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1
SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR SHADING
USING A DYNAMIC OBJECT-SPACE GRID

CLAIM OF PRIORITY

This application claims the benefit of U.S. Provisional
Application No. 62/036,552, titled “Variable-Rate Object-
Space Shading With Trilinear Filtering,” and filed Aug. 12,
2014, the entire contents of which is incorporated herein by
reference.

FIELD OF THE INVENTION

The present invention relates to graphics processing, and
more particularly to shading using a dynamic object-space
grid.

BACKGROUND

As the resolution of display devices increases more pixels
need to be shaded for each frame. To maintain a high frame
rate for high resolution displays, techniques have been
developed to avoid unnecessary shading operations.
Examples of shading techniques include low-rate screen-
space shading, upscaling low-resolution images, and multi-
rate screen-space shading.

Low-rate screen-space shading suffers from temporal
instability because shading samples are aligned to the screen
and not to the object. At low-rates, shading terms may be
undersampled and the shaded pixels tend to shimmer and
swim or flicker as the camera or object moves. The shim-
mering and flickering artifacts are especially noticeable on
surfaces with specular illumination and high-frequency nor-
mal maps. Additionally, evaluating shading terms at rates
lower than once per pixel often results in shading at samples
lying outside the parent primitive, which may cause visual
artifacts in scenes with fine geometric detail.

Upscaling low-resolution images suffers from the prob-
lem of having to couple the shading rate with the visibility
rate. In other words, the rate at which visibility testing is
performed equals the rate at which shading is performed. As
a result, lowering the shading rate may also lower the
perceived geometric detail in a scene, which is often unde-
sirable.

Multi-rate screen-space shading is a technique that
reduces the shading workload by lowering rates for low-
frequency parts of the scene. Therefore, the shading rate is
scene dependent and not uniform. Multi-rate screen-space
shading may not provide a consistently high-performance
frame rate. Thus, there is a need for addressing this issue
and/or other issues associated with the prior art.

SUMMARY

A system, method, and computer program product are
provided for shading using a dynamic object-space grid. The
method includes the steps of receiving an object defined by
triangle primitives in a three-dimensional (3D) space that is
specific to the object and defining an object-space shading
grid for a first triangle primitive of the triangle primitives
based on coordinates of the first triangle primitive in the 3D
space. A shader program is then executed by a processing
pipeline to compute a shaded attribute at a point on the
object-space shading grid for the first triangle primitive.
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2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates a flowchart of a method for shading
using a dynamic object-space grid, in accordance with one
embodiment;

FIG. 1B illustrates a for chart of a method for performing
object-space shading, in accordance with one embodiment;

FIG. 2 illustrates a parallel processing unit (PPU), accord-
ing to one embodiment;

FIG. 3 illustrates the streaming multi-processor of FIG. 2,
according to one embodiment;

FIG. 4 is a conceptual diagram of a graphics processing
pipeline implemented by the PPU of FIG. 2, in accordance
with one embodiment;

FIGS. 5A through 5C illustrate an object-space mip-
mapped shading grid that is defined for a primitive, in
accordance with another embodiment;

FIG. 5D illustrates an object-space shading grid that is
defined for a narrow primitive, in accordance with another
embodiment;

FIG. 6A illustrates sample pattern for a pixel, in accor-
dance with one embodiment;

FIG. 6B illustrates a fragment in screen-space, in accor-
dance with one embodiment;

FIG. 6C illustrates a footprint of the fragment in object-
space, in accordance with one embodiment;

FIG. 6D illustrates two nearest mip levels of an object-
space grid that are used to generate a shaded sample, in
accordance with one embodiment;

FIG. 6E illustrates remapping of interpolants to use one of
two nearest mip levels of a mipmapped object-space grid, in
accordance with one embodiment;

FIG. 6F illustrates finite differences on a sub-triangle that
are transformed to compute derivatives in an orthonormal
basis, in accordance with one embodiment;

FIG. 7A illustrates a block diagram for identifying points
of an object-space grid at which shaded samples will be
computed, in accordance with one embodiment;

FIG. 7B illustrates a flowchart of a method for computing
per-sample shaded attributes for pixels, in accordance with
one embodiment; and

FIG. 8 illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented.

DETAILED DESCRIPTION

Shading using a dynamic object-space grid allows a scene
to be shaded at varying rates for each object, with a graceful
impact to image quality. An object-space shading system
provides improved image quality at per-pixel shading rates,
and relatively low reduction in quality at lower shading
rates. Because the shading is performed in object-space,
object shimmering effects are significantly reduced. Addi-
tionally, the visibility rate may be decoupled from the
shading rate, so that full-rate visibility (i.e., z-testing per
sample) may be performed with variable rate shading.

FIG. 1A illustrates a flowchart of a method 100 for
shading using a dynamic object-space grid, in accordance
with one embodiment. At step 110, an object is received. The
object is defined by triangle primitives in three-dimensional
(3D) space that is specific to the object. In the context of the
present description, the local coordinate system enclosed
within each triangle primitive may be defined by barycentric
coordinates. In the context of the present description, the 3D
space that is specific to the object is a temporally-coherent
object-space, where the object is defined by one or more
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triangle primitives. World-space includes all of the objects in
a scene and therefore is capable of illustrating relative
positions of the different objects in the scene. In contrast
with object-space, camera-space is a view of the objects in
the scene as seen from the camera. In other words, camera-
space is specific to the camera. Finally, screen-space is a
two-dimensional space that is a projection of the scene onto
a two-dimensional plane in camera-space.

At step 120, an object-space shading grid is defined for a
first triangle primitive of the triangle primitives based on
coordinates of the first triangle primitive in the 3D space. In
the context of the present description, barycentric coordi-
nates define the local coordinate system enclosed within the
triangle primitives and the barycentric coordinates also
define points of the shading grid, so that the shading grid is
a triangular shading grid. Barycentric shading grids may
apply to legacy content in real-time rendering, and do not
require special scene parameterization, object parameteriza-
tion, and/or primitive parameterization. Therefore, legacy
content may be shaded using a barycentric shading grid in
one embodiment, an object-space shading grid is defined for
individual primitives and the object-space shading grid for a
particular primitive is specific to the primitive.

In one embodiment, the object-space shading grid is
mipmapped and one or more levels of the mipmapped
object-space shading grid are “sampled” according to a
shading rate. However, unlike traditional mipmaps, shaded
samples for the higher mip levels (i.e., lower resolution mip
levels) are not generated by filtering shaded samples for the
lower mip levels (i higher resolution mip levels). Instead,
shaded samples for each mip level may be computed
dynamically for any particular point at any mip level of the
object-space shading grid.

At step 130, a shader program is then executed by a
processing pipeline to compute a shaded attribute at a point
on the object-space shading grid for the first triangle primi-
tive. Execution of the shader program at a point on the
object-space shading grid corresponds to “sampling” the
object-space shading grid and produces a shaded attribute. A
single point may be sampled or multiple points may be
sampled and filtered to produce the shaded attribute. A
shaded sample comprises one or more shaded attributes.

In the context of the present description, the processing
pipeline may be a graphics processing pipeline that is
implemented by a graphics processor or a general purpose
processor, either of which is configured to execute instruc-
tions of the shader program. In the context of the present
description, a shaded attribute may be one or more of color,
depth, texture coordinates, and the like. A surface equation
corresponding to a graphics primitive such as a triangle may
be evaluated at a sample location (i.e., point) on the object-
space shading grid to generate an attribute value.

In one embodiment, shading requests are generated in
object-space after visibility calculations have been per-
formed. Each screen-space shading location for an object
generates one or more shading requests that sample corre-
sponding points of the object-space shading grid. The
object-space shading grid is not necessarily recomputed for
each frame, even when the camera position changes.
Because the shading grid is defined in object-space, the
shading grid need only be recomputed when the shape of the
object changes in object-space. Additionally, because the
shading calculations are performed using shading grids that
are each aligned to primitives, the samples always lie within
the respective primitive. Consequently, temporally stable
images may be produced and shader aliasing artifacts like
specular aliasing may be significantly reduced. When the
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4

camera position changes, the points on the shading grid that
are sampled for a particular screen-space pixel vary based on
the camera position relative to the object. In one embodi-
ment, a screen-space pixel footprint is transformed into
object-space to identify the points on the object-space shad-
ing grid that are sampled.

FIG. 1B illustrates a flowchart of a method 150 for
performing object-space shading, in accordance with one
embodiment. At step 160, an object is received. The object
is defined by vertices of one or more primitives in a 3D space
that is specific to the object. In the context of the present
description, the 3D space that is specific to the object is a
temporally-coherent object-space. In one embodiment, the
object is defined by one or more triangle primitives.

