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(57) ABSTRACT

This application discloses techniques for generating and
querying projective hash maps. More specifically, projective
hash maps can be used for spatial hashing of data related to
N-dimensional points. Each point is projected onto a pro-
jection surface to convert the three-dimensional (3D) coor-
dinates for the point to two-dimensional (2D) coordinates
associated with the projection surface. Hash values based on
the 2D coordinates are then used as an index to store data in
the projective hash map. Utilizing the 2D coordinates rather
than the 3D coordinates allows for more efficient searches to
be performed to locate points in the 3D space. In particular,
projective hash maps can be utilized by graphics applica-
tions for generating images, and the improved efficiency
can, for example, enable a game streaming application on a
server to render images transmitted to a user device via a
network at faster frame rates.
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1
PROJECTIVE HASH MAPS

TECHNICAL FIELD

The present disclosure relates to data structures. More
specifically, the embodiments set forth below describe tech-
niques for generating projective hash maps using a processor
or graphics processing unit. The embodiments disclosed
herein are applicable to, among other technologies, use in
computer rendering algorithms.

BACKGROUND

Hash maps are a powerful tool for indexing sparse data.
They are particularly useful in accelerating computer ren-
dering algorithms such as code utilized by video games.
Hash maps can help to run these games at higher frame rates
or to produce more photo-realistic graphics. Hash maps can
be built in a first phase of an algorithm and then accessed
during a second phase of the algorithm to speed up querying
and data access. In some cases, a graphics processing unit
can query a hash map in constant time. As one example,
spatial hashing is often utilized to store and retrieve render-
ing-related information located in a three-dimensional (3D)
world (e.g., data associated with a 3-element coordinate
vector such as <x, y, z>). In such embodiments, the 3D
coordinate (e.g., a hash key) can be processed by a hash
function to generate a hash value based on the 3D coordi-
nate. The data related to the location is then stored in the
hash map based on the hash value. Moreover, such tech-
niques can be easily extended to handle higher dimensional
data by generating hash keys that include non-spatial prop-
erties, such as a normal vector, a level of detail (LOD), a
timestamp, and so forth. An example of the use of spatial
hashing is disclosed in Binder et al., “Fast Path Space
Filtering by Jittered Spatial Hashing,” which is incorporated
by reference herein in its entirety.

An important drawback when using spatial hash maps is
that locating spatially neighboring information typically
requires the processor to perform an exhaustive search over
all non-empty neighboring cells. In three-dimensions, such
operations exhibit cubic complexity O(N"3) and, therefore,
it is only practical for very small regions of space. In a
special case of small-curvature surfaces, spatial queries can
be restricted to a local surface tangent plane. This can reduce
the complexity of the search from O(N"3) to O(N"2), which
is obviously preferable, but even this optimization breaks
down for large search areas, non-planar surfaces, or if data
is inserted into the hash map after a perspective projection.

Because locating spatially neighboring data is a very
important operation in computer graphics (e.g., image fil-
tering), it would be advantageous to efficiently retrieve
neighboring data in a hash map. Thus, there is a need for
addressing these issues and/or other issues associated with
the prior art.

SUMMARY

Embodiments of the present disclosure relate to projective
hash maps. Systems and methods are disclosed that allow for
accelerated searching of non-empty cells in the hash map by
replacing a search in 3D space with a search along a 2D
projection surface. Reducing the number of dimensions of
the hash key decreases the complexity of a spatial search
over a local region in the 3D space.

In contrast to conventional systems, such as those
described above, one or more projective hash maps are
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generated based on a projection of N-dimensional points
onto a projection surface (e.g., a hypersurface of dimension
N-1), where the projected coordinates on the projection
surface are utilized to generate the hash key for the data for
the point inserted into the projective hash map.

In accordance with one aspect of the present disclosure, a
computer-implemented method for generating a projective
hash map is described. The method includes receiving data
associated with a plurality of points in an N-dimensional
space. For each point in the plurality of points, the method
further includes: projecting the point onto a projection
surface to generate projected coordinates for the point;
generating a hash value for the point based on a hash key that
includes the projected coordinates; and adding data corre-
sponding to the point to a data structure for the projective
hash map based on the hash value. The projected coordinates
have less than N dimensions.

