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Real-time capture, 3.4 million area lights

START WITH SOME THANKS
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START WITH SOME THANKS

Benedikt Bitterli,

Wojciech Jarosz, Matt Pharr, Peter Shirley, Aaron Lefohn,

Kate Anderson,

Alexey Panteleev, Tim Cheblokov, Pawel Kozlowski, Jacob Munkberg, Jon Hasselgren, Mike Songy,

Petrik Clarberg, Simon Kallweit, Marco Salvi, William Newhall, Bob Alfieri, Jacopo Pantaleoni, 

John Burgess, Apollo Ellis, Kai-Hwa Yao, Lucy Chen

A lot of the thoughts you’ll hear were informed & helped along by numerous others
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EXCITING TIME IN RENDERING

Real-time capture, 83,000 area lights
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EXCITING TIME IN RENDERING

Real-time ray tracing is here!

Big question…  What’s it good for?  Besides the obvious:

Offline:  Accelerate computation

Real-time:  Better shadows, AO, reflections

Move to path tracing was good for film

But we can’t rely on Moore’s Law for real-time performance

Lots of space between “faster offline” & “better shadows”

Few have applied constraints of real-time rendering to general problems in ray and path tracing
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Real-time capture, 13,000 area lights + emissive environment map

WHAT ARE THESE CONSTRAINTS?
Outlined in SIGGRAPH 2019 “Open Problems”; will discuss some specific thoughts today
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WHAT ARE THESE CONSTRAINTS?

Compute until time constraint reached (not a quality target)

Time-to-image is a key metric; include per-frame data structure build costs

Desire tunable quality knobs

Assume scenes are dynamic

And we want robustness even under user control

Need temporally stable image quality

Spatial and temporal reuse assumed

Either to reduce cost or increase quality at a given cost

Managing data and code divergence and incoherence

Outlined in SIGGRAPH 2019 “Open Problems”; will discuss some specific thoughts today
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THERE’S BEAUTY & ELEGANCE IN BRUTE FORCE
But care is required for real-time

Real-time capture, 7,500 area lights + emissive environment map
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THERE’S BEAUTY & ELEGANCE IN BRUTE FORCE

Simply not possible for many problems

E.g., can’t expect to touch millions of lights, for all pixels, for all frames

E.g., can’t trace all subsurface scattering paths

But care is required for real-time
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THERE’S BEAUTY & ELEGANCE IN BRUTE FORCE

Simply not possible for many problems

E.g., can’t expect to touch millions of lights, for all pixels, for all frames

E.g., can’t trace all subsurface scattering paths

Suggests we need for stochastic techniques

But must work in a streaming fashion, to fully leverage GPU resources

But care is required for real-time
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Or “speaking of probability and statistics…”
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WHAT IF I TOLD YOU…

A mathematical method exists that:

Integrates a non-analytic (and unknown) function

Function changes during sampling, in unknown and unknowable ways

The sensor properties for ground-truth measurement are unknown

Can use sampling rates as low as 1 in 106 to 107

Often only a poor-quality, uncontrollable PDF for sampling

Gives answers with a 3-5% margin of error

Would that interest you?

3-5% error seems amazing after these results 

Light BVH

Or “speaking of probability and statistics…”
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WHAT IF I TOLD YOU…

A mathematical method exists that:

Integrates a non-analytic (and unknown) function

Function changes during sampling, in unknown and unknowable ways

The sensor properties for ground-truth measurement are unknown

Can use sampling rates as low as 1 in 106 to 107

Often only a poor-quality, uncontrollable PDF for sampling

Gives answers with a 3-5% margin of error

Would that interest you?

3-5% error seems amazing after these results … and more like this

ReSTIR

Or “speaking of probability and statistics…”
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WHERE CAN YOU FIND OUT MORE?

Look for help from… political polling

Never know the collective ground truth, and it can change day-to-day

Actual voting (i.e., the ground-truth sensor) depends on who shows up

Uses only a few hundreds to thousands of samples; these take days to weeks to collect

Frequently cannot choose samples; must correct for the distribution you get

Quite accurate, considering they prefilter prior to a binary decision 
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WHERE CAN YOU FIND OUT MORE?

Look for help from… political polling

Never know the collective ground truth, and it can change day-to-day

Actual voting (i.e., the ground-truth sensor) depends on who shows up

Uses only a few hundreds to thousands of samples; these take days to weeks to collect

Frequently cannot choose samples; must correct for the distribution you get

Quite accurate, considering they prefilter prior to a binary decision 

Particularly interesting aspects include:

Spatial and temporal aggregation often improves predictive quality
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DON’T TRUST POLITICAL POLLING?

Numerous other applications:

Over 100 US agencies collate statistics 

Census, employment, economic indicators, resources, infrastructure, etc., etc.