At step 170, a shading sample rate is computed for the
primitive based on a screen-space derivative of coordinates
of a pixel fragment in the 3D space that is specific to the
object. In the context of the present description, the screen-
space derivative may be computed using object-space coor-
dinates of a pixel footprint that is transformed from screen-
space to the 3D space. In one embodiment, a derivative of
the object-space coordinates approximating the pixel foot-
print is computed to determine the shading sample rate. In
one example, the pixel footprint may approach the size of
the object, encompassing several primitives, so that the
shading rate is low and the object nearly fits within the
screen-space pixel. In another example, the pixel footprint
may be smaller than the size of a single primitive of the
object, so that the shading rate is high and the object covers
several screen-space pixels.

At step 180, a shader program is then executed by a
processing pipeline to compute shaded attributes for the
primitive according to the shading sample rate. In the
context of the present description, execution of the shader
program at a point on the object-space shading grid corre-
sponds to “sampling” the object-space shading grid and
producing shaded attributes. A single point may be sampled
or multiple points may be sampled and filtered to produce
the shaded attribute. In one embodiment, an object-space
shading grid for the object is mipmapped and one or more
levels of the mipmapped object-space shading grid are
“sampled” according to the shading rate.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which
the foregoing framework may or may not be implemented,
per the desires of the user. It should be strongly noted that
the following information is set forth for illustrative pur-
poses and should not be construed as limiting in any manner.
Any of the following features may be optionally incorpo-
rated with or without the exclusion of other features
described.

The Reyes rendering architecture introduced and popu-
larized the idea of performing shading calculations in object-
space, Reyes renderers use adaptive tessellation to generate
shading grids before visibility calculations are performed.
Generating object-space shading grids using Reyes-style
adaptive tessellation is possible for real-time rendering, but
it is costly to finely tessellate every primitive and inefficient
to shade before performing visibility calculations. In par-
ticular, shading before visibility can be extremely inefficient
in scenes with a high degree of visibility and occlusion
culling. Furthermore, existing real-time 3D content, consists
largely of triangular meshes that typically need to be finely
tessellated for processing using a Reyes renderer. Therefore,
existing real-time 3D content is not typically compatible
with a Reyes renderer or existing object-space renderers.
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In contrast, as described herein, shading calculations may
be performed in object-space after visibility calculations are
performed and without requiring tessellation of the 3D
content. Furthermore, no additional parameterization of
existing real-time 3D content is needed for shading using an
object-space shading grid. Therefore, existing real-time 3D
content is compatible with the object-space shading grid
technique. A mipmapped object-space shading grid allows
shading at multiple rates in a stable, decoupled fashion
without temporal artifacts, and exposes opportunities to
reuse shading calculations within and across primitives
within an object.

In one embodiment, post-visibility screen-space shading
locations are transformed into per-triangle object-space
shading locations, and then quantized to a triangular mip-
mapped object-space shading grid of points. A shaded
sample may then be computed for one or more of the points.
Each screen-space location maps to a filtered combination of
multiple object-space points on the object-space shading
grid. A surface shader may be invoked at each one of the
multiple object-space points to compute shaded samples.
Shaded samples that are shared between different screen
space locations (i.e., shaded samples computed at points that
are shared between different object-space primitives) may be
cached to reduce the number of surface shaders that are
invoked. The surface shader outputs (i.e., shaded samples)
may be filtered to obtain shaded attributes for pixels, such as
final pixel colors.

FIG. 2 illustrates a parallel processing unit (PPU) 200,
according to one embodiment. The various architecture
and/or functionality of the various previous embodiments
may be implemented within the PPU 200. While a parallel
processor is provided herein as an example of the PPU 200,
it should be strongly noted that such processor is set forth for
illustrative purposes only, and any processor may be
employed to supplement and/or substitute for the same. In
one embodiment, the PPU 200 is configured to execute a
plurality of threads concurrently in two or more streaming
multi-processors (SMs) 250. A thread (i.e., a thread of
execution) is an instantiation of a set of instructions execut-
ing within a particular SM 250. Each SM 250, described
below in more detail in conjunction with FIG. 3, may
include, but is not limited to, one or more processing cores,
one or more load/store units (LSUs), a level-one (I.1) cache,
shared memory, and the like.

In one embodiment, the PPU 200 includes an input/output
(I/O) unit 205 configured to transmit and receive commu-
nications (i.e., commands, data, etc.) from a central process-
ing unit (CPU) (not shown) over the system bus 202. The [/O
unit 205 may implement a Peripheral Component Intercon-
nect Express (PCle) interface for communications over a
PCle bus. In alternative embodiments, the 1/O unit 205 may
implement other types of well-known bus interfaces.

The PPU 200 also includes a host interface unit 210 that
decodes the commands and transmits the commands to the
grid management unit 215 or other units of the PPU 200
(e.g., memory interface 280) as the commands may specify.
The host interface unit 210 is configured to route commu-
nications between and among the various logical units of the
PPU 200.

In one embodiment, a program encoded as a command
stream is written to a buffer by the CPU. The buffer is a
region in memory, e.g., memory 204 or system memory, that
is accessible (i.e., read/write) by both the CPU and the PPU
200. The CPU writes the command stream to the buffer and
then transmits a pointer to the start of the command stream
to the PPU 200. The host interface unit 210 provides the
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thread block array management unit (MU) 215 with pointers
to one or more streams. The MU 215 selects one or more
streams and is configured to organize the selected streams as
a pool of pending thread block arrays. The pool of pending
thread block arrays may include new thread block arrays that
have not yet been selected for execution and thread block
arrays that have been partially executed and have been
suspended.

A work distribution unit 220 that is coupled between the
MU 215 and the SMs 250 manages a pool of active thread
block arrays, selecting and dispatching active thread block
arrays for execution by the SMs 250. Pending thread block
arrays are transferred to the active thread block array pool by
the work 215 when a pending thread block array is eligible
to execute, i.e., has no unresolved data dependencies. An
active thread block array is transferred to the pending pool
when execution of the active thread block array is blocked
by a dependency. When execution of a thread block array is
completed, the thread block array is removed from the active
thread block array pool by the work distribution unit 220. In
addition to receiving thread block arrays from the host
interface unit 210 and the work distribution unit 220, the
MU 215 also receives thread block arrays that are dynami-
cally generated by the SMs 250 during execution of a thread
block array. These dynamically generated thread block
arrays join the other pending thread block arrays in the
pending thread block array pool.

In one embodiment, the CPU executes a driver kernel that
implements an application programming interface (API) that
enables one or more applications executing on the CPU to
schedule operations for execution on the PPU 200. An
application may include instructions (i.e., API calls) that
cause the driver kernel to generate one or more thread block
arrays for execution. In one embodiment, the PPU 200
implements a SIMD (Single-Instruction, Multiple-Data)
architecture where each thread block (i.e., warp) in a thread
block array is concurrently executed on a different data set
by different threads in the thread block. The driver kernel
defines thread blocks that are comprised of k related threads,
such that threads in the same thread block may exchange
data through shared memory. In one embodiment, a thread
block comprises 32 related threads and a thread block array
is an array of one or more thread blocks that execute the
same stream and the different thread blocks may exchange
data through global memory.

In one embodiment, the PPU 200 comprises X SMs
250(X). For example, the PPU 200 may include 15 distinct
SMs 250. Each SM 250 is multi-threaded and configured to
execute a plurality of threads (e.g., 32 threads) from a
particular thread block concurrently. Each of the SMs 250 is
connected to a level-two (L.2) cache 265 via a crossbar 260
(or other type of interconnect network). The 1.2 cache 265 is
connected to one or more memory interfaces 280. Memory
interfaces 280 implement 16, 32, 64, 128-bit data buses, or
the like, for high-speed data transfer. In one embodiment, the
PPU 200 comprises U memory interfaces 280(U), where
each memory interface 280(U) is connected to a correspond-
ing memory device 204(U). For example, PPU 200 may be
connected to up to 6 memory devices 204, such as graphics
double-data-rate, version 5, synchronous dynamic random
access memory (GDDRS SDRAM).

In one embodiment, the PPU 200 implements a multi-
level memory hierarchy. The memory 204 is located off-chip
in SDRAM coupled to the PPU 200. Data from the memory
204 may be fetched and stored in the L2 cache 265, which
is located on-chip and is shared between the various SMs
250. In one embodiment, each of the SMs 250 also imple-
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ments an .1 cache. The L1 cache is private memory that is
dedicated to a particular SM 250. Each of the L1 caches is
coupled to the shared L.2 cache 265. Data from the [.2 cache
265 may be fetched and stored in each of the [.1 caches for
processing in the functional units of the SMs 250.

