGGRAPHZM?

67 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
All scenes are dynamic. Virtually all parts of all scenes are dynamic. Everything has moved since last frame.

Of course, this isn’t always true; in any particular game, there’s probably something that’s essentially static. But the camera always moves. Characters, creatures, machines, and foliage move. Buildings can get blown up. Users may be able to sculpt terrain. Lights move, turn on and off, and get occluded by various objects. Participating media billows around the scene.

Algorithms need to be able to handle these changes, preferably without any slowdown.

IMPORTANT REAL-TIME CONSTRAINTS:

® Compute until time constraint (rather than quality)
® Desire tunable quality

® Time-to-image is key metric
— l.e., data structures build times & per-frame preprocesses count

® Assume scenes are dynamic
® Temporal stability vital

’ thrive
@SIGGRAPHZM?

68 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Temporal instability is very noticeable. Jaggies flowing along edges, noise popping in and out, moving blotchy artifacts from denoising, a screen door effect that remains fixed to the screen instead of geometry. These are all things that are very noticeable and often objectionable.

Ideally, algorithms will not introduce new temporal instabilities and will (in fact) help reduce ones (e.g., aliasing) that might already exist.

IMPORTANT REAL-TIME CONSTRAINTS:

® Compute until time constraint (rather than quality)
® Desire tunable quality
® Time-to-image is key metric
— l.e., data structures build times & per-frame preprocesses count
® Assume scenes are dynamic
® Temporal stability vital

® Robust under (mostly) arbitrary user-controls

’ thrive
@SIGGRAPHZM?

69 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
In real-time apps like games, users move around scenes in nearly arbitrary ways and can manipulate or destroy existing objects in countless additional ways. Usually it’s impossible to test your algorithms under all these conditions, so it’s important that they’re built to not have hard-to-understand corner cases and they degrade gracefully (or not at all) in unexpected situations or outside the initial design goals.

IMPORTANT REAL-TIME CONSTRAINTS:

® Compute until time constraint (rather than quality)
® Desire tunable quality

® Time-to-image is key metric
— l.e., data structures build times & per-frame preprocesses count

® Assume scenes are dynamic

® Temporal stability vital

® Robust under (mostly) arbitrary user-controls
® Spatial and temporal sample reuse assumed

’ thrive
@SIGGRAPHZM?

70 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
This isn’t surprising for those with a real-time background. Temporal antialiasing and upsampling low resolution buffers (or using checkerboarding) are common in today’s game engines. In real-time, we simply don’t have enough compute per-pixel in order to stochastically sample to convergence. Instead, samples are reused across screen-space, world-space, texture-space, temporally, and probably other domains in order to reduce the required per-pixel cost.

Generally, this means algorithms will benefit from considering this reuse during the design phase. Just plan to incorporate sample reuse from the start.

IMPORTANT REAL-TIME CONSTRAINTS:

® Compute until time constraint (rather than quality)
® Desire tunable quality

® Time-to-image is key metric
— l.e., data structures build times & per-frame preprocesses count

® Assume scenes are dynamic

® Temporal stability vital

® Robust under (mostly) arbitrary user-controls
® Spatial and temporal sample reuse assumed
® No data reuse from future frames

’ thrive
@SIGGRAPHZM?

71 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Films sometime improve temporal stability by reusing data from not only past frames but also future ones. Of course, when camera and scene motions are not predefined and change on a whim, this is impossible.

SO... WAIT!

® Adding constraints to an already hard problem...
— Is that supposed to make you feel better?

= thrive
1542' SIGGRAPH2019

72 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
OK, so I just added a bunch of constraints that (generally) weren’t huge considerations in an offline rendering context. Adding new constraints doesn’t inspire confidence that these offline algorithms can be made fast!

SO... WAIT!

® Adding constraints to an already hard problem...
— Is that supposed to make you feel better?

® Often constraining the problem makes me more creative
— Some observations may make things easier...

== thrive
@SIGGRAPHZM?

73 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
OK, so I just added a bunch of constraints that (generally) weren’t huge considerations in an offline rendering context. Adding new constraints doesn’t inspire confidence that these offline algorithms can be made fast!

Of course, as a researcher, wide-open problems are often quite difficult to tackle; sometimes adding constraints can actually help, by focusing my creative juices on aspects of the problem that actually matter (to me).

So now lets walk through some observations I (and others) have made as we starting looking into re-envisioning real-time light transport algorithms. These might help guide your thinking as well.

KEY OBSERVATION #1

® Some rays are significantly cheaper than others
— Consider rephrasing problems to use cheaper rays

== thrive
@SIGGRAPHZM?

74 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
First, different types of rays have different costs, and (in fact) some are *significantly* cheaper than others.

This is not a new observation, but I’ve heard of offline renderers that (for instance) never use shadow rays.

Consider rephrasing problems to rely heavily on these cheaper ray types.