Most with error much lower than 3-5%

With more expensive and principled sampling, regularly validated with measurements
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DON’T TRUST POLITICAL POLLING?

Numerous other applications:

Over 100 US agencies collate statistics 

Census, employment, economic indicators, resources, infrastructure, etc., etc.

Most with error much lower than 3-5%

With more expensive and principled sampling, regularly validated with measurements

Particular call out to Statistics Sweden:

Open-access, peer-reviewed “Journal of Official Statistics”

Many of their statisticians write supremely clear articles that I found invaluable 

https://www.scb.se/en
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PROMOTES PROMISE OF PATH TRACING IN REAL-TIME
Statistical techniques remove many assumptions; assets become easier to author
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PROMOTES PROMISE OF PATH TRACING IN REAL-TIME
Statistical techniques remove many assumptions; assets become easier to author

5 minutes from unlit
model to this

Suzanne’s Revenge from Blend Swap
(user gregzaal)
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PROMOTES PROMISE OF PATH TRACING IN REAL-TIME
Statistical techniques remove many assumptions; assets become easier to author

A tired 8+ year old
asset gains new life

Tagged two matl’s
as emissive & added 

environment map
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PROMOTES PROMISE OF PATH TRACING IN REAL-TIME
Statistical techniques remove many assumptions; assets become easier to author

Asset I pulled
from BlendSwap

(from user Mikel007)

Hardest part:
converting model

format to load
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Real-time capture, 1100 area lights + emissive environment map

CONSIDER REAL-TIME RENDERING TODAY
What do people do when they have insufficient resources?
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CONSIDER REAL-TIME RENDERING TODAY

Spatial and temporal reuse of work

Accumulation buffering / progressive rendering

(Ir)radiance caching / light probes

Antialiasing techniques

Denoising and reconstruction filters

Adaptive sampling

… and probably many more

What do people do when they have insufficient resources?
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CONSIDER REAL-TIME RENDERING TODAY

Spatial and temporal reuse of work

Accumulation buffering / progressive rendering

(Ir)radiance caching / light probes

Antialiasing techniques

Denoising and reconstruction filters

Adaptive sampling 

… and probably many more

Also common in more offline contexts

E.g., path guiding, radiosity, etc.

What do people do when they have insufficient resources?
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WHAT SORTS OF THINGS GET REUSED?

Pixel colors Antialiasing, post-process filtering, (typically) denoising filters

Texture colors Light maps, environment maps

Colors (in other spaces) Irradiance volumes 
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WHAT SORTS OF THINGS GET REUSED?

Pixel colors Antialiasing, post-process filtering, (typically) denoising filters

Texture colors Light maps, environment maps

Colors (in other spaces) Irradiance volumes 

During reuse, lost most non-color information
Easy to blur visibility
Easy to blur specular highlights
Easy to add bias
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WHAT SORTS OF THINGS GET REUSED?

Pixel colors Antialiasing, post-process filtering, (typically) denoising filters

Texture colors Light maps, environment maps

Colors (in other spaces) Irradiance volumes

Projected radiance Spherical harmonic coefficients 

More expensive to (pre-)compute
Reduces problems reusing color
But not fully eliminated
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WHAT SORTS OF THINGS GET REUSED?

Pixel colors Antialiasing, post-process filtering, (typically) denoising filters

Texture colors Light maps, environment maps

Colors (in other spaces) Irradiance volumes

Projected radiance Spherical harmonic coefficients 

Visibility Shadow maps, form factors, ambient occlusion

Visibility (mostly) always binary
Reuse = filtering
Hard not to blur or alias
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WHAT SORTS OF THINGS GET REUSED?

Pixel colors Antialiasing, post-process filtering, (typically) denoising filters

Texture colors Light maps, environment maps

Colors (in other spaces) Irradiance volumes

Projected radiance Spherical harmonic coefficients 

Visibility Shadow maps, form factors, ambient occlusion

Ray segments Bidirectional path tracing, light field rendering

Probabilities Adaptive ray tracing, path guiding

Random variates Primary sample space techniques

Less well explored in real-time
Handles issues from above reuse
Big question:  Efficient algorithms?
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It assumes:  “given small change in X, change in Y is _________”

Usually for “smooth”, “small”, or just “understandable” changes

Why is reusing computation reasonable?
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WHAT IS REUSE DOING?

It assumes:  “given small change in X, change in Y is _________”

Usually for “smooth”, “small”, or just “understandable” changes

When this assumption breaks, you get artifacts

Blurring, aliasing, lag, ghosting, halos, ringing

Generally, bias and noise

Why is reusing computation reasonable?
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WHAT IS REUSE DOING?