In one embodiment, the PPU 200 comprises a graphics
processing unit (GPU). The PPU 200 is configured to
receive commands that specify shader programs for process-
ing graphics data. Graphics data may be defined as a set of
primitives such as points, lines, triangles, quads, triangle
strips, and the like. Typically, a primitive includes data that
specifies a number of vertices for the primitive (e.g., in a
model-space coordinate system) as well as attributes asso-
ciated with each vertex of the primitive. Attributes may
include one of more of position, color, surface normal
vector, texture coordinates, etc. The PPU 200 can be con-
figured to process the graphics primitives to generate a
frame buffer (i.e., pixel data for each of the pixels of the
display). The driver kernel implements a graphics process-
ing pipeline, such as the graphics processing pipeline
defined by the OpenGL API.

An application writes model data for a scene (ie., a
collection of vertices and attributes) to memory. The model
data defines each of the objects that may be visible on a
display. The application then makes an API call to the driver
kernel that requests the model data to be rendered and
displayed. The driver kernel reads the model data and writes
commands to the buffer to perform one or more operations
to process the model data. The commands may encode
different shader programs including one or more of a vertex
shader, shader, geometry shader, pixel shader, etc. For
example, the MU 215 may configure one or more SMs 250
to execute a vertex shader program that processes a number
of vertices defined by the model data. In one embodiment,
the MU 215 may configure different SMs 250 to execute
different shader programs concurrently. For example, first
subset of SMs 250 may be configured to execute a vertex
shader program while a second subset of SMs 250 may be
configured to execute a pixel shader program. The first
subset of SMs 250 processes vertex data to produce pro-
cessed vertex data and writes the processed vertex data to the
L2 cache 265 and/or the memory 204. After the processed
vertex data is rasterized (i.e., transformed from three-dimen-
sional data into two-dimensional data in screen space) to
produce fragment data, the second subset of SMs 250
executes a pixel shader to produce processed fragment data,
which is then blended with other processed fragment data
and written to the frame buffer in memory 204. The vertex
shader program and pixel shader program may execute
concurrently, processing different data from the same scene
in a pipelined fashion until all of the model data for the scene
has been rendered to the frame buffer. Then, the contents of
the frame buffer are transmitted to a display controller for
display on a display device.

The PPU 200 may be included in a desktop computer, a
laptop computer, a tablet computer, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant
(PDA), digital camera, a hand-held electronic device, and
the like. In one embodiment, the PPU 200 is embodied on a
single semiconductor substrate. In another embodiment, the
PPU 200 is included in a system-on-a-chip (SoC) along with
one or more other logic units such as a reduced instruction
set computer (RISC) CPU, a memory management unit
(MMU), a digital-to-analog converter (DAC), and the like.

In one embodiment, the PPU 200 may be included on a
graphics card that includes one or more memory devices 204
such as GDDRS SDRAM. The graphics card may be con-
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figured to interface with a PCle slot on a motherboard of a
desktop computer that includes, e.g., a northbridge chipset
and a southbridge chipset. In yet another embodiment, the
PPU 200 may be an integrated graphics processing unit
(iGPU) included in the chipset (i.e., Northbridge) of the
motherboard.

FIG. 3 illustrates the streaming multi-processor 250 of
FIG. 2, according to one embodiment. As shown in FIG. 3,
the SM 250 includes an instruction cache 305, one or more
scheduler units 310, a register file 320, one or more pro-
cessing cores 350, one or more double precision units
(DPUs) 351, one or more special function units (SFUs) 352,
one or more load/store units (LSUs) 353, an interconnect
network 380, a shared memory 370, and one or more texture
unit/L1 caches 390.

As described above, the work distribution unit 220 dis-
patches active thread block arrays fir execution on one or
more SMs 250 of the PPU 200. The scheduler unit 310
receives the thread block arrays from the work distribution
unit 220 and manages instruction scheduling for one or more
thread blocks of each active thread block array. The sched-
uler unit 310 schedules threads for execution in groups of
parallel threads, where each group is called a warp. In one
embodiment, each warp includes 32 threads. The scheduler
unit 310 may manage a plurality of different thread blocks,
allocating the thread blocks to warps for execution and then
scheduling instructions from the plurality of different warps
on the various functional units (i.e., cores 350, DPUs 351,
SFUs 352, and L.SUs 353) during each clock cycle.

In one embodiment, each scheduler unit 310 includes one
or more instruction dispatch units 315. Each dispatch unit
315 is configured to transmit instructions to one or more of
the functional units. In the embodiment shown in FIG. 3, the
scheduler unit 310 includes two dispatch units 315 that
enable two different instructions from the same warp to be
dispatched during each clock cycle. In alternative embodi-
ments, each scheduler unit 310 may include a single dispatch
unit 315 or additional dispatch units 315.

Each SM 250 includes a register file 320 that provides a
set of registers for the functional units of the SM 250. In one
embodiment, the register file 320 is divided between each of
the functional units such that each functional unit is allo-
cated a dedicated portion of the register file 320. In another
embodiment, the register file 320 is divided between the
different warps being executed by the SM 250. The register
file 320 provides temporary storage for operands connected
to the data paths of the functional units.

Each SM 250 comprises L processing cores 350. In one
embodiment, the SM 250 includes a large number (e.g., 192,
etc.) of distinct processing cores 350. Each core 350 is a
fully-pipelined, single-precision processing unit that
includes a floating point arithmetic logic unit and an integer
arithmetic logic unit. In one embodiment, the floating point
arithmetic logic units implement the IEEE 754-2008 stan-
dard for floating point arithmetic. Each SM 250 also com-
prises M DPUs 351 that implement double-precision float-
ing point arithmetic, N SFUs 352 that perform special
functions (e.g., copy rectangle, pixel blending operations,
and the like), and P LSUs 353 that implement load and store
operations between the shared memory 370 and the register
file 320 via the J texture unit/L1 caches 390 and the
interconnect network 380. The J texture unit/L1 caches 390
are coupled between the interconnect network 380 and the
shared memory 370 and are also coupled to the crossbar 260.
In one embodiment, the SM 250 includes 64 DPUs 351, 32
SFUs 352, and 32 LSUs 353. In another embodiment, the [L1
cache is not included within the texture unit and is instead
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included with the shared memory 370 with a separate direct
connection to the crossbar 260.

Each SM 250 includes an interconnect network 380 that
connects each of the functional units to the register file 320
and to the shared memory 370 through the interconnect
network 380. In one embodiment, the interconnect network
380 is a crossbar that can be configured to connect any of the
functional units to any of the registers in the register file 320,
to any of the texture unit/[.1 caches 390, or the memory
locations in shared memory 370.

In one embodiment, the SM 250 is implemented within a
GPU. In such an embodiment, the SM 250 comprises J
texture unit/L1 caches 390. The texture unit/L1 caches 390
are configured to access texture maps (i.e., a 2D array of
texels) from the memory 204 and sample the texture maps
to produce sampled texture values for use in shader pro-
grams. The texture unit/.1 caches 390 implement texture
operations such as anti-aliasing operations using mipmaps
(i.e., texture maps of varying levels of detail). In one
embodiment, the SM 250 includes 16 texture unit/LL1 caches
390. As described further herein, the texture unit/LL1 caches
390 are also configured to receive load and store requests
from the LSUs 353 and to coalesce the texture accesses and
the load and store requests to generate coalesced memory
operations that are output to a memory system that includes
the shared memory 370. The memory system may also
include the 1.2 cache 265, memory 204, and a system
memory (not shown).

The PPU 200 described above may be configured to
perform highly parallel computations much faster than con-
ventional CPUs. Parallel computing has advantages in
graphics processing, data compression, biometrics, stream
processing algorithms, and the like.

FIG. 4 is a conceptual diagram of a graphics processing
pipeline 400 implemented by the PPU 200 of FIG. 2, in
accordance with one embodiment. The graphics processing
pipeline 400 is an abstract flow diagram of the processing
steps implemented to generate 2D computer-generated
images from 3D geometry data. As is well-known, pipeline
architectures may perform long latency operations more
efficiently by splitting up the operation into a plurality of
stages, where the output of each stage is coupled to the input
of the next successive stage. Thus, the graphics processing
pipeline 400 receives input data 401 that is transmitted from
one stage to the next stage of the graphics processing
pipeline 400 to generate output data 402. In one embodi-
ment, the graphics processing pipeline 400 may represent a
graphics processing pipeline defined by the OpenGL® API
or by DirectX 11® by MICROSOFT.