In some embodiments, the N-dimensional space is a
three-dimensional space, and the projected coordinates
include two-dimensional coordinates <u, v>.

In some embodiments, the data is generated by a graphics
application that is configured to render an image for display
in accordance with a virtual camera position in the N-di-
mensional space. The projection surface is one of a plurality
of projection surfaces arranged around the virtual camera
position, and a first projection surface is co-planar with a
near plane of a view frustum of the image. In an embodi-
ment, projecting the point onto the projection surface com-
prises determining a surface index for a particular projection
surface of the plurality of projections surfaces that intersects
a ray that connects the point and the virtual camera position.

In some embodiments, the hash key further includes the
surface index.

In some embodiments, the method further includes que-
rying the data structure using a plurality of hash values. At
least two hash values are generated based on hash keys that
include different surface index values.

In some embodiments, the N-dimensional space is a
three-dimensional space, the projection surface comprises a
spherical surface, and the projected coordinates include
two-dimensional coordinates <6, @>.

In some embodiments, the hash key further includes a
level-of-detail (LOD) indicator. Adding the data correspond-
ing to the point to the data structure includes: generating
multiple hash values for different LOD indicator values; and
adding multiple copies of the data to the data structure in
accordance with the multiple hash values.

In some embodiments, the data is generated by a graphics
application that is configured to render an image for display.
The image is rendered in accordance with a virtual camera
position in the N-dimensional space. The projection surface
is located in the N-dimensional space relative to the virtual
camera position to match a viewing plane of the image
within the graphics application, and a level-of-detail (LOD)
corresponding to a subdivision the projection surface
matches a pixel resolution of the image.

In some embodiments, the hash key further includes a
slice index based on a dimension d. The dimension d
indicates a distance from the point to a virtual camera
position associated with the projection surface or a distance
from the point to the projection surface.

In some embodiments, the method further includes que-
rying the projective hash map by: identifying a search area
on the projection surface based on projected coordinates of
a query point in the N-dimensional space; determining a
plurality of hash values corresponding to the search area;
and querying the projective hash map in accordance with the
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plurality of hash values for the search area to determine
whether the projective hash map includes data for points
that, when projected onto the projection surface, intersect
the search area.

In some embodiments, at least one of the projected
coordinates is quantized according to a quantization param-
eter prior to generating the hash key.

In some embodiments, the projective hash map is gener-
ated by a server or in a data center and utilized by a graphics
application to generate an image. The image may be
streamed to a user device via a network.

In some embodiments, the projective hash map is utilized
by a graphics application to generate an image used for
training, testing, or certifying a neural network employed in
a machine, robot, or autonomous vehicle.

In accordance with a second aspect of the present disclo-
sure, a system is described that includes a memory and a
processor. The memory is configured to store data associated
with a plurality of points in an N-dimensional space and a
data structure for a projective hash map. The processor is
configured to generate the projective hash map by, for each
point in the plurality of points: project the point onto a
projection surface to generate projected coordinates for the
point; generate a hash value for the point based on a hash key
that includes the projected coordinates; and add data corre-
sponding to the point to the data structure for the projective
hash map based on the hash value. The projected coordinates
have less than N dimensions.

In some embodiments, the N-dimensional space is a
three-dimensional (3D) space, and the projected coordinates
include two-dimensional (2D) coordinates <u, v>. The data
is generated by a graphics application that is configured to
render an image for display in accordance with a virtual
camera position in the 3D space. The projection surface is
one of a plurality of projection surfaces arranged around the
virtual camera position, and a first projection surface
matches a near plane of a view frustum of the image.

In some embodiments, projecting the point onto the
projection surface includes determining a surface index for
a particular projection surface of the plurality of projection
surfaces that intersects a ray that connects the point and the
virtual camera position. The hash key further includes the
surface index.

In some embodiments, the N-dimensional space is a
three-dimensional space, the projection surface comprises a
spherical surface, and the projected coordinates include
two-dimensional coordinates <6, @>.

In some embodiments, the hash key further includes a
level-of-detail (LOD) indicator. Adding the data correspond-
ing to the point to the data structure includes: generating
multiple hash values for different LOD indicator values; and
adding multiple copies of the data to the data structure in
accordance with the multiple hash values.