KEY OBSERVATION #1

® Some rays are significantly cheaper than others
— Consider rephrasing problems to use cheaper rays

® Visibility rays cheaper than color rays
— Early termination
— Return only binary value, few to no shaders required
— Reduces control divergence
— Reduces data divergence

’ thrive
@SIGGRAPHZM?

75 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Specifically, shadow rays are cheaper than color rays. Why? They can terminate on any valid hit; you don’t need to find the *closest* occlude. Because they return only a binary value, they need very much computation for surface shading (at most you need to load information about transparency or alpha testing). This reduces control divergence (due to fewer shader launches and function calls) as well as data divergence (due to accessing fewer textures and material parameters and returning simpler values from the ray query).

KEY OBSERVATION #1

® Some rays are significantly cheaper than others
— Consider rephrasing problems to use cheaper rays

® Visibility rays cheaper than color rays
— Early termination
— Return only binary value, few to no shaders required
— Reduces control divergence
— Reduces data divergence

® Short rays cheaper than infinite rays

’ thrive
@SIGGRAPHZM?

76 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Also, shooting shorter rays is cheaper than shooting infinite rays. This is, of course, because large swaths of the accelerations structure need not be accessed (this reduces traversal steps in addition to improving caching behavior for the acceleration structure).

KEY OBSERVATION #1

® Some rays are significantly cheaper than others
— Consider rephrasing problems to use cheaper rays

® Visibility rays cheaper than color rays
— Early termination
— Return only binary value, few to no shaders required
— Reduces control divergence
— Reduces data divergence

® Short rays cheaper than infinite rays

® “Validation rays” cheaper than shadow rays™* thrive

@smGRAPHzm

77 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Finally, “validation” or “verification” rays are even cheaper than shadow rays. This is not fully proven, but we have initial data that is promising.

What do I mean by “validation rays”? Imagine you have two points A and B that are known to be mutually visible (i.e., you just shot a shadow ray that returned visible). What if a nearby pixel A’ also decides to query B for visibility? Or perhaps in the next frame pixel A wants to verify that pixel B is *still* visible after any scene motion? These are validation rays, e.g., asking “is B *still* visible now, given that we know A and B are mutually visible?” It’s a shadow ray query given additional, conditional information. They key to understand here is that, on average, validation rays are much more likely than normal shadow rays to not hit anything. (Why? They are only occluded if they are near geometric edges, either spatially or temporally. In most scenes, visibility edges are quite sparse and fairly coherent.) Additionally, known-visible pairs (A, B) will typically be closer together spatially than a random pair (C, D) whose visibility is not yet known. Perhaps there’s some conditional probability argument that can prove this more definitively, arguing over the statistics of conditioned versus unconditioned point queries.

KEY OBSERVATION #2

® Importance sampling key
— Limited ray budgets on current and future GPUs
— Must use rays as intelligently as possible

== thrive
@SIGGRAPHZM?

78 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Next, importance sampling is really going to be key for real-time rendering.

Of course, importance sampling is a big deal in offline rendering too.

But given the limited number of rays existing (and future) GPUs can theoretically shoot within a specified frame budget, it’s going to be very important to use these rays as intelligently as possible.

KEY OBSERVATION #2

® Importance sampling key
— Limited ray budgets on current and future GPUs
— Must use rays as intelligently as possible

® If not yet a convert, one more comparison...

== thrive
@SIGGRAPHZM?

79 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Next, importance sampling is really going to be key for real-time rendering.

Of course, importance sampling is a big deal in offline rendering too.

But given the limited number of rays existing (and future) GPUs can theoretically shoot within a specified frame budget, it’s going to be very important to use these rays as intelligently as possible.

If, for some reason, you’re not yet a convert on importance sampling, here’s a comparison.

Presenter
Presentation Notes
This image has a converged image on the right and four different real-time sample selection techniques on the left. These generate a wide range of quality samples. Which one would you prefer to use?

(Note, for those reading the slides after the fact: This is a handwavy motivational image, not something with a specific take away. These 4 real-time techniques are not equal time, so their sampling efficiency is not necessarily equivalent to any visual difference between the images. There is, however, a massive efficiency difference between these techniques.)

KEY OBSERVATION #3

® Remember Ahmdal’s Law
— Serial computations become bottleneck

== thrive
@SIGGRAPHZM?

81 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Third, remember Ahmdal’s law. As our algorithms increase to scale across more and more cores on GPUs, the serial components become bigger and bigger components of the cost.

This might mean multiple things, including focus on parallelizing serial parts of the algorithm (even if the parallelization isn’t particularly good) or replacing serial algorithms with parallel equivalents (or approximations).

KEY OBSERVATION #3

® Remember Ahmdal’s Law
— Serial computations become bottleneck

® Related:
— Constant factors very important
— O(N) and O(N log N) are slow for real-time
— Want high algorithmic speedup under parallelization

’ thrive
@SIGGRAPHZM?