As shown in FIG. 4, the graphics processing pipeline 400
comprises a pipeline architecture that includes a number of
stages. The stages include, but are not limited to, a data
assembly stage 410, a vertex shading stage 420, a tessella-
tion/primitive assembly stage 430, a geometry shading stage
440, a viewport transform stage 450, a rasterization stage
460, a fragment shading stage 470, and a raster operations
stage 480. In one embodiment, the input data 401 comprises
commands that configure the processing units to implement
the stages of the graphics processing pipeline 400 and
process high-order geometric primitives (e.g., patches), as
well as simpler geometric primitives (e.g., points, lines,
triangles, quads, triangle strips or fans, etc.) to be processed
by the stages. The output data 402 may comprise pixel data
(i.e., color data) that is written into a frame buffer or other
type of surface data structure in a memory. The SMs 250
may be configured by shader program instructions to func-
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tion as one or more shading stages (e.g., vertex, hull,
domain, geometry, and pixel shading stages) and write pixel
data to the memory 204.

The data assembly stage 410 receives the input data 401
that specifies vertex data for high-order geometry. The data
assembly stage 410 collects the vertex data defining the
high-order graphics geometry in a temporary storage or
queue, such as by receiving a command from the host
processor that includes a pointer to a buffer in memory and
reading the vertex data from the buffer. In one embodiment,
a memory system may include one or more of the memory
204, the L2 cache 265, and the texture unit/LL1 cache 390.
The vertex data is then transmitted to the vertex shading
stage 420 for processing.

The vertex shading stage 420 processes vertex data by
performing a set of operations (i.e., a vertex shader or a
program) once for each of the vertices. Vertices may be, e.g.,
specified as a 4-coordinate vector associated with one or
more vertex attributes. The vertex shading stage 420 may
manipulate properties such as position, color, texture coor-
dinates, and the like. In other words, the vertex shading stage
420 performs operations on the vertex coordinates or other
vertex attributes associated with a vertex. Such operations
commonly including lighting operations (i.e., modifying
color attributes for a vertex) and transformation operations
(i.e., modifying the coordinate space for a vertex). For
example, vertices may be specified using coordinates in an
object-coordinate space, which are transformed by multi-
plying the coordinates by a matrix that translates the coor-
dinates from the object-coordinate space into a world space
or a normalized-device-coordinate (NCD) space. The vertex
shading stage 420 generates transformed vertex data that is
transmitted to the tessellation/primitive assembly stage 430.

The tessellation/primitive assembly stage 430 collects
vertices output by the vertex shading stage 420 and tessel-
lates patches represented by the vertices and control points
into geometric primitives, in one embodiment, the tessella-
tion/primitive assembly stage 430 groups the vertices into
geometric primitives for processing by the geometry shading
stage 440. For example, the tessellation/primitive assembly
stage 430 may be configured to group every three consecu-
tive vertices as a geometric primitive (i.e., a triangle) for
transmission to the geometry shading stage 440. In some
embodiments, specific vertices may be reused for consecu-
tive geometric primitives (e.g., two consecutive triangles in
a triangle strip may share two vertices). The primitive
assembly stage 430 transmits geometric primitives (i.e., a
collection of associated vertices) to the geometry shading
stage 440.

The geometry shading stage 440 processes geometric
primitives by performing a set of operations (i.e., a geometry
shader or program) on the geometric primitives. Geometry
shading operations may generate one or more geometric
primitives from each geometric primitive. In other words,
the geometry shading stage 440 may subdivide each geo-
metric primitive into a finer mesh of two or more geometric
primitives for processing by the rest of the graphics pro-
cessing pipeline 400. The geometry shading stage 440
transmits geometric primitives to the viewport stage 450.

The viewport stage 450 performs a viewport transform,
culling, and clipping of the geometric primitives. Each
surface being rendered to is associated with an abstract
camera position. The camera position represents a location
of a viewer looking at the scene and defines a viewing
frustum that encloses the objects of the scene. The viewing
frustum may include a viewing plane, a rear plane, and four
clipping planes. Any geometric primitive entirely outside of
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the viewing frustum may be culled (i.e., discarded) because
the geometric primitive will not contribute to the final
rendered scene. Any geometric primitive that is partially
inside the viewing frustum and partially outside the viewing
frustum may be clipped (i.e., transformed into a new geo-
metric primitive that is enclosed within the viewing frustum.
Furthermore, geometric primitives may each be scaled based
on depth of the viewing frustum. All potentially visible
geometric primitives are then transmitted to the rasterization
stage 460.

The rasterization stage 460 converts the 3D geometric
primitives into 2D fragments. The rasterization stage 460
may be configured to utilize the vertices of the geometric
primitives to setup a set of surface equations from which
various attributes can be interpolated. In one embodiment,
the surface equations are plane equations in the form
Ax+By+C, where x and y are sample locations and A, B, and
C are plane equation parameters. In other embodiments, a
surface equation specifies a high-order surface such as a
patch. The rasterization stage 460 may also compute a
coverage mask for a plurality of pixels that indicates
whether one or more screen-space sample locations for the
plurality of pixels intersect the geometric primitive.

The rasterization stage 460 may be configured to perform
early z-testing based on per-vertex depth values to remove
geometric primitives that will not be visible. Early z-testing
avoids processing pixels for a graphics primitive that is
behind, and therefore, occluded by another graphics primi-
tive. Early z-testing is performed before shading operations,
to avoid the expense of performing shading operations that
will not contribute to the final color values of pixels in the
image. The shading operations produce shaded fragments
representing color data for the graphics primitives that cover
at least one sample of a pixel and survived the early z testing.
After the shading operations, comprehensive z-testing may
be performed to remove shaded fragments that are occluded
and therefore not visible in the image, so that color data for
the non-visible shaded fragments are not written to a pixel
of'the image. The rasterization stage 460 transmits fragment
data including the coverage masks and interpolated per-
vertex attributes to the fragment shading stage 470.

The fragment shading stage 470 processes fragment data
by performing a set of operations i.e., a fragment shader or
a program) on each of the fragments. The fragment shading
stage 470 may generate shaded fragment data (i.e., shaded
attributes such as color values) for the fragment such as by
performing lighting operations or sampling texture maps
using interpolated texture coordinates for the fragment. The
shaded fragment data may be per-sample shaded attributes
where one or more samples within a pixel share the same
computed shaded attribute value or where a shaded attribute
value is computed for each sample location within a pixel.
The fragment shading stage 470 generates per-sample
shaded fragment data that is transmitted to the raster opera-
tions stage 480. The fragment shading stage 470 is described
in further detail in conjunction with FIGS. 5A-E, 6A-F, 7A,
and 7B.

The raster operations stage 480 may perform various
operations on the shaded fragment data such as performing
alpha tests, Z-test, stencil tests, and blending the shaded
fragment data with other pixel data corresponding to other
fragments associated with the pixel. When the raster opera-
tions stage 480 has finished processing the shaded fragment
data to produce pixel data (i.e., the output data 402), the
pixel data may be written to a display surface (i.e., render
target such as a frame buffer, a color buffer, Z-buffer, or the
like). The raster operations stage 480 may perform per-
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sample z-testing so that visible fragment data is written to
the frame buffer and obscured fragment data is not written
to the frame buffer.

It will be appreciated that one or more additional stages
may be included in the graphics processing pipeline 400 in
addition to or in lieu of one or more of the stages described
above. Various implementations of the abstract graphics
processing pipeline may implement different stages. Fur-
thermore, one or more of the stages described above may be
excluded from the graphics processing pipeline in some
embodiments (such as the geometry shading stage 440).
Other types of graphics processing pipelines are contem-
plated as being within the scope of the present disclosure.
Furthermore, any of the stages of the graphics processing
pipeline 400 may be implemented by one or more dedicated
hardware units within a graphics processor such as PPU 200.
Other stages of the graphics processing pipeline 400 may be
implemented by programmable hardware units such as the
SM 250 of the PPU 200.

The Dynamic Object-Space Grid

As previously explained in conjunction with FIG. 1A, an
object-space shading grid is defined for the object based on
coordinates of triangle primitives in the object-space. In the
context of the present description, barycentric coordinates
may define the local coordinate system enclosed within
triangle primitives and the barycentric coordinates may also
define points of the shading grid, so that the shading grid is
a triangular shading grid.

FIGS. 5A-5C illustrate a mipmapped object-space shad-
ing grid that is defined for a primitive 500, in accordance
with another embodiment. FIG. 5A illustrates a mip level
510 of the mipmapped object-space shading grid that is
defined for a primitive 500, in accordance with another
embodiment. The triangular primitive 500 is defined by the
vertices 501, 502, and 503 and the mip level 510 of the
mipmapped object-space shading grid is the coarsest mip
level. In contrast with a conventional mipmapped texture
map, in one embodiment only vertex positions define each
level of the shading grid. In other words, no attribute data,
such as color is associated with the vertices. The mipmapped
object-space shading grid is a framework of points at which
attributes may be computed rather than an array of texel or
attribute values. In one embodiment, points of the mip-
mapped object-space shading grid are not stored and are
instead generated from the primitives defining objects as
needed to compute shaded samples. In such an embodiment,
the mipmapped object-space shading grid is a procedural
object-space shading grid.