In some embodiments, the processor and the memory are
included in a server or in a data center and the projective
hash map is utilized by a graphics application to generate an
image. The image may be streamed to a user device via a
network.

In some embodiments, at least one of the projected
coordinates is quantized according to a quantization param-
eter prior to generating the hash key.

In accordance with a third aspect of the present disclosure,
a non-transitory computer-readable media is described for
storing computer instructions. The computer instructions
cause one or more processors to generate a projective hash
map for storing data associated with a plurality of points in
an N-dimensional space. The one or more processors,
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responsive to executing the computer instructions, perform
the step of receiving data associated with a plurality of
points in an N-dimensional space. The one or more proces-
sors further perform the steps of, for each point in the
plurality of points: projecting the point onto a projection
surface to generate projected coordinates for the point;
generating a hash value for the point based on a hash key that
includes the projected coordinates; and adding data corre-
sponding to the point to a data structure for the projective
hash map based on the hash value. The projected coordinates
have less than N dimensions.

BRIEF DESCRIPTION OF THE DRAWINGS

The present systems and methods for generating and
querying projective hash maps are described in detail below
with reference to the attached drawings.

FIG. 1A illustrates spatial partitioning of a three-dimen-
sional space, in accordance with the prior art.

FIG. 1B illustrates a projection operation associated with
a flat surface, in accordance with some embodiments.

FIG. 1C illustrates a division of a projection surface into
multiple levels of detail, in accordance with some embodi-
ments.

FIG. 1D illustrates a projection operation associated with
a spherical surface, in accordance with other embodiments.

FIG. 2A illustrates a system for generating a projective
hash map, in accordance with some embodiments.

FIG. 2B illustrates a world space associated with the
projective hash map, which is subdivided into slices, in
accordance with some embodiments.

FIG. 3 A illustrates a flowchart of a method for generating
a projective hash map, in accordance with an embodiment.

FIG. 3B illustrates a flowchart of a method for querying
a projective hash map to find neighboring points, in accor-
dance with an embodiment.

FIG. 4 illustrates an example parallel processing unit
suitable for use in implementing some embodiments of the
present disclosure.

FIG. 5A is a conceptual diagram of a processing system
implemented using the PPU of FIG. 4, suitable for use in
implementing some embodiments of the present disclosure.

FIG. 5B illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented.

FIG. 5C illustrates components of an exemplary system
that can be used to train and utilize machine learning, in at
least one embodiment.

FIG. 6A is a conceptual diagram of a graphics processing
pipeline implemented by the PPU of FIG. 4 suitable for use
in implementing some embodiments of the present disclo-
sure.

FIG. 6B illustrates an exemplary game streaming system
suitable for use in implementing some embodiments of the
present disclosure.

DETAILED DESCRIPTION

Systems and methods are disclosed related to projective
hash maps. More specifically, projective hash maps can be
used, among other applications, for spatial hashing of data
related to three-dimensional (3D) points. Each point added
to the projective hash map is projected onto a projection
surface to convert the 3D coordinates for the point to 2D
coordinates associated with the projection surface. The
projected coordinates on the surface are then used to gen-
erate a hash key that is processed by a hash function to
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generate a hash value for the point. The hash value is then
used as an index to store data in the projective hash map.

The projective hash map can simplify queries of the data
structure to speed up an algorithm that searches for neigh-
boring points. Instead of needing to perform an exhaustive
search in three dimensions, the search can be performed in
two dimensions, and then the values found can be analyzed
to determine if the results match a criteria for the third
dimension. This can significantly reduce the complexity of
the search operation. More particularly, projective hash
maps can speed up operations in rendering applications
(e.g., video games) such as searching for other rays that
intersect a surface near a different ray in a ray-tracing
algorithm. By being able to search the set of rays projected
through the scene faster, a given video frame can be pro-
cessed faster, allowing more realistic images to be generated
or allowing more frames to be generated per second, thereby
providing a better experience for a player of the video game.
Of course, projective hash maps are not confined to a video
game context and any algorithm that could benefit from
spatial hashing may be improved by incorporating a projec-
tive hash map into the algorithm.