82 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Of course, there are a number of related factors. In my mind, these are all parts of “Ahmdal’s law” even if they’re technically different:
The constant factor in the algorithmic complexity is very important. If transforming from O(N^2) -> O(N log N) adds a huge constant factor to the N log N algorithm, it may not be a win if N is known to be small. Don’t ignore the constant factor.
In my research career, every time I see an O(N log N) algorithm being proposed for real-time rendering, I get really, really suspicious. There’ve also been plenty of cases where I have thought “O(N) is way too slow” and spent months trying to identify a better way. Keep this in mind, especially if your background doesn’t have a lot of real-time experience.
Related to the constant factor: you want a high algorithmic speedup under parallelization. If you’re not well versed in parallel algorithms theory, this speedup is basically the scaling of performance as you add more processors. If your O(N^2) algorithm has linear (or even superlinear) speedup over 4096 GPU cores, it may end up being better than an O(N log N) algorithm with very sublinear speedups.

KEY OBSERVATION #4

® Not “rendering” a final frame any more
— Generating samples for denoiser to consume

Presenter
Presentation Notes
An interesting observation is that with path tracing and denoising, the “renderer” is no longer generating the final frame. Really, it’s generating *samples* that get consumed by the denoiser to create a final image. This means you need not reduce variance to zero. Spatial and temporal reuse may get you the final frame you want. Additionally, there’s a tradeoff between quality of the samples and quality of the denoiser. You may want to shoot fewer rays and paths in order to allocate more budget to a higher quality denoiser.

It’s unclear (to me) what the tradeoff is between these, or if there’s any theoretical arguments that can guide how good a denoised result you can get with a specified number of samples and compute budget. We can make some intelligent observations about the amount of variance given increasing ray counts, but it’s not clear if there are theoretical observations that describe the amount of noise removed (v.s. bias added) using denoisers.

KEY OBSERVATION #4

® Not “rendering” a final frame any more
— Generating samples for denoiser to consume

® Not new; rasterizers moving here, too:

— Temporal antialiasing
— Stochastic SSR and AO
— Checkerboard rendering

Presenter
Presentation Notes
Of course, this is not new. Rasterization has been moving in this direction for quite a while, too. Things like temporal antialiasing, stochastic screen-space reflections and ambient occlusion, and checkerboard rendering are all forms of taking noisy or structured samples and reconstructing a final image.

KEY OBSERVATION #5

® Denoisers best when samples uncorrelated or negatively correlated

== thrive
@SIGGRAPHZM?

85 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Interestingly, once you buy into this notion that a denoiser is our future and the *denoiser* creates our final image, an interesting observation pops out. You absolutely do not want to pass correlated samples into your denoiser. You want them to have as much information as possible, so these samples should be uncorrelated or (better yet) negatively correlated.

KEY OBSERVATION #5

® Denoisers best when samples uncorrelated or negatively correlated
— Rays in adjacent pixels should provide maximal new information
— Adjacent rays — ideally maximally incoherent

Pixel (X, y)

\

' thrive
@SIGGRAPHZM?

86 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Interestingly, once you buy into this notion that a denoiser is our future and the *denoiser* creates our final image, an interesting observation pops out. You absolutely do not want to pass correlated samples into your denoiser. You want them to have as much information as possible, so these samples should be uncorrelated or (better yet) negatively correlated.

Why? Samples from adjacent pixels should ideally provide a maximal amount of new information, rather than rehashing the information I already got from my current pixel.

KEY OBSERVATION #5

® Denoisers best when samples uncorrelated or negatively correlated
— Rays in adjacent pixels should provide maximal new information
— Adjacent rays — ideally maximally incoherent

(x+1,y)

’ thrive
@SIGGRAPHZM?

87 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Interestingly, once you buy into this notion that a denoiser is our future and the *denoiser* creates our final image, an interesting observation pops out. You absolutely do not want to pass correlated samples into your denoiser. You want them to have as much information as possible, so these samples should be uncorrelated or (better yet) negatively correlated.

Why? Samples from adjacent pixels should ideally provide a maximal amount of new information, rather than rehashing the information I already got from my current pixel.

That means adjacent rays should be maximally incoherent, in this case spreading their samples uniformly over the hemisphere.

KEY OBSERVATION #5

® Denoisers best when samples uncorrelated or negatively correlated
— Rays in adjacent pixels should provide maximal new information
— Adjacent rays — ideally maximally incoherent

(x, y+1)

o

’ thrive
@SIGGRAPHZM?

88 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Interestingly, once you buy into this notion that a denoiser is our future and the *denoiser* creates our final image, an interesting observation pops out. You absolutely do not want to pass correlated samples into your denoiser. You want them to have as much information as possible, so these samples should be uncorrelated or (better yet) negatively correlated.

Why? Samples from adjacent pixels should ideally provide a maximal amount of new information, rather than rehashing the information I already got from my current pixel.