In one embodiment, each of the vertices 501, 502, and 503
is associated with a set of barycentric coordinates. Each of
the vertices 501, 502, and 503 is also a point (i.e., intersec-
tion) in the object-space shading grid that is defined for the
primitive 500. The object-space shading grid may be used to
compute a shaded sample at the sample location S05A. In
one embodiment, shaded values are computed for the grid
points at vertices 501, 502, and 503 and interpolation is used
to compute the shaded sample at the sample location 505A.
In one embodiment, barycentric interpolation is used to
compute the shaded sample at the sample location 505A.
The sample location 505A corresponds to a sample location
in screen space that has been transformed into the object-
space specific to the primitive 500. The object-space shading
grid is “sampled” according to a shading rate that is com-
puted based on a specified shading rate (i.e., the number of
samples specified for each screen-space pixel) and screen-
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space derivatives of the Object-space coordinates of the
input fragment. Unlike the specified shading rate, the com-
puted shading rate may vary within each parent primitive
and is therefore a dynamic shading rate. The primitive 500
is a “parent” primitive that may be divided into sub-primi-
tives (e.g., triangles) as shown in FIGS. 5B and 5C. The
computed shading rate for a sub-primitive that comprises
two or more sub-primitives may also vary within the sub-
primitive. Importantly, the computed shading rate may also
differ from the visibility rate. The visibility rate is the
number of samples for which z-tests are performed during
early and/or late z-testing. In one embodiment, the visibility
rate and the specified shading rate may each be fixed and the
computed shading rate may vary so that the computed
shading rate for a first set of primitives is greater than the
visibility rate for the first set of primitives and the computed
shading rate for a second set of primitives may be less than
or equal to the visibility rate for the second set of primitives.

In one embodiment, the object-space shading grid is
mipmapped and one or more levels of the mipmapped
object-space shading grid are sampled according to the
computed shading rate. In traditional mipmapping, texels at
coarse levels of the mipmap are computed by recursively
filtering the texels at finer levels. Consequently, the texel(s)
at the coarsest mip level depend on all texels at the finest
level and are not known until the finest level texel values are
available. While possible, it is impractical to use the same
technique for computing shaded values for the grid points of
a mipmapped shading grid. Rather than pre-computing the
shaded values for each point of a mipmapped shading grid,
the shaded values are computed as needed (i.e., dynami-
cally) to generate a shaded sample. Similarly, the points of
the mipmapped shading grid are deterministic and may also
be defined dynamically.

FIG. 5B illustrates another mip level 520 of the object-
space mipmapped shading grid that is defined for the primi-
tive 500, in accordance with another embodiment. In one
embodiment, the sub-triangles are substantially equal in
area. Additional vertices 511, 512, and 513 are determined
in the mip level 520 of the object-space shading grid to
define four sub-triangles. Each of the vertices 501, 502, 503,
511, 512, and 513 is also a point (i.e., intersection) in the
mipmapped object-space shading grid that is defined for the
primitive 500. In one embodiment, shaded values are com-
puted for the grid points at vertices 501, 511, and 512 and
interpolation (e.g. barycentric interpolation) is used to com-
pute the shaded sample at the sample location 505B. The
sample location 505B is substantially coincident with the
sample location 505A relative to the vertices 501, 502, and
503. In one embodiment, a first shaded sample is computed
at the sample location 505B using the mip level 520 and a
second shaded sample is computed at the sample location
505A using the mip level 510. The first and second shaded
samples are then interpolated to compute the final shaded
sample at the sample location 505B.

FIG. 5C illustrates yet another mip level 530 of the
object-space mipmapped shading grid that is defined for the
primitive 500, in accordance with another embodiment.
Additional vertices 521, 522, 523, 531, 532, 533, 540, 545,
and 550 are determined in the mip level 530 of the object-
space shading grid. Each of the vertices 521, 522, 523, 531,
532, 533, 540, 545, and 550 is also a point (i.e., intersection)
in the mipmapped object-space shading grid that is defined
for the primitive 500. In one embodiment, shaded values are
computed for the grid points at vertices 522, 531, and 550
and interpolation is used to compute the shaded sample at
the sample location 505C. The sample location 505C is
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substantially coincident with the sample locations 505A and
505B relative to the vertices 501, 502, and 503. In one
embodiment, a first shaded sample is computed at the
sample location 505C using the mip level 530 and a second
shaded sample is computed at the sample location 505B
using the mip level 520. The first and second shaded values
are then interpolated to compute the final shaded sample at
the sample location 505C.

In one embodiment, FIGS. 5A-5C illustrate three levels of
barycentric subdivision for the primitive 500 and the object-
space shading grid is a barycentric shading grid. At the
coarsest level shown in FIG. 5A, shaded values are com-
puted for the grid points that are coincident with the three
vertices 501, 502, and 503 of the parent primitive 500. To
obtain each subsequent higher-resolution level, the previous
level is subdivided into substantially congruent sub-tri-
angles. In contrast, the generation of a mipmapped texture
map processes (e.g. filters) the highest resolution texture
map to produce each subsequent lower-resolution level. As
shown in FIGS. 5A, 5B, and 5C, binary subdivision is used
to subdivide each triangle at a level into 4 sub-triangles at a
finer level. It is not necessary for barycentric shading grids
to employ binary subdivision, so other sub-division schemes
may be used. For example, in another embodiment, each
triangle is subdivided into 9 sub-triangles at a finer level.

In contrast with a texture map, a barycentric shading grid
for a primitive is fully contained within the domain of the
triangle primitive, whereas texture maps often span multiple
triangles. A barycentric shading grid is defined using
barycentric coordinates of the parent primitive, so a barycen-
tric shading grid does not require an external parameteriza-
tion. In contrast, texture maps rely on parameterization using
texture coordinates.

FIG. 5D illustrates an object-space shading grid 555 that
is defined for a narrow primitive 560, in accordance with
another embodiment. Vertices 561, 562, and 563 define the
primitive 560 and are points in the mipmapped object-space
shading grid that is defined for the primitive 560. Additional
vertices 565, 571, 581, 591, 572, 582, 592, 573, 583, 593,
575, 580, 585, 582, and 592 are determined in the object-
space shading grid 555. Each of the vertices 565, 571, 581,
591, 572, 582, 592, 573, 583, 593, 575, 580, 585, 582, and
592 is also a point (i.e., intersection) in the object-space
shading grid 555 that is defined for the primitive 560.

Use of the object-space shading grid 555 differs compared
with the mipmapped object-space grid shown in FIGS. 5A,
5B, and 5C because shaded values are not computed at the
“virtual” points 575, 580, 585, 582, and 592. Instead, when
a shaded value is needed at one of the virtual points 575,
580, 585, 582, and 592, shaded values are computed at
neighboring points and interpolated to compute a shaded
value at the respective virtual point. In one embodiment,
linear interpolation is used to compute a shaded value at one
or more of the virtual points 575, 580, 585, 582, and 592. For
example, a shaded value at the virtual point 585 may be
computed by interpolating shaded values computed at the
points 591 and 565. Similarly, a shaded value at the virtual
point 575 may be computed by interpolating shaded values
computed at the points 571 and 573. A shaded value at the
sample location 595 may be computed by interpolating
shaded values computed at virtual points 575, 585, and 580.

Referring back to FIGS. 5A, 5B, and 5C, the sample
locations 505A, 505B, and 505C, respectively within the
object-space shading grid is used to interpolate the shaded
values at the points on the object-space shading grid. When
a mipmapped object-space shading grid is used, it is also
necessary to determine which level(s) of the mipmapped
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object-space shading grid are sampled. In one embodiment,
the computed shading rate is used to determine one or more
levels of the mipmapped object-space shading grid that are
sampled.

Sampling the Object-Space Shading Grid

Following rasterization, the input that is received for
shading is a screen-space pixel fragment. When a square
shaped pixel is completely covered by a primitive of an
object, the pixel fragment is square shaped. When a square
shaped pixel is partially covered by a primitive of an object,
the pixel fragment may be polygon shaped. The input
fragment is transformed from screen-space into object-space
to produce a footprint of the input fragment in object-space.
Based on the specified shading rate for the input fragment
(e.g., samples per pixel), the mip level of the object-space
shading grid is identified that best approximates the foot-
print. In one embodiment, screen-space derivatives of the
object-space barycentric coordinates of the input pixel frag-
ment are used to estimate the size of a sub-triangle whose
area and sample count approximates the specified shading
rate. In other words, screen-space derivatives of the pixel
fragment footprint’s barycentric coordinates in object-space
are used to calculate the computed shading rate.