It assumes:  “given small change in X, change in Y is _________”

Usually for “smooth”, “small”, or just “understandable” changes

When this assumption breaks, you get artifacts

Blurring, aliasing, lag, ghosting, halos, ringing

Generally, bias and noise

Assertion: Artifacts less correctable later in the rendering process

Postprocessing final colors?  Lost most data needed to correct for broken assumptions

Why is reusing computation reasonable?
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OK, SO REUSE EARLY IN RENDERER
My suggestion:  As part of importance sampling
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OK, SO REUSE EARLY IN RENDERER

Why?

Importance sampling function can be nearly arbitrary

If well chosen, convergence improves significantly (!/$ increase)

If poorly chosen, worst case added noise (!/$ decrease)

Rationale:

Good reuse, where assumptions hold, improves in quality significantly

A few places pixels become noisier, when reuse assumptions fail

My suggestion:  As part of importance sampling
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OK, SO REUSE EARLY IN RENDERER

Consider this reuse assumption:

Nearby pixels have similar probability to select a given light sample (or path vertex)

(Can probably replace “pixel” with “texel” or “voxel”)

My suggestion:  As part of importance sampling
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OK, SO REUSE EARLY IN RENDERER

Consider this reuse assumption:

Nearby pixels have similar probability to select a given light sample (or path vertex)

(Can probably replace “pixel” with “texel” or “voxel”)

This suggests reusing neighbors’ importance sampling functions

What does that even mean?

If you construct a per-pixel sampling PDF, “aggregate” them to improve quality?

My suggestion:  As part of importance sampling
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REMINDER:  IMPORTANCE SAMPLING VITAL
Especially for real-time rendering
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REMINDER:  IMPORTANCE SAMPLING VITAL

Importance sampled Monte Carlo integration:

න𝑓 𝑥 ⅆ𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
𝑝 𝑥𝑖

Better 𝑝 𝑥 means fewer samples N needed for convergence

Truly vital to minimize sample count for real-time

Idea: Target perfect importance sampling, 𝑝 𝑥 ∝ 𝑓 𝑥 ?  Reduces samples needed to one

But when importance sampling is taught, the idea is handwaved away

Especially for real-time rendering
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WHAT DOES PERFECT IMPORTANCE SAMPLING MEAN?

If 𝑝 𝑥 ∝ 𝑓 𝑥 , this means 𝑝 𝑥 = 𝑐𝑓 𝑥 for some normalization constant

Since for any PDF, ׬𝑝 𝑥 ⅆ𝑥 ≡ 1, it’s easy to show c = ൗ1 ׬ 𝑓 𝑥 ⅆ𝑥

And should we really ignore it out of hand?
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WHAT DOES PERFECT IMPORTANCE SAMPLING MEAN?

If 𝑝 𝑥 ∝ 𝑓 𝑥 , this means 𝑝 𝑥 = 𝑐𝑓 𝑥 for some normalization constant

Since for any PDF, ׬𝑝 𝑥 ⅆ𝑥 ≡ 1, it’s easy to show c = ൗ1 ׬ 𝑓 𝑥 ⅆ𝑥

This is where the handwaving starts, e.g., from the 3rd edition of PBRT:

But…  If we’re using Monte Carlo integration, why would an integral bother us?

We’re already approximating, so can we just apply more Monte Carlo?

And should we really ignore it out of hand?
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RESAMPLED IMPORTANCE SAMPLING (RIS)
Or my informal name:  “Approximately perfect importance sampling”



67
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RESAMPLED IMPORTANCE SAMPLING (RIS)
Or my informal name:  “Approximately perfect importance sampling”

Imagine you have unnormalized Ƹ𝑝 𝑥 you want to use for importance sampling

This would be Ƹ𝑝 𝑥 = 𝑓 𝑥 for “perfect” importance sampling

To normalize, you have 𝑝 𝑥 =
ො𝑝 𝑥
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≈

ො𝑝 𝑥
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𝑀
σ
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𝑞 𝑥𝑗

using a Monte Carlo estimate of ׬ Ƹ𝑝 𝑥 ⅆ𝑥
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RESAMPLED IMPORTANCE SAMPLING (RIS)
Or my informal name:  “Approximately perfect importance sampling”

Imagine you have unnormalized Ƹ𝑝 𝑥 you want to use for importance sampling

This would be Ƹ𝑝 𝑥 = 𝑓 𝑥 for “perfect” importance sampling

To normalize, you have 𝑝 𝑥 =
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RESAMPLED IMPORTANCE SAMPLING (RIS)
Or my informal name:  “Approximately perfect importance sampling”