That means adjacent rays should be maximally incoherent, in this case spreading their samples uniformly over the hemisphere.

(Slide builds…)

KEY OBSERVATION #5

® Denoisers best when samples uncorrelated or negatively correlated
— Rays in adjacent pixels should provide maximal new information

— Adjacent rays — ideally maximally incoherent
(x+1, y+1) ﬂ/

’ thrive
@SIGGRAPHZM?

89 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Interestingly, once you buy into this notion that a denoiser is our future and the *denoiser* creates our final image, an interesting observation pops out. You absolutely do not want to pass correlated samples into your denoiser. You want them to have as much information as possible, so these samples should be uncorrelated or (better yet) negatively correlated.

Why? Samples from adjacent pixels should ideally provide a maximal amount of new information, rather than rehashing the information I already got from my current pixel.

That means adjacent rays should be maximally incoherent, in this case spreading their samples uniformly over the hemisphere.

(Slide builds…)

KEY OBSERVATION #5

® Denoisers best when samples uncorrelated or negatively correlated
— Rays in adjacent pixels should provide maximal new information
— Adjacent rays — ideally maximally incoherent

4 Very odd:

— | always thought raster’s coherence was an advantage ﬂ/

’ thrive
@SIGGRAPHZM?

90 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Interestingly, once you buy into this notion that a denoiser is our future and the *denoiser* creates our final image, an interesting observation pops out. You absolutely do not want to pass correlated samples into your denoiser. You want them to have as much information as possible, so these samples should be uncorrelated or (better yet) negatively correlated.

Why? Samples from adjacent pixels should ideally provide a maximal amount of new information, rather than rehashing the information I already got from my current pixel.

That means adjacent rays should be maximally incoherent, in this case spreading their samples uniformly over the hemisphere.

This is interesting. Personally, as a raster person I used to argue that one of the key advantages was the coherence of raster. The per-ray cost was much lower if you could fit the constraint that the origin remained the same over adjacent pixels. Now, it turns out this may be a key disadvantage when moving to a world where denoisers generate the final image.

KEY OBSERVATION #6

® Leverage GPU streaming model
— Raster: Streams triangles
— Ray tracing: Streams rays

91
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

== thrive
@SIGGRAPHZM?

" L0S ANGELES = 28 JULY - 1 AUGUST

Presenter
Presentation Notes
Observation #6. Make sure you understand and leverage the GPU’s streaming model.

Not this need not be in the traditional way. Obviously, the model for rater is that we stream triangles (past pixels on the image). For ray tracing, the current DXR models is we stream rays (past our acceleration structure of triangles.

KEY OBSERVATION #6

® Leverage GPU streaming model
— Raster: Streams triangles
— Ray tracing: Streams rays

® Other things to stream?
— Paths? Photons? Beams? Samples? Path connections?

® Ideally data comes in, process it, then forget

== thrive
@SIGGRAPHZM?

92 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
But this need not limit our imagination. The GPU works well with many sorts of streaming model. We can imagine rephrasing our problems to stream paths, photons, beams, samples, path vertices, path connections, or some other simple representation.

But ideally, we’ll have a large amount of data, take each element to process individually, then forget it and move onto the next. This is what makes the GPU perform.

KEY OBSERVATION #7

® Build cache-aware algorithms
— Access main memory: hundreds of cycles & lots of power
— Worse when chaining dependent reads

== thrive
@SIGGRAPHZM?

93 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Being aware of your GPU cache is really key.

Accessing memory is one of the major power draws on modern GPUs. It’s expensive to move data from point A to point B, especially when A and B are far apart. Accessing main memory takes hundreds of GPU cycles and requires lots of power (which increases temperature and potentially throttles the clock rate). And of course, walking through complex data structures often chains together dependent memory reads that walk through the address space incoherently. This compounds the latency and power draw.

KEY OBSERVATION #7

® Build cache-aware algorithms
— Access main memory: hundreds of cycles & lots of power
— Worse when chaining dependent reads

® Easy to thrash caches with stochastic reads
— Stratification can reduce working set
— Simplify data undergoing stochastic sampling to minimize footprint

’ thrive
@SIGGRAPHZM?

94 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
And even when you do consider how to use your caching hierarchy well, it’s really easy to thrash it when using stochastic sampling. Walking through memory randomly is likely to give very incoherent access patterns and discard cache lines after using just a single entry.

Stratifying your data set can reduce the working set, and simplifying the required data structure that gets loaded can help minimize the footprint to increase the chance cache lines remain resident for longer.

KEY OBSERVATION #8

® Extract observations from deep learning

== thrive
@SIGGRAPHZM?

95 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Now we start going down the path of some of my crazier observations.

But, of course, deep learning is hot topic today and many people are trying to figure out how to apply it to rendering, content creation, and the like.

I think there might be some interesting take-aways from these experiments for more traditional rendering algorithms.

KEY OBSERVATION #8

® Extract observations from deep learning

® What do | mean?