FIG. 6A illustrates sample pattern for a pixel 600, in
accordance with one embodiment. In one embodiment, the
sample pattern for the pixel 600 comprises four sub-pixel
samples located at the center of each quadrant (shown as
cross-hairs in FIG. 6A). In another embodiment, the sample
pattern for the pixel 600 may be jittered (i.e., randomly
distributed throughout the pixel) in order to alleviate the
aliasing artifacts. As shown in FIG. 6A, the jittered sample
locations for each pixel may be shown by the small circles
offset from each quadrant’s center.

FIG. 6B illustrates a pixel fragment 602 in screen-space,
in accordance with one embodiment. In one embodiment,
the pixel fragment 602 comprises a single pixel, such as the
pixel 600 with four sub-pixel sample locations (shown as
circles). In another embodiment, the pixel fragment 602
comprises four pixels, each with one sub-pixel sample
location. The pixel fragment 602 is a portion of the primitive
605 that has passed visibility testing (i.e., early z testing).

FIG. 6C illustrates a footprint 610 of the pixel fragment
602 in object-space, in accordance with one embodiment.
The input pixel fragment 602 is transformed from screen-
space to produce the footprint 610 in object-space. In one
embodiment, the footprint 610 is defined by barycentric
coordinates.

The primitive 605 is shown in object-space as primitive
618. The object-space shading grid that is defined for
primitive 618 comprises sixteen sub-triangles. In one
embodiment, the object-space shading grid shown in FIG.
6C is one level of a mipmapped object-space shading grid
for the primitive 618. To shade the four sample locations of
the footprint 610, shaded values should be computed for
points 611, 612, 613, 61.4, 615, 616, and 617 of the
object-space shading grid. In one embodiment, each of the
points 611, 612, 613, 614, 615, 616, and 617 is defined by
barycentric coordinates. As shown in FIG. 6C, the shaded
values computed at points 611, and 614 are shared between
two of the shaded sample locations defining the footprint
610 and the shaded value computed at point 615 is shared
between all four of the shaded sample locations defining the
footprint 610. The reuse of shaded values helps to amortize
the shading computations over multiple shading requests.
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Optimistically assuming that each shaded value will typi-
cally be shared between 6 sub-triangles, the sample count for
each sub-triangle may be set to 4. Given the specified
screen-space shading rate of R shading samples per pixel, N
is computed, where N is the approximate number of per-
edge subdivisions such that the area of the enclosing sub-
triangle A, is approximately

1

Av=3%

Therefore, N identifies the mip level of the mipmapped
object-space shading grid that should be used to compute the
shaded samples for a footprint.

The two nearest powers of 2 to N may be used identify
two mip levels of the object-space shading grid. A linear
interpolant between the two mip levels may be determined
that corresponds to the footprint of the input pixel fragment.
In one embodiment, N may be computed using derivatives
of the coordinates of the pixel fragment footprint in object-
space. The derivatives of the object-space barycentric coor-
dinates of a pixel fragment F provide an estimate of the rate
of change of the extent of a parent triangle primitive T in the
pixel fragment’s neighborhood. For example, derivatives of
the Object-space barycentric coordinates of the footprint 610
may be used to estimate the rate of change of the extent of
primitive 605 in object-space. Consider virtual triangle T,
with identical derivatives at F, but uniform derivatives
across T,. If {do, dB, dy} represent the barycentric deriva-
tives, {h,, hg, h.} as defined below represent the three
altitudes of T, measured in pixels.

do da)’(dﬁ d_ﬁ]’(dy dy]}

woapan (G SHE SHE 5

e h}_{1 1 1}
AT T ol 1dBl 1dy]

The altitudes of T, may be used to estimate the area of T,
in pixels A

1 1

111 111
(Z+ﬁ+ﬁ] (_Z+ﬁ+ﬁ]

1 1

1 1 1 . 1 1 1
(E‘E*E] (E*E‘E]
1 1
Vildel +1dBl +1dy) ¥ (=ldel +|dpl +|d¥])

1 1
Vidal-1dpI+1dy))  V(dal +1dpl - 1dy))

Ag=

A, may be used to estimate the area of a sub-triangle after N,
per-edge subdivisions A, ; and substitute its relation with
specified shading rate R:
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Thus, A, and R, N, may be estimated as:

Ng=V2-A4-R

N, obtained above is not necessarily consistent across the
shared edge between triangles and inconsistencies can pro-
duce visual seams along triangle edges. To avoid seam
artifacts, an edge-consistent level of subdivision may be
blended near triangle edges. In one embodiment, a precom-
puted per-vertex average incident area is interpolated at the
fragment F:

Ayg= A B A g F g

avg avg

Dividing A,,, by T’s world-space area A,,; provides an
edge-consistent A_. and corresponding N, near triangle
edges. A dynamic blend factor may be used such that the size
of the blend region P,,,,,, can be specified in pixels.

P
Jsmooth = LinearStep(0.0%‘jd, min(e, B, y))

N = (1 = fonoom)  Ne + fanoom " Na

In addition to identifying the two nearest mipmap levels
of the object-space shading grid using N, the sub-triangles
that enclose the barycentric coordinates defining the pixel
fragment footprint in object-space need to be identified to
compute the shaded values and the shaded samples.

FIG. 6D illustrates two nearest mip levels of a mipmapped
object-space grid 620 that are used to generate a shaded
sample for the sample location, in accordance with one
embodiment. Based on the value of N that is calculated for
the primitive 605, the mip levels 621 and 622 of the
object-space shading grid are identified and a linear inter-
polant is determined. The sample location 625 lies within a
first sub-triangle defined by points 611, 615, and 617 and
within a second sub-triangle defined by points 619, 617, and
613.

Given a discretized mip level N, the enclosing sub-
triangle for the fragment F:

{keokp ke }={laNLIB-NLIy-N]},

{kq kg, k,} uniquely identifies a sub-triangle. If (k +kg+k,)
is even, it represents an inverted sub-triangle (facing against
the parent triangle), otherwise the sub-triangle aligns the
parent triangle.

The barycentric coordinates within the enclosing sub-
triangle {cy, Bas Yar may also be obtained using the
expression for o,

1+]|e-N]—(a-N), if inverted sub — triangle
R (R

otherwise

FIG. 6E illustrates remapping of linear interpolants to use
one of two nearest mip levels of a mipmapped object-space
grid, in accordance with one embodiment. As previously
explained, a linear interpolant between the two closest mip
levels may be determined that corresponds to the footprint of
the input pixel fragment. In one embodiment, when the
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linear interpolant is close to 0 or 1, the linear interpolant is
remapped so that only one of the two mip levels is used,
reducing the number of shaded values and shaded samples
that are computed. For example, referring to FIG. 6D, the
shaded sample for the sample location 625 may be computed
by interpolating the shaded values computed for either
points 611, 615, and 617 or points 613, 617, and 619. As
shown in FIG. 6E, when the linear interpolant is 0.0-0.3,
only points of the coarser mip level are used (e.g., mip level
622) and when the linear interpolant is 0.7-1.0 only points of
the finer mip level are used (e.g., mip level 621).

After the points in the grid that are needed to compute the
shaded sample are identified, shader invocations are
launched at each point. In one embodiment, shaded values
computed at the points of the object-space grid are stored in
a cache or memory, so that shaded values that have already
been computed are not recomputed. In one embodiment,
requests from several fragments may be aggregated, dupli-
cates may be identified and removed, and shader evaluations
may then be launched for execution in a data-parallel
fashion.

When the specified shading rate is lower than the rate of
visibility, the footprint of nearby pixel fragments generally
have a significant overlap. To avoid redundant shader evalu-
ations for the overlapping points on the Object-space grid,
the output of shader evaluation should be reused. When the
footprint of a pixel fragment has been computed, the output
may be checked to determine if any of the requested shaded
values is either already computed or currently being com-
puted. For such shaded values, shader evaluations are not
launched and instead the already available output is used or
the output of a current evaluation is used when the evalu-
ation is finished. In one embodiment, reuse is achieved using
a cache that contains previously computed shaded values
and also identifies requests that are incomplete.

The shaded values that are output may also be shared
between primitives (parent primitives and/or sub-triangles.
In one embodiment, whenever two primitives share an edge
or a vertex, the points of the object-space grids for the two
primitives that lie on the shared edge/vertex are co-located.
If a surface shader is driven by per-vertex attributes, shader
inputs at the shared points are also identical. In such a
scenario, the shaded values for the shared points may be
reused between multiple (primitives. Cross-primitive reuse
is especially beneficial for scenes with small triangles, where
the proportion of shading samples lying on edges or vertices
is high. In one embodiment, for extremely dense meshes,
vertex shading may be used.