Imagine you have unnormalized Ƹ𝑝 𝑥 you want to use for importance sampling

This would be Ƹ𝑝 𝑥 = 𝑓 𝑥 for “perfect” importance sampling

To normalize, you have 𝑝 𝑥 =
ො𝑝 𝑥

׬ ො𝑝 𝑥 ⅆ𝑥
≈

ො𝑝 𝑥

1

𝑀
σ
ෝ𝑝 𝑥𝑗

𝑞 𝑥𝑗

using a Monte Carlo estimate of ׬ Ƹ𝑝 𝑥 ⅆ𝑥

Plug 𝑝 𝑥 back into the original Monte Carlo estimator and you get:

න𝑓 𝑥 ⅆ𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
Ƹ𝑝 𝑥𝑖

1

𝑀
෍

Ƹ𝑝 𝑥𝑗

𝑞 𝑥𝑗
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RESAMPLED IMPORTANCE SAMPLING (RIS)
Or my informal name:  “Approximately perfect importance sampling”

Imagine you have unnormalized Ƹ𝑝 𝑥 you want to use for importance sampling

This would be Ƹ𝑝 𝑥 = 𝑓 𝑥 for “perfect” importance sampling

To normalize, you have 𝑝 𝑥 =
ො𝑝 𝑥

׬ ො𝑝 𝑥 ⅆ𝑥
≈

ො𝑝 𝑥

1

𝑀
σ
ෝ𝑝 𝑥𝑗

𝑞 𝑥𝑗

using a Monte Carlo estimate of ׬ Ƹ𝑝 𝑥 ⅆ𝑥

Plug 𝑝 𝑥 back into the original Monte Carlo estimator and you get:

න𝑓 𝑥 ⅆ𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
Ƹ𝑝 𝑥𝑖

1

𝑀
෍

Ƹ𝑝 𝑥𝑗

𝑞 𝑥𝑗

This is exactly the RIS estimator

See Talbot et al., EGSR 2005

http://justintalbot.com/publication/importance-resampling/
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WHAT IS RIS?
Not well covered in books and courses; I recommend Talbot’s paper and dissertation

http://justintalbot.com/publication/importance-resampling/
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1662&context=etd
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WHAT IS RIS?
Not well covered in books and courses; I recommend Talbot’s paper and dissertation

න𝑓 𝑥 ⅆ𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
Ƹ𝑝 𝑥𝑖

1

𝑀
෍

Ƹ𝑝 𝑥𝑗

𝑞 𝑥𝑗

Take M samples from distribution 𝑞 𝑥 , turn into N samples from (unnormalized) distribution Ƹ𝑝 𝑥

(cheap, low-quality, or simply bad) (complex, high-quality, or hard-to-sample)

http://justintalbot.com/publication/importance-resampling/
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1662&context=etd
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WHAT IS RIS?
Not well covered in books and courses; I recommend Talbot’s paper and dissertation

න𝑓 𝑥 ⅆ𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
Ƹ𝑝 𝑥𝑖

1

𝑀
෍

Ƹ𝑝 𝑥𝑗

𝑞 𝑥𝑗

Take M samples from distribution 𝑞 𝑥 , turn into N samples from (unnormalized) distribution Ƹ𝑝 𝑥

Typically 𝑁 ≪ 𝑀, and the N samples become higher quality (i.e., closer to Ƹ𝑝 𝑥 ) as 𝑀 → ∞

http://justintalbot.com/publication/importance-resampling/
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1662&context=etd
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WHAT IS RIS?
Not well covered in books and courses; I recommend Talbot’s paper and dissertation

න𝑓 𝑥 ⅆ𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
Ƹ𝑝 𝑥𝑖

1

𝑀
෍

Ƹ𝑝 𝑥𝑗

𝑞 𝑥𝑗

Take M samples from distribution 𝑞 𝑥 , turn into N samples from (unnormalized) distribution Ƹ𝑝 𝑥

Typically 𝑁 ≪ 𝑀, and the N samples become higher quality (i.e., closer to Ƹ𝑝 𝑥 ) as 𝑀 → ∞

If 𝑀 = 1, equivalent to sampling 𝑞 𝑥 ; if 𝑀 = ∞, equivalent to sampling Ƹ𝑝 𝑥

http://justintalbot.com/publication/importance-resampling/
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1662&context=etd
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BENEFITS FOR REAL-TIME RENDERING

Imagine a more complex function:

න𝑆 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍

𝑆 𝑥𝑖 𝑉 𝑥𝑖
𝑆 𝑥𝑖

1

𝑀
෍

𝑆 𝑥𝑗

𝑝 𝑥𝑗
=
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑆 𝑥𝑗

𝑝 𝑥𝑗

(I.e., why drag you through this math?)
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BENEFITS FOR REAL-TIME RENDERING

Imagine a more complex function:

න𝑆 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍

𝑆 𝑥𝑖 𝑉 𝑥𝑖
𝑆 𝑥𝑖

1

𝑀
෍

𝑆 𝑥𝑗

𝑝 𝑥𝑗
=
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑆 𝑥𝑗

𝑝 𝑥𝑗

Might pick target function Ƹ𝑝 𝑥 using only part of the integrand, e.g., Ƹ𝑝 𝑥 = 𝑆 𝑥

(I.e., why drag you through this math?)
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Imagine a more complex function:

න𝑆 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍

𝑆 𝑥𝑖 𝑉 𝑥𝑖
𝑆 𝑥𝑖

1

𝑀
෍

𝑆 𝑥𝑗

𝑝 𝑥𝑗
=
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑆 𝑥𝑗

𝑝 𝑥𝑗

Might pick target function Ƹ𝑝 𝑥 using only part of the integrand, e.g., Ƹ𝑝 𝑥 = 𝑆 𝑥

(I.e., why drag you through this math?)
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BENEFITS FOR REAL-TIME RENDERING

Imagine a more complex function:

න𝑆 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍

𝑆 𝑥𝑖 𝑉 𝑥𝑖
𝑆 𝑥𝑖

1

𝑀
෍

𝑆 𝑥𝑗

𝑝 𝑥𝑗
=
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑆 𝑥𝑗

𝑝 𝑥𝑗

Might pick target function Ƹ𝑝 𝑥 using only part of the integrand, e.g., Ƹ𝑝 𝑥 = 𝑆 𝑥

Cleanly decomposes integrand into pieces that get evaluated at different frequencies! 

Very valuable if 𝑆 𝑥 and 𝑉 𝑥 have very different costs

This allows computing 𝑁 rays per pixel using M ≫ 𝑁 (cheaper) shades

The larger M, the better quality your N samples

(I.e., why drag you through this math?)



80

BENEFITS FOR REAL-TIME RENDERING

Can apply RIS multiple times; imagine picking Ƹ𝑝 𝑥 = 𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 :

න𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑓𝑟 𝑥𝑗 𝐺 𝑥𝑗 𝐿 𝑥𝑗

𝑝 𝑥𝑗

(I.e., why drag you through this math?)
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BENEFITS FOR REAL-TIME RENDERING

Can apply RIS multiple times; imagine picking Ƹ𝑝 𝑥 = 𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 :

න𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑓𝑟 𝑥𝑗 𝐺 𝑥𝑗 𝐿 𝑥𝑗

𝑝 𝑥𝑗

(I.e., why drag you through this math?)

Still a legitimately hard integral, evaluated with Monte Carlo

Perhaps apply RIS again, to get a good 𝑝 𝑥 ?
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BENEFITS FOR REAL-TIME RENDERING

Can apply RIS multiple times; imagine picking Ƹ𝑝 𝑥 = 𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 :

න𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑓𝑟 𝑥𝑗 𝐺 𝑥𝑗 𝐿 𝑥𝑗

𝑝 𝑥𝑗

Let’s use a second target function 𝑝 𝑥 = 𝐺 𝑥 𝐿 𝑥 :

න𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑓𝑟 𝑥𝑗 𝐺 𝑥𝑗 𝐿 𝑥𝑗

𝐺 𝑥𝑗 𝐿 𝑥𝑗

1

𝐾
෍

𝐺 𝑥𝑘 𝐿 𝑥𝑘
𝑞 𝑥𝑘

(I.e., why drag you through this math?)
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BENEFITS FOR REAL-TIME RENDERING

Can apply RIS multiple times; imagine picking Ƹ𝑝 𝑥 = 𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 :

න𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑓𝑟 𝑥𝑗 𝐺 𝑥𝑗 𝐿 𝑥𝑗

𝑝 𝑥𝑗

Let’s use a second target function 𝑝 𝑥 = 𝐺 𝑥 𝐿 𝑥 :

න𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑓𝑟 𝑥𝑗 𝐺 𝑥𝑗 𝐿 𝑥𝑗

𝐺 𝑥𝑗 𝐿 𝑥𝑗

1

𝐾
෍

𝐺 𝑥𝑘 𝐿 𝑥𝑘
𝑞 𝑥𝑘

(I.e., why drag you through this math?)
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BENEFITS FOR REAL-TIME RENDERING

Can apply RIS multiple times; imagine picking Ƹ𝑝 𝑥 = 𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 :

න𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑓𝑟 𝑥𝑗 𝐺 𝑥𝑗 𝐿 𝑥𝑗

𝑝 𝑥𝑗

Let’s use a second target function 𝑝 𝑥 = 𝐺 𝑥 𝐿 𝑥 :

න𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍ 𝑓𝑟 𝑥𝑗

1

𝐾
෍

𝐺 𝑥𝑘 𝐿 𝑥𝑘
𝑞 𝑥𝑘

(I.e., why drag you through this math?)
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BENEFITS FOR REAL-TIME RENDERING