— Many recent networks have simple structure during inference
— Simple, feed-forward network

== thrive
@SIGGRAPHZM?

96 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
What do I mean? Well, let’s consider some of the antialiasing, super-resolution, deep shading, and other rendering techniques that have been shown to leverage autoencoder U-nets. These are (generally) fairly simple, feed-forward networks.

KEY OBSERVATION #8

® Extract observations from deep learning

® What do | mean?
— Many recent networks have simple structure during inference
— Simple, feed-forward network
— Multiresolution up- and down-scaling
— Local neighborhoods (e.g., convolutions)

’ thrive
@SIGGRAPHZM?

97 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
What do I mean? Well, let’s consider some of the antialiasing, super-resolution, deep shading, and other rendering techniques that have been shown to leverage autoencoder U-nets. These are (generally) fairly simple, feed-forward networks.

This means these are multiresolution techniques, with a bunch of up- and down-scaling with computations happening over very local neighborhoods (e.g., using convolutions).

KEY OBSERVATION #8

® Extract observations from deep learning

® What do | mean?
— Many recent networks have simple structure during inference
— Simple, feed-forward network
— Multiresolution up- and down-scaling
— Local neighborhoods (e.g., convolutions)
— No complex data structure for inputs
— Remarkable results for denoising, reconstruction, etc.

== thrive
@SIGGRAPHZM?

98 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
To be more explicit, there is no complex data structure for inputs. No geometry BVH, no light hierarchy, no sorting samples by material property, no 5D ray caches. Yet these achieve remarkable results for a wide variety of objectives, including denoising, antialiasing, reconstruction, shading, etc.

KEY OBSERVATION #8

® Extract observations from deep learning

® What do | mean?
— Many recent networks have simple structure during inference
— Simple, feed-forward network
— Multiresolution up- and down-scaling
— Local neighborhoods (e.g., convolutions)
— No complex data structure for inputs
— Remarkable results for denoising, reconstruction, etc.

® Q: Are we over-engineering our non-learned algorithms?

— Apply same principles, leverage graphics domain knowledge? thrive

@smGRAPHzm

99 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So an interesting question might be: are we over-engineering our non-learned algorithms? Are we building complex data structures for acceleration when they’re *not needed*?? Perhaps there’s some simpler, lower complexity algorithm that gives similar results. Perhaps we should look more closely at these deep-learning algorithms and networks to see if we can pull them apart into components that we can apply together with our community’s deep graphics domain knowledge.

KEY OBSERVATION #9

® One of my longstanding ideological beliefs

== thrive
@SIGGRAPHZM?

100 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Ok, now for the final observation. This is something that some of you will say “Duh! That’s obvious.” Some will say “that’s crazy,” but it’s something I’ve come to aim for in my work.

KEY OBSERVATION #9

® One of my longstanding ideological beliefs

® Avoid building O(N log N) data structures each frame

== thrive
@SIGGRAPHZM?

101 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Avoid building O(N log N) data structures each frame. This has long been my worry about real-time ray tracing. And, in some ways, this was justified. It’s taken 30 years for real-time ray tracing to go from an idea to practicality, and large part of this (in my opinion) was the development of BVH tree algorithms that could be parallelized and updated efficiently each and every frame so we could render dynamic, ray-traced scenes.

My theory is: while we know these data structures *can* be made fast, we should avoid them whenever possible, especially if you don’t have years to focus on improving the build times of your algorithm.

KEY OBSERVATION #9

® One of my longstanding ideological beliefs

@ Building O(N log N) data structures each frame — very hard
— Especially if you traverse stochastically
— Why deterministically build something only to traverse randomly?

’ thrive
@SIGGRAPHZM?

102 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
This is *especially* true for certain types of trees. For instance, going back to the light BVHs frequently used offline: these trees are deterministically built, but then *stochastically* traversed. That means you use an expensive algorithm to build something that you don’t actually need in that form – you only randomly walk through it.

Why not try to come up with a better algorithm / data structure that better fits the needs and limitations of streaming, GPU compute model?

. DEMO

@epIeYe 'm not entirely crazy)

w Again using “Zero Day” assets

Direct lighting, 8 shadow rays per pixel

No traditional lights, only emissive materials

346 emissive meshes (>10500 emissive triangles) nearly all animated
No complex data structure
Per-frame updates: only change light positions

Extremely naive algorithm (much improvement possible

Presenter
Presentation Notes
To help convince you this isn’t a set of crazy ideas I compiled into a presentation, but rather the thought process I had for a specific project, I want to show a demo from a work-in-progress research project.

(Note: due to the in-progress nature of the work and duct-tape-and-twine nature of the live demo, you’ll need to wait for the work to be published to see a video or executable demo.)

This uses the “Zero Day” assets we showed before, in this case with only direct illumination and 8 shadow rays per pixel. There are no traditional (point) light sources, from a real-time rendering perspective. This scene has lighting only from triangles with materials that have an “emissive” property (either a solid color or an emissive texture). The scene has almost 350 emissive meshes with over 10,000 unique emissive triangles. Most of them move every frame.