Object-Space Shading

When the object-space shading grid is a barycentric grid,
the points that are shaded always belong to the same base
triangle. As a consequence, evaluating attributes at a point
can be accomplished by barycentric interpolation of the
primitive vertex attributes. Shaders often utilize derivatives
to estimate the extent of the current shading element (e.g.,
pixel, pixel group), which is useful in appropriately filtering
to produce intermediate attribute values. Screen-space shad-
ing systems, such as modern GPUs, typically compute
attribute derivatives using finite differences across 2x2 pixel
quad shading elements. In contrast, object-space shading
systems typically obtain derivatives based on the size of the
object-space shading element, e.g. sub-triangle. However,
actual sizes of object-space shading elements do not usually
match the specified shading rate perfectly, which can result
in discontinuous derivatives. Additionally, the shapes of a
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pixel and a pixel quad in screen space (square or rectangular)
may be quite different compared with the shape of an
object-space shading element (triangular) which can result
in derivative mismatches. Consequently, in one embodi-
ment, the Object-space derivatives are adjusted to account
for the specified shading rate. Derivatives adjusted in this
manner are also known as smooth derivatives.

For shading using barycentric shading grids, derivatives
may be computed using finite differences across sub-tri-
angles in the shading grid. When finite differences are used,
derivative operations on arbitrary functions may be per-
formed, including dependent functions like texture fetches.
In one embodiment, shaded samples are computed for points
in groups of 3 or 4 to ensure that finite differences are
available to compute the derivatives. When finite differences
are computed for pixel quads, the finite differences belong to
an orthonormal basis. In contrast, finite differences com-
puted fir a group of points of a barycentric shading grid do
not belong to an orthonormal basis. As a result, the deriva-
tives are recalculated on an orthonormal basis before the
shaded sample (e.g. attribute) generated.

In one embodiment, finite differences are transformed to
an orthonormal basis using the following technique. Given
a function f(x,y), with values f,, f,, and, f, at the three
vertices Vo=(Xo, Yo), Vi=(Xy, ¥1), and v,=(X,, y,) of a
sub-triangle, the partial derivatives

(&%)

may be computed on an orthonormal basis.

FIG. 6F illustrates finite differences on a sub-triangle that
are transformed to compute derivatives in an orthonormal
basis, in accordance with one embodiment. The sub-triangle
650 is defined by the three vertices v, v, and v,.

Assuming f to be linear in the region:

¢}
f1=fo+—f'(x1

af
EP —x0)+$'(y1—yo)

¢} ¢}
f2=f0+a—£'(xz—xo)+£'(yz—yo)

This system of equations can be expressed as Af'=B, where:

A_(Xl—xo yl—yo]
X2 —Xo Y2~ Yo

(3°%)

The system of equations may be solved for non-degenerate
triangles using Cramer’s rule:

&%)

af (AuBo - Ao By
ax’ dy

Ao B1 — Ao Bo ]
|Al ’

1Al

For object space derivatives, A is constructed assuming
(x;-%Xo)=1 and (y;~y)=0, and set (x,—X,) and (y,~y,) using
the ratio of lengths and the angle between (v,-v,) and
(V2=Vo)-
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In order to provide consistent derivatives that closely
correspond to the specified shading rate, screen-space can be
optionally used as the orthonormal basis while the deriva-
tives are recalculated. Using screen-space helps obtain accu-
rate screen-space derivatives, but at the cost of extra com-
putation.

When screen-space derivatives are computed, A is con-
structed to correspond to the actual screen-space locations of
the vertices of the sub-triangle. Let these locations be S, S;,
and S, respectively.

[Si—SE

1_ 0
Sy =5y
si-s?

2 _ 0
Sy =5y

The terms of A are screen-space coordinates, estimated by
transforming vertices of the local triangle. In other words,

) H-Vi %4
KT N 7
Z-Vz‘-tan(z) z
g H-Vi ——f-ﬁ
Y ) 0y~ Vi
Z-Vz‘-tan(z) ‘

Where V', V./, V./ are the eye-space coordinates of the
local triangle, H is the height of the viewpoint in pixels, and
0 is the vertical field of view. Substituting H and 0 into A,
produces:

1 0

Ve V0V Yy

. VITVD VITW
A=—f-

2 0

i vy Yy

viovp viovy

Then & is defined as the following:

§=vi-v

par \par
Vit -%

Where V£ are the parent triangle’s vertices in eye space,
and A'=(VPY-V ). VP is then substituted into A. For
brevity only A,, is shown for the next few steps. Other
entries of A are similar in form.

VO + 6t

A VXO

i)
VI (V2 + 3L
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Approximating V_°~(V_°+3_%) in the denominator:

f ( 1 VXO 1
Agp = ——-|6l - X .5
(72 W7
=_ Js .(I_V_XO.AI]
7
VO
=-K- Al——X-Al]
( X Vzo z
Thus, A is now:
v? vy
Al- oAl A= el
A——K z z
= o v
A2 ZE A2 A2 X A2
X VZO Z y VZO Z
IAl is computed as:
1 1 1 1 1 1
Aok AU AL v (AL AL VD (AL A
A2 A2| VP |2 A2] VP A2 A2

All three determinants in the above expression are per-
triangle constants, so the determinants only need to be
computed once per triangle. Thus

1
1Al

can be computed more easily than directly transforming
vertices of the sub-triangle from object-space to screen-
space. Computing derivatives in this fashion amortizes the
computation required to compute one derivative across the
triangle.

FIG. 7A illustrates a block diagram 700 for identifying
points of an object-space shading grid at which shaded
samples will be computed, in accordance with one embodi-
ment. An input fragment that is defined by vertices in
screen-space is received by a transform unit 705. The input
fragment is at least one sub-pixel in size and may be larger
than one or more pixels. The input fragment is a portion of
an object that includes one or more primitives. When early
z-testing is performed, the portion of the object corresponds
to a visible portion of the object. The transform unit 705
transforms the vertices from screen space to object space to
produce a transformed vertex set corresponding to the input
fragment. The transformed vertices define a footprint of the
input fragment in object-space.

A grid definition unit 710 receives the transformed vertex
set and defines an object-space shading grid for each primi-
tive that is covered by the footprint. In one embodiment, a
separate, primitive-specific object-space shading grid is
defined for each primitive. In another embodiment, an
object-space shading grid is defined for two or more primi-
tives that are covered by the footprint. The one or more
object-space shading grids for a primitive or primitives may
be successively subdivided into sub-triangles to generate a
mipmapped object-space shading grid for the respective
primitive or primitives. The grid definition unit 710 identi-
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fies at least one mip level to be sampled based on the
footprint. In one embodiment, the grid definition unit 710
identifies at least one mip level having sub-triangles that
most closely match the area of the footprint. In one embodi-
ment, the grid definition unit 710 computes the value N and
identifies the at least one grid mip level based on N. In one
embodiment, when two or more grid mip levels are identi-
fied, the grid definition unit 710 also computes the linear
interpolant needed to compute a shaded sample based on the
shaded values corresponding to two or more grid mip levels.

A grid point selection unit 715 receives the at least one
grid mip level and identifies one or more sub-triangles that
intersect the sample locations, where the sample locations
are the vertices that define the footprint. The grid point
selection unit 715 selects points of the object-space shading
grid for which shaded values are computed. The selected
points are “sample points™ corresponding to vertices of a
sub-triangle that encloses a sample location.

After the points of the object-space shading grid at which
shaded values will be computed are identified, a shaded
value may be computed for each point. A parallel shading
unit 720 receives the sample points and launches a shader to
compute a shaded value at each sample point. The computed
shaded samples may comprise one or more shaded attributes
associated with the input fragment. In one embodiment, the
shaded values are computed as described in conjunction
with FIG. 7B.

The shaded values may then be filtered by a sample
filtering unit 725 based on the linear interpolant related to N
and the sample location relative to the sample points (i.e.,
vertices of the enclosing sub-triangle). In one embodiment,
a shaded sample is computed using barycentric interpolation
within a first mip level and a second mip level to generate
a first and second shaded sample. The first and second
shaded samples are then interpolated based on the linear
interpolant related to N to produce the final shaded sample.