Can apply RIS multiple times; imagine picking Ƹ𝑝 𝑥 = 𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 :

න𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍

𝑓𝑟 𝑥𝑗 𝐺 𝑥𝑗 𝐿 𝑥𝑗

𝑝 𝑥𝑗

Let’s use a second target function 𝑝 𝑥 = 𝐺 𝑥 𝐿 𝑥 :

න𝑓𝑟 𝑥 𝐺 𝑥 𝐿 𝑥 𝑉 𝑥 ⅆ𝑥 ≈
1

𝑁
෍ 𝑉 𝑥𝑖

1

𝑀
෍ 𝑓𝑟 𝑥𝑗

1

𝐾
෍

𝐺 𝑥𝑘 𝐿 𝑥𝑘
𝑞 𝑥𝑘

And now, it’s pretty easy to sample 𝑞 𝑥 ~ 𝐿 𝑥 , which allows further cancellation

Able to split numerical integration so each term evaluated with different sampling rate!

(I.e., why drag you through this math?)
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Real-time capture,  4200 area lights 

IMPORTANCE RESAMPLING TAKEAWAYS
Why you should teach / learn RIS

Real-time capture , 4200 area lights 
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Converts M cheap samples into N of better quality

Allows sampling from (nearly) arbitrary functions in an unbiased way
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IMPORTANCE RESAMPLING TAKEAWAYS

Converts M cheap samples into N of better quality

Allows sampling from (nearly) arbitrary functions in an unbiased way

My mental model: “approximate” perfect importance sampling

As 𝑀 → ∞, you approach ideal sampling of your target distribution

Apply RIS in multiple stages

Lots of flexibility for designing algorithms

Decouple computational frequencies

Use cheap-to-compute terms to improve placement of expensive operations

Why you should teach / learn RIS
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TAKING 𝑴 → ∞

What if we target M = 10,000 candidates to pick N = 1 sample…

For RIS, you want large pools of candidate samples
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If so… limits increases to M
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Compute discrete CDF, invert to draw samples
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TAKING 𝑴 → ∞

What if we target M = 10,000 candidates to pick N = 1 sample…

Do you need to keep all 10,000 candidates resident in memory?

If so… limits increases to M

Most people today keep candidates resident

Compute discrete CDF, invert to draw samples

Why keep 10,000 in memory if returning only one?

Why not discard incrementally?

Keep just N candidates in memory at a given time

For RIS, you want large pools of candidate samples
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95

WEIGHTED RESERVOIR SAMPLING
Do yourself a favor; learn this algorithm and keep it near the top of your toolbox

Well known algorithm from early 1980s
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https://en.wikipedia.org/wiki/Reservoir_sampling
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WEIGHTED RESERVOIR SAMPLING
Do yourself a favor; learn this algorithm and keep it near the top of your toolbox

Well known algorithm from early 1980s

Data often stored on reel-to-reel tape 

Big pain if rewind needed for algorithm’s 2nd pass over data

Streaming selection of arbitrary weighted samples

Constant memory, one pass over data, size need not be known 

Easy proof by induction

Multiple people have reinvented this wheel

But go read up on 40 years of theory 

https://en.wikipedia.org/wiki/Reservoir_sampling
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WEIGHTED RESERVOIR SAMPLING
Do yourself a favor; learn this algorithm and keep it near the top of your toolbox

Always pick first sample encountered with weight > 0

Sample stream
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WEIGHTED RESERVOIR SAMPLING
Do yourself a favor; learn this algorithm and keep it near the top of your toolbox

Discard old, choose new sample with probability  wpurple / (wpurple + wgreen)

Sample stream



100

WEIGHTED RESERVOIR SAMPLING
Do yourself a favor; learn this algorithm and keep it near the top of your toolbox

Choose new sample with probability  worange / (worange + wdotted)

Sample stream
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WEIGHTED RESERVOIR SAMPLING
Do yourself a favor; learn this algorithm and keep it near the top of your toolbox

Choose new sample with probability  wred / (wred + wdashed)

Sample stream

Just an argument about proportionality

wpurple / wgreen same throughout stream
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WEIGHTED RESERVOIR SAMPLING
Do yourself a favor; learn this algorithm and keep it near the top of your toolbox

Whenever stream stops, just output current selection as final answer

Sample stream

Decision at each step only needs:

Sum of prior weights, new element weight 
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WEIGHTED RESERVOIR SAMPLING
Do yourself a favor; learn this algorithm and keep it near the top of your toolbox

Whenever stream stops, just output current selection as final answer

Sample stream

Decision at each step only needs:

Sum of prior weights, new element weight 

න𝑓 𝑥 ⅆ𝑥 ≈
1

𝑁
෍

𝑓 𝑥𝑖
Ƹ𝑝 𝑥𝑖

1

𝑀
෍

Ƹ𝑝 𝑥𝑗

𝑞 𝑥𝑗
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Very simple, but also very powerful

Allows using RIS without memory limiting sample count 

Memory O(N), and for real-time this is generally a small constant
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WEIGHTED RESERVOIR SAMPLING
Very simple, but also very powerful

Allows using RIS without memory limiting sample count 

Memory O(N), and for real-time this is generally a small constant

Unfortunately, RIS is still O(M) compute, and we want 𝑀 → ∞ …

But, weighted reservoir sampling provides another benefit 



107

WEIGHTED RESERVOIR SAMPLING
Very simple, but also very powerful

Stream 1

Can combine two independent streams of samples

Without reprocessing individual samples!

Stream 2
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WEIGHTED RESERVOIR SAMPLING
Very simple, but also very powerful

Stream 1

Can combine two independent streams of samples

Without reprocessing individual samples!

Stream 2

Combined Stream

Choose with probability
w1 / (w1 + w2)

Choose with probability
w2 / (w1 + w2)
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WHY IS THIS USEFUL?
Allows the spatiotemporal reuse we desire

At each pixel, say we select 1 light from 32 random samples

Using RIS and weighted reservoir sampling

At a cost of merging these 25 reservoirs 

We select 1 light from (25 x 32 =) 800 effective samples

Merge with our reservoir from last frame

We select 1 light from (2 x 800 =) 1600 effective samples

Do temporal reuse prior to spatial reuse

Each spatial sample has 32 + 800 effective samples

So we select 1 light from 25 x (32 + 800) ≈ 20,000 effective samples

Reuse from a frame that reuses it’s prior frame…
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IMPORTANT TO UNDERSTAND
Each reservoir merge is a new application of RIS

Design space is huge:

What is your target function Ƹ𝑝 𝑥 at each step?

Ƹ𝑝 𝑥 need not be physically correct; may include SSAO term to approx visibility

What coordinate space are samples stored in?

What sampling PDF should you use for initial samples 𝑞 𝑥 ?

Can you upsample and downsample reservoirs to change spatial compute frequency?

Which neighbors to reuse (and which not to reuse)?

How to scale to longer path lengths?

PDFs from neighbor pixels can be quite different; how does this affect sampling quality?
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EXPLORING THE DESIGN SPACE:  VISIBILITY
Visibility one of the most important, most expensive, most ignored aspects of rendering

Very old model:

Berkeley Soda Hall
20-40 distinct rooms per floor

6 floors total
50,000+ emissive triangles
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EXPLORING THE DESIGN SPACE:  VISIBILITY
Visibility one of the most important, most expensive, most ignored aspects of rendering

Very old model:

Berkeley Soda Hall
20-40 distinct rooms per floor

6 floors total
50,000+ emissive triangles

Going inside around here



126Considering all lights in scene, without visibility



127Add 1 shadow ray per pixel before spatiotemporal reuse 



1281 shadow per pixel before reuse, 4 shadow rays per pixel after reuse 



1291 shadow per pixel before reuse, 4 shadow rays per pixel after reuse 

Reusing statistics via RIS still allows varying computation based on signal frequencies!

Shadow rays before reuse:  “global” shadow rays, give benefits of a light PVS
Shadow rays after reuse:  “local” shadow rays, give high frequency contact details
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ANOTHER WAY TO ABSTRACT THE PROBLEM
We need to accelerate certain sampling processes; how?

Frequently some tree

Deterministic build / update

Traversal is randomized

Blue pixel more likely to pick from left, red pixel more from the right

Traverse tree randomly, proportional to (likely) contribution from each child node
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ANOTHER WAY TO ABSTRACT THE PROBLEM
Importance resampling with reuse relies a different (statistical) approach

No structure built in advance

Each pixel starts by

Randomly selecting “candidates”

Independently; may overlap

Evaluate likelihood of each candidate

Select one

Proportional to its likelihood



136

COMPARISON

Rebuild structure for dynamic lights, O(n log n)

Random memory reads (stochastic traversal)

Dependent memory reads (parent → child nodes)

Variable cost / divergence (non balanced tree)

No upfront costs

Random memory reads (candidate selection)

Independent memory (do candidates in parallel)

Fixed cost (set candidate count; may be larger)
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INTERESTING TAKEAWAYS
Both relying on randomization

Both an example of a randomized algorithm

https://en.wikipedia.org/wiki/Randomized_algorithm
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INTERESTING TAKEAWAYS
Both relying on randomization