This uses no complex data structure, so the only per-frame computation needed (beyond the DirectX BVH updates) are a per-frame update of the current light positions.

Presenter
Presentation Notes
(Since the video of demo is not included, here’s a screen grab.)

We showed a camera path through this scene, with moving machinery and lights. This ran at 35-40 Hz at 1920 x 1080 on a GeForce RTX 2080 Ti.

It should be clear from the image: no denoising was used in this rendering.

i

o

Presenter
Presentation Notes
Another view of the scene with some interesting visibility. (Same algorithm. 8 spp, direct light only. No denoising.)

Note the bumps on the ground are normal mapped (not geometry), and the asset-provided normal mapped normals on the machine on the right are kind of screwy.

THIS IS “OPEN” PROBLEMS

® Progress on
— Fast, fully-dynamic many-lights for direct illumination

== thrive
@SIGGRAPHZM?

106 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Now, to be clear. This is an “open problems” course, not intended to be a “Wow, those NVIDIA guys did some cool stuff” talk!

The point is we’ve made some progress on fast, fully-dynamic many lights for *direct* illumination. This is important. I think it’s very important. But there’s lots more work.

THIS IS “OPEN” PROBLEMS

® Progress on
— Fast, fully-dynamic many-lights for direct illumination
— Not done, plenty to do...
— Convinced you road to path tracing is interesting?

== thrive
@SIGGRAPHZM?

107 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Now, to be clear. This is an “open problems” course, not intended to be a “Wow, those NVIDIA guys did some cool stuff” talk!

The point is we’ve made some progress on fast, fully-dynamic many lights for *direct* illumination. This is important. I think it’s very important. But there’s lots more work.

Hopefully what I’ve convinced you is the road to path tracing is interesting, useful, and not as far as you might have thought before you watched this talk.

THIS IS “OPEN” PROBLEMS

® Progress on
— Fast, fully-dynamic many-lights for direct illumination
— Not done, plenty to do...
— Convinced you road to path tracing is interesting?

4 Important:
— Apply same constraints and observations to other key problems

’ thrive
@SIGGRAPHZM?

108 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Now, to be clear. This is an “open problems” course, not intended to be a “Wow, those NVIDIA guys did some cool stuff” talk!

The point is we’ve made some progress on fast, fully-dynamic many lights for *direct* illumination. This is important. I think it’s very important. But there’s lots more work.

Hopefully what I’ve convinced you is the road to path tracing is interesting, useful, and not as far as you might have thought before you watched this talk.

And really, my demo was to convince you that these constraints are not impossible to solve and that the observations I made aren’t just generally good things that are obvious to all: you can actually redesign light transport algorithms with these things in mind. And I think it’s going to change how we do rendering.

WIDE-OPEN PROBLEMS

= thrive
1542' SIGGRAPH2019

109 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
So, to circle back. What are some of these wide-open problems?

WIDE-OPEN PROBLEMS

® Denoising
— How can you unify per-effect denoisers?
— Dealing with complex, varying materials; fast moving lights?
— What can we reuse spatially?
— What can we reuse temporally?
— What space do we denoise in?
— Sampling patterns tied to denoiser?

== thrive
@SIGGRAPHZM?

110 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Denoising is still a huge problem.

Today’s real-time denoisers (largely) work on a per-effect basis. (E.g., denoisers for diffuse, shadows, GI, etc.; sometimes shadows are denoised per-light) This isn’t scalable.

Denoisers work pretty well on diffuse materials, but become more fragile on glossy and specular materials. There are some, of course, but they tend to be highly tuned, sometimes per-engine, and are fragile (poor degradation as assumptions break).

Ray samples are expensive enough that we likely won’t have “enough” of them any time soon. So we need to be able to denoise spatially and temporally to share our limited amount of data. How should that work? How do we avoid artifacts and various kinds of bias from this data sharing?

Do we denoise in screen space? (Where most denoisers live today.) Or do we do denoising in a different space (texture, world, etc.)?

Of course if the idea is no longer that you’re “rendering an image” but instead that your *denoiser* creates the final image, it makes a lot of sense for your samples to be designed so your denoiser can extract maximal information. How do we do co-design between our sampling algorithms and denoisers?

WIDE-OPEN PROBLEMS

® Denoising
— How can you unify per-effect denoisers?
— Dealing with complex, varying materials; fast moving lights?
— What can we reuse spatially?
— What can we reuse temporally?
— What space do we denoise in?
— Sampling patterns tied to denoiser?

® Multi-bounce transport
— What can we reuse along a path?
— Efficient reuse between paths?
— Terminate path into approximate solution (e.g., DDGI or light probes)

’ thrive
1- "< SIGGRAPH2019

111 LOS ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
For multi-bounce lighting, how and what can we reuse along a path? Between paths?