FIG. 7B illustrates a flowchart of a method 750 for
computing per-sample shaded attributes for pixels, in accor-
dance with one embodiment. Performing the method steps,
in any order, is contemplated as being within the context of
this disclosure. One or more of the steps shown in FIG. 7B
may be performed by the parallel shading unit 720 shown in
FIG. 7A. At step 760, finite differences for a sub-triangle
defined by points of an object-space shading grid are com-
puted. In one embodiment, the processing pipeline may be
the graphics processing pipeline 400 and the fragment
shading stage 470 may be implemented by an SM 250 that
is configured to execute instructions of the shader program.
At step 765, the finite differences are transformed from
object space to an orthonormal basis. In one embodiment,
the orthonormal basis is screen space. At step 770, shaded
attributes are computed for each point. At step 775, the
shaded attributes are filtered to produce a final shaded
sample within the sub-triangle. In one embodiment, step 775
is performed by the sample filtering unit 725 shown in FIG.
7A.

Because the shading is performed in object-space the
temporal artifacts may be reduced, producing images that
appear to be higher quality even when the shading rate is
reduced. Additionally, the shading rate may vary across an
object and even within a primitive. The shading rate may
also vary independent of the visibility rate. Finally, because
the object-space shading grid is in object space, the shading
grid does not necessarily change with each movement of the
camera. Instead, the shading grid is updated when the object
geometry changes.

FIG. 8 illustrates an exemplary system 800 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a
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system 800 is provided including at least one central pro-
cessor 801 that is connected to a communication bus 802.
The communication bus 802 may be implemented using any
suitable protocol, such as PCI (Peripheral Component Inter-
connect), PCI-Express, AGP (Accelerated Graphics Port),
HyperTransport, or any other bus or point-to-point commu-
nication protocol(s). The system 800 also includes a main
memory 804. Control logic (software) and data are stored in
the main memory 804 which may take the form of random
access memory (RAM).

The system 800 also includes input devices 812, a graph-
ics processor 806, and a display 808, i.e. a conventional CRT
(cathode ray tube), LCD (liquid crystal display), LED (light
emitting diode), plasma display or the like. User input may
be received from the input devices 812, e.g., keyboard,
mouse, touchpad, microphone, and the like. In one embodi-
ment, the graphics processor 806 may include a plurality of
shader modules, a rasterization module, etc. Each of the
foregoing modules may even be situated on a single semi-
conductor platform to form a graphics processing unit
(GPU).

In the present description, a single semiconductor plat-
form may refer to a sole unitary semiconductor-based inte-
grated circuit or chip. It should be noted that the term single
semiconductor platform may also refer to multi-chip mod-
ules with increased connectivity which simulate on-chip
operation, and make substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple-
mentation. Of course, the various modules may also be
situated separately or in various combinations of semicon-
ductor platforms per the desires of the user.

The system 800 may also include a secondary storage
810. The secondary storage 810 includes, for example, a
hard disk drive and/or a removable storage drive, represent-
ing a floppy disk drive, a magnetic tape drive, a compact
disk drive, digital versatile disk (DVD) drive, recording
device, universal serial bus (USB) flash memory. The
removable storage drive reads from and/or writes to a
removable storage unit in a well-known manner.

Computer programs, or computer control logic algo-
rithms, may be stored in the main memory 804 and/or the
secondary storage 810. Such computer programs, when
executed, enable the system 800 to perform various func-
tions. The memory 804, the storage 810, and/or any other
storage are possible examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the central processor 801, the graphics processor
806, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the central proces-
sor 801 and the graphics processor 806, a chipset (i.e., a
group of integrated circuits designed to work and sold as a
unit for performing related functions, etc.), and/or any other
integrated circuit for that matter.

Still yet, the architecture and/or functionality of the vari-
ous previous figures may be implemented in the context of
a general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired sys-
tem. For example, the system 800 may take the form of a
desktop computer, laptop computer, server, workstation,
game consoles, embedded system, and/or any other type of
logic. Still yet, the system 800 may take the form of various
other devices including, but not limited to a personal digital
assistant (PDA) device, a mobile phone device, a television,
etc.
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Further, while not shown, the system 800 may be coupled
to a network (e.g., a telecommunications network, local area
network (LAN), wireless network, wide area network
(WAN) such as the Internet, peer-to-peer network, cable
network, or the like) for communication purposes.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.

What is claimed is:

1. A method comprising:

receiving an object defined by a plurality of triangle

primitives in a three-dimensional (3D) space that is
specific to the object;

defining an object-space shading grid for at least one of

the plurality of triangle primitives based on coordinates
at vertices of the at least one triangle primitive in the
3D space,
wherein a shape of an object-space shading element
corresponds to a shape of the at least one triangle
primitive, wherein the object-space shading grid com-
prises at least one object-space shading element; and

executing, by a processing pipeline, a shader program to
compute a shaded value at a point on the object-space
shading grid for a first triangle primitive.

2. The method of claim 1, wherein the vertices comprise
a first vertex, a second vertex, and a third vertex that define
the first triangle primitive and the point corresponds to the
first vertex.

3. The method of claim 2, further comprising:

executing, by the processing pipeline, the shader program

to compute a second shaded value at a second point that
corresponds to the second vertex; and

executing, by the processing pipeline, the shader program

to compute a third shaded value at a third point that
corresponds to the third vertex.
4. The method of claim 3, further comprising computing
a shaded sample at a location within the first triangle by
interpolating the first, second, and third shaded values.
5. The method of claim 1, wherein the object-space
shading grid comprises an additional level comprising only
vertex positions of four sub-triangles produced by bisecting
each edge of the first triangle primitive.
6. The method of claim 5, wherein the additional level of
the object-space shading grid is dynamically generated
during execution of the shader program.
7. The method of claim 1, wherein the object-space
shading grid is mipmapped such that each higher resolution
mip level is generated by subdividing a lower resolution mip
level into substantially congruent sub-triangles within the
first triangle primitive.
8. The method of claim 7, further comprising:
transforming a screen-space pixel into the 3D space that
is specific to the object to generate a footprint; and

identifying a first mip level of the mipmapped object-
space shading grid that includes a sub-triangle having
an area that most closely approximates an area of the
footprint.

9. The method of claim 8, further comprising identifying
a second mip level of the mipmapped object-space shading
grid that includes a sub-triangle having an area that closely
approximates the area of the footprint.
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10. The method of claim 9, further comprising executing
the shader program to compute a second shaded value at a
second point on the object-space shading grid for the sub-
triangle.
11. The method of claim 10, wherein the sub-triangle is
defined by the point, the second point on the object-space
shading grid, and a third point on the object-space shading
grid.
12. The method of claim 11, further comprising:
executing the shader program to compute a third shaded
value at the third point for the sub-triangle; and

computing a shaded sample at a sample location within
the sub-triangle based on the shaded value, the second
shaded value, and the third shaded value.

13. The method of claim 1, further comprising:

transforming a screen-space pixel into the 3D space that

is specific to the object to generate a footprint defined
by at least a first sample location; and

determining that a sub-triangle within the first triangle

encloses the first sample location.

14. The method of claim 13, further comprising, execut-
ing the shader program to compute a second shaded value at
a second point on the object-space shading grid that corre-
sponds to a first vertex of the sub-triangle.

15. The method of claim 1, further comprising updating
the object-space grid in response to a change in a shape of
the first triangle primitive.

16. The method of claim 1, further comprising computing
a dynamic shading rate for the first triangle primitive that
varies within the first triangle primitive and is used to sample
the object-space shading grid for the first triangle primitive.

17. A system comprising:

a processing pipeline that is configured to:

receive an object defined by a plurality of triangle primi-

tives in a three-dimensional (3D) space that is specific
to the object;
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define an object-space shading grid for at least one of the
plurality of triangle primitives based on coordinates at
vertices of the at least one triangle primitive in the 3D
space,

wherein a shape of an object-space shading element

corresponds to a shape of the at least one triangle
primitive, wherein the object-space shading grid com-
prises at least one object-space shading element; and

execute a shader program to compute a shaded value at a

point on the object-space shading grid for a first tri-
angle primitive.

18. The system of claim 17, wherein the object-space
shading grid is mipmapped such that each higher resolution
mip level is generated by subdividing a lower resolution mip
level into substantially congruent sub-triangles within the
first triangle primitive.

19. The system of claim 17, wherein the object-space
shading grid comprises an additional level comprising only
vertex positions of four sub-triangles produced by bisecting
each edge of the first triangle primitive.

20. A non-transitory computer-readable storage medium
storing instructions that, when executed by a processor,
causes the processor to perform steps comprising:

receiving an object defined by a plurality of triangle

primitives in a three-dimensional (3D) space that is
specific to the object;

defining an object-space shading grid for at least one of

the plurality of triangle primitives based on coordinates
at vertices of the at least one triangle primitive in the
3D space,
wherein a shape of an object-space shading element
corresponds to a shape of the at least one triangle
primitive, wherein the object-space shading grid com-
prises at least one object-space shading element; and

executing, by a processing pipeline, a shader program to
compute a shaded value at a point on the object-space
shading grid for a first triangle primitive.
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