Both an example of a randomized algorithm

This is hole in my knowledge of complexity theory

Different classes of polynomial-time algorithms, with and w/o randomness

Unclear if classes are identical

https://en.wikipedia.org/wiki/Randomized_algorithm
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INTERESTING TAKEAWAYS
Both relying on randomization

Both an example of a randomized algorithm

This is hole in my knowledge of complexity theory

Different classes of polynomial-time algorithms, with and w/o randomness

Unclear if classes are identical

Seems important; randomized algorithms you use:

Quicksort, Monte Carlo integration, most light sampling acceleration structures, neural nets

https://en.wikipedia.org/wiki/Randomized_algorithm
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INTERESTING TAKEAWAYS
Lots of statistics theory to mine

Resampled importance sampling

A form of “sampling importance resampling”

A form of rejection sampling, bootstrap filters, particle filtering

With reuse, seems related to sequential Monte Carlo and population Monte Carlo methods

Also, interesting properties of weighted reservoir sampling

Independent v.s. dependent sampling

Alternate form using randomized exponentiated weights



145

INTERESTING TAKEAWAYS
Data structure builds take lots of time



146

INTERESTING TAKEAWAYS
Data structure builds take lots of time

Need to build it (costly)



147

INTERESTING TAKEAWAYS
Data structure builds take lots of time

Need to build it (costly)

Need to maintain it (costly)



148

INTERESTING TAKEAWAYS
Data structure builds take lots of time

Need to build it (costly)

Need to maintain it (costly)

Even parts unused this frame (wasteful)



149

INTERESTING TAKEAWAYS
Data structure builds take lots of time

Need to build it (costly)

Need to maintain it (costly)

Even parts unused this frame (wasteful)

Dependent reads during traversal (costly)



150

INTERESTING TAKEAWAYS
Data structure builds take lots of time

Need to build it (costly)

Need to maintain it (costly)

Even parts unused this frame (wasteful)

Dependent reads during traversal (costly)

Traversals of varying cost (incoherent)



151

INTERESTING TAKEAWAYS
Data structure builds take lots of time

Need to build it (costly)

Need to maintain it (costly)

Even parts unused this frame (wasteful)

Dependent reads during traversal (costly)

Traversals of varying cost (incoherent)

Sometimes traversal is stochastic (incoherent)



152

INTERESTING TAKEAWAYS
Data structure builds take lots of time

Need to build it (costly)

Need to maintain it (costly)

Even parts unused this frame (wasteful)

Dependent reads during traversal (costly)

Traversals of varying cost (incoherent)

Sometimes traversal is stochastic (incoherent)

Why not use a “randomized” data structure?



153

INTERESTING TAKEAWAYS
Data structure builds take lots of time

Need to build it (costly)

Need to maintain it (costly)

Even parts unused this frame (wasteful)

Dependent reads during traversal (costly)

Traversals of varying cost (incoherent)

Sometimes traversal is stochastic (incoherent)

Why not use a “randomized” data structure?

Not a deterministic build followed by stochastic traversal

Instead, a stochastic build with a deterministic traversal



154

INTERESTING TAKEAWAYS
Data structure builds take lots of time

Need to build it (costly)

Need to maintain it (costly)

Even parts unused this frame (wasteful)

Dependent reads during traversal (costly)

Traversals of varying cost (incoherent)

Sometimes traversal is stochastic (incoherent)

Why not use a “randomized” data structure?

Not a deterministic build followed by stochastic traversal

Instead, a stochastic build with a deterministic traversal

… more an ideology than a concrete idea

But iterative RIS starts to resemble this
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TAKES THIS PHILOSOPHY TO THE EXTREME
(From “Real-time Stochastic Light Cuts,” Lin & Yuksel, I3D 2020)

Stochastic reuse:  Builds tree so loosely it’s not recognizable; samples are cheap

Definitely impacts sample quality

But, it (effectively) uses 100,000+ samples per pixel
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SUMMARY

Real-time capture, 10,400 area lights + environment map
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SUMMARY

Real-time ray tracing is here today

But… traditional CPU algorithms may not suit GPU-based stream processing

Need to rethink our approach to optimize performance

A big chance with game ray tracing, with different constraints than film

This talk, three big theses:

Remember real-time constraints

Rethink complex data structures

Consider streaming statistics and PDFs (rather than triangles and rays)

Likely other ways to reframe the problem

… and people are beating down the doors to try them out



Questions?

Bitterli et al., “Spatiotemporal Reservoir Resampling for 
Real-Time Ray Tracing with Dynamic Direct Lighting,”
ACM Transactions on Graphics 39(4), Article 148

Demo Video (Google for “NVIDIA ReSTIR YouTube”)

Twitter:  @_cwyman_
Email: cwyman@nvidia.com

https://www.youtube.com/watch?v=HiSexy6eoy8
mailto:cwyman@nvidia.com