And if we don’t have enough computation to trace rays to termination in an arbitrary number of bounces, what do we do for long paths? Do we terminate into some approximation? Which one? (Just light probes? Something more realistic?)

WIDE-OPEN PROBLEMS

® Path-guiding
— Can we guide paths in best directions?
— How to store, access, and update path probabilities
— Storage in GPU-friendly structure

== thrive
@SIGGRAPHZM?

112 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Path guiding is another option for getting better quality samples. For real time, this could potentially be very useful. If you’re not familiar with path guiding, the idea is to learn or construct data structures to help guide rays in “important directions.” This helps guide your paths to hit light sources, rather than bouncing around a large number of times without hit anything.

And if this is a good idea, how do we build data structures (or DL networks) that can do this guiding efficiently?

WIDE-OPEN PROBLEMS

® Path-guiding
— Can we guide paths in best directions?
— How to store, access, and update path probabilities
— Storage in GPU-friendly structure

® Bidirectional tracing?
— Or really: More complex light transport algorithms using GPU streaming

’ thrive
@SIGGRAPHZM?

113 " L0S ANGELES = 28 JULY - 1 AUGUST
OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
How can you take these observations that we’ve successfully started to apply to direct lighting and move them to more complex light paths? Can you re-envision bidirectional tracing algorithms? Or really any more complex light transport techniques?

WIDE-OPEN PROBLEMS

® Path-guiding
— Can we guide paths in best directions?
— How to store, access, and update path probabilities
— Storage in GPU-friendly structure

® Bidirectional tracing?
— Or really: More complex light transport algorithms using GPU streaming

® Where does deep learning fit in”?
— Does it? What's it do more efficiently than hand-crafted algorithms??
— Does it provide inspiration for revamping existing ideas?

— DL-based importance sampling? (Some recent work there)

’ thrive
@SIGGRAPHZM?

114 " L0S ANGELES = 28 JULY - 1 AUGUST

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
And a question I’m struggling with, and I think many people are: where does deep learning fit in to the new real-time ray tracing world? Does it?

There’s been a bunch of work, but does this become practical, robust, generalizable, and usable over a wide swath of games and rendering techniques? Or does it provide inspiration for how to iterate and improve on existing algorithms?

Presenter
Presentation Notes
To wrap up…

SUMMARY

i “ Been truly surprised a couple times in my career

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
To wrap up…

There’ve been a few times in my career that I was really, truly surprised by some rendering research results.

SUMMARY

: “ Been truly surprised a couple times in my career
— Usable denoising of low sample count images
— Render direct shadows from thousands of lights with 8 spp in real-time

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
To wrap up…

There’ve been a few times in my career that I was really, truly surprised by some rendering research results.

The first time I was surprised was when our team was investigating something that now is widely accepted. But then nobody knew it was possible. I was very surprised by the development of denoisers that could generate usable images with 1 sample per pixel (or less). These are still fragile, and not fully generalized. But you don’t have to live with your poorly sampled, noisy image or a blurry mess.

The second time was while building that demo you just saw. It still amazes me, watching the demo, that we can render direct shadows from thousands of lights with 8 shadow rays! And it runs in real-time!

SUMMARY

: “ Been truly surprised a couple times in my career
— Usable denoising of low sample count images
— Render direct shadows from thousands of lights with 8 spp in real-time

“ Many hard open problems in real-time light transport

— Denoising, sampling pattern, sample reuse, path guiding, DL

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Now, there are still many really huge challenges in getting physically-based light transport running in real time. As we discussed, these include: denoising, sampling strategies, how to leverage the samples you can afford, path guiding, learning, etc.

SUMMARY

: “ Been truly surprised a couple times in my career
— Usable denoising of low sample count images
— Render direct shadows from thousands of lights with 8 spp in real-time

“ Many hard open problems in real-time light transport
— Denoising, sampling pattern, sample reuse, path guiding, DL

4 But this is major opportunity!
— Almost nobody has truly explored the area; potentially low-hanging fruit

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
But for students (and industry R&D folks), you should view this as a major opportunity. Almost nobody is exploring the area yet. At the risk of overgeneralizing: real-time folks are still coming around to the idea that ray and path tracing is actually feasible, without yet having spent much time identifying *how* to use it most efficiently to achieve complex new looks. And the offline folks are largely uninterested in true real time, focusing mostly on pushing the quality bounds further and improving the relative performance of the algorithms. This means there’s potentially a lot of low hanging fruit: how do you re-envision these algorithms to meet the hard real-time constraints needed for games while achieving close(r) to film quality.

SUMMARY

‘?’...

_' “ Been truly surprised a couple times in my career
— Usable denoising of low sample count images
— Render direct shadows from thousands of lights with 8 spp in real-time

“ Many hard open problems in real-time light transport
— Denoising, sampling pattern, sample reuse, path guiding, DL

4 But this is major opportunity!
— Almost nobody has truly explored the area; potentially low-hanging fruit
— Offline research: focused primarily on quality (over performance)
— Real-time research: only beginning to explore path tracing
— You: 7?77

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
But for students (and industry R&D folks), you should view this as a major opportunity. Almost nobody is exploring the area yet. At the risk of overgeneralizing: real-time folks are still coming around to the idea that ray and path tracing is actually feasible, without yet having spent much time identifying *how* to use it most efficiently to achieve complex new looks. And the offline folks are largely uninterested in true real time, focusing mostly on pushing the quality bounds further and improving the relative performance of the algorithms. This means there’s potentially a lot of low hanging fruit: how do you re-envision these algorithms to meet the hard real-time constraints needed for games while achieving close(r) to film quality.

/%3 sistraptanns THANK YOU!

LOS ANGELES < 28 JULY - 1 AUGUST

Questions?
E-mail: cwyman@nvidia.com
Twitter: @_cwyman_

Enormous thanks to NVIDIA's real-time rendering group, particularly

Nir Benty, Petrik Clarberg, Jacob Munkberg, Jon Hasselgren, Matt Pharr,
Kate Anderson, Kai-Hwa Yao, Aaron Lefohn, and Benedikt Bitterli

OPEN PROBLEMS IN REAL-TIME RENDERING COURSE

Presenter
Presentation Notes
Feel free to ask questions.

Thanks to all the NVR real-time rendering team. These were the specific folks who directly contributed significantly to this talk.

Also, feel free to read this blog post:
 https://news.developer.nvidia.com/turning-up-the-lights-interactive-path-tracing-scenes-from-a-short-film/

mailto:cwyman@nvidia.com

	Open Problems in Real-Time Rendering��The Path To Performance: �Scaling Game Path �Tracing
	Goals: Talk Takeaways
	Goals: Talk Takeaways
	Goals: Talk Takeaways
	Goals: Talk Takeaways
	Goals: Talk Takeaways
	Goals: Talk Takeaways
	Revisit: Why Do You Care?
	Revisit: Why Do You Care?
	Revisit: Why Do You Care?
	Revisit: Why Do You Care?
	Revisit: Why Do You Care?
	Revisit: Why Do You Care?
	Slide Number 14
	Slide Number 15
	But Wait!
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	But With OLD Assets, Hard to Make Story
	But With OLD Assets, Hard to Make Story
	But With OLD Assets, Hard to Make Story
	But With OLD Assets, Hard to Make Story
	Slide Number 28
	Slide Number 29
	Rendering “Zero Day”
	Rendering “Zero Day”
	Rendering “Zero Day”
	Note: Recent Focus on Many-Light Solutions
	Rendering “Zero Day”
	Rendering “Zero Day”
	Rendering “Zero Day”
	Rendering “Zero Day”
	Slide Number 38
	Slide Number 39
	But…
	But…
	But…
	But…
	But…
	But…
	Rendering “Zero Day”
	Rendering “Zero Day”
	Slide Number 48
	Case STUDY:
	Case STUDY:
	Dynamic Many-Light Sampling
	Dynamic Many-Light Sampling
	Dynamic Many-Light Sampling
	Dynamic Many-Light Sampling
	Dynamic Many-Light Sampling
	Dynamic Many-Light Sampling
	Dynamic Many-Light Sampling
	Dynamic Many-Light Sampling
	That’s One Data point
	Moving to Game-Ready Algorithms
	Moving to Game-Ready Algorithms
	Moving to Game-Ready Algorithms
	Important Real-Time Constraints:
	Important Real-Time Constraints:
	Important Real-Time Constraints:
	Important Real-Time Constraints:
	Important Real-Time Constraints:
	Important Real-Time Constraints:
	Important Real-Time Constraints:
	Important Real-Time Constraints:
	Important Real-Time Constraints:
	So… Wait!
	So… Wait!
	Key Observation #1
	Key Observation #1
	Key Observation #1
	Key Observation #1
	Key Observation #2
	Key Observation #2
	Which Sampling Technique would You prefer?
	Key Observation #3
	Key Observation #3
	Key Observation #4
	Key Observation #4
	Key Observation #5
	Key Observation #5
	Key Observation #5
	Key Observation #5
	Key Observation #5
	Key Observation #5
	Key Observation #6
	Key Observation #6
	Key Observation #7
	Key Observation #7
	Key Observation #8
	Key Observation #8
	Key Observation #8
	Key Observation #8
	Key Observation #8
	Key Observation #9
	Key Observation #9
	Key Observation #9
	Demo
	Slide Number 104
	Slide Number 105
	This is “Open” Problems
	This is “Open” Problems
	This is “Open” Problems
	WIDE-Open Problems
	WIDE-Open Problems
	WIDE-Open Problems
	WIDE-Open Problems
	WIDE-Open Problems
	WIDE-Open Problems
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Slide Number 121