The projective hash map can be utilized in a wide variety
of applications that process spatial data (i.e., point data or
geometry data). Graphics applications for rendering images
based on model data are particularly suited to utilize pro-
jective hash maps to speed up various operations. In par-
ticular, an application can utilize a projective hash map to
quickly query any objects that may be visible at a particular
screen location (e.g., pixel location) of an image.

FIG. 1A illustrates spatial partitioning of a three-dimen-
sional space, in accordance with the prior art. Spatial par-
titioning refers to a technique for dividing a space into two
or more subsets, which allows the space to be represented by
a variety of different data structures. For example, spatial
partitioning can store data related to points in a space in
binary space partitioning (BSP) trees, k-d trees, or octrees.
Spatial partitioning is particularly useful for optimizing
various algorithms in computer graphics.

As depicted in FIG. 1A, a world space 100 can be divided
by three mid-planes to split the world space 100 into octants
(as shown by the dashed lines). As used herein, a world
space is defined as a three-dimensional Euclidean space. A
point 102 lies in one of the octants 104 (shown with solid
lines). In some applications, data for the point 102 can be
added to a data structure that is used to accelerate certain
operations.

In one example, the data can be stored in a data structure
referred to as an octree. A root node of the octree represents
the world space 100, and each node in the octree includes
eight child nodes, with each child node representing one of
the octants of the space corresponding to the parent node.
Each child node of the root node can then include eight child
nodes, each child node representing an octant of the space
represented by the parent node, and so on and so forth. The
octree can be balanced, where all of the leaf nodes are
located at the same depth of the octree, or unbalanced, where
each octant can be recursively subdivided as needed depend-
ing on the distribution of points in the space, and each leaf
node stores either the data or a pointer to the data inserted
into the octree based on the index generated using the spatial
coordinates. If the size of the data is fixed, then the data can
be stored in the octree directly. Alternatively, if the size of
the data is variable or multiple entries can be stored for each
index (e.g., due to collisions), then a pointer to the data in a
separate data structure (e.g., a linked list) can be stored in the
octree.
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It will be appreciated that each octant can be recursively
split into additional smaller octants to subdivide the world
space 100 into smaller subdivisions in order to reduce the
chance that two proximate points lie in the same subdivision
of the world space 100. However, further division of the
world space 100 into smaller and smaller subdivisions will
likely result in a sparsely populated octree due to the spatial
distribution of the original keys (e.g., point distribution).
The octree, therefore, is not a compact way to store data for
points that are sparsely populated in the world space 100.
Further, using larger subdivisions of the world space 100 can
lead to large numbers of collisions with multiple points
corresponding to the same subdivision of the world space
100, which can decrease the efficiency of the optimization.

One solution to this problem is spatial hashing. In spatial
hashing, a hash function uses the spatial coordinates of a
point as a key to generate a hash value. It will be appreciated
that hash functions are typically designed to distribute the
data approximately uniformly among the available buckets
(e.g., unique hash values) regardless of the distribution of
the keys used to generate the hash values. However, such
hash functions can cause data for two keys having a short
Euclidean distance between the keys to be stored in different
buckets having a large distance between the corresponding
hash values. In other words, even keys (e.g., 3D coordinates)
located next to each other can result in hash values that are
vastly different. This can complicate a search for data for
other points proximate a given point because that data can be
widely distributed within the hash map.

FIG. 1B illustrates a projection operation 150 associated
with a flat surface, in accordance with some embodiments.
While using spatial hash maps has benefits such as reducing
the time required to locate data related to a particular
location in the world space, the ability to search for data
within a particular volume is much more complicated as the
function of the points within the volume to hash values is not
typically a simple linear transformation. One technique to
reduce the complexity of the search is to reduce the dimen-
sionality of the hash key.

In some embodiments, the coordinates of a point in the
world space are projected onto a surface to generate a set of
projected coordinates. In the case of 3D coordinates, the
projected coordinates can be 2D coordinates <u, v> defined
for a projection surface. As shown in FIG. 1B, a projection
surface 110 can be defined in the world space. In an
embodiment, the projective hash map is utilized in a com-
puter graphics application that is configured to render a
scene based on 3D geometry (e.g., points, lines, triangles,
and other graphics primitives). The graphics application can
define a virtual camera 112 location and orientation in the
world space. The graphics application can also define a view
plane relative to the virtual camera 112 that is subdivided
into a number of picture elements (e.g., pixels) that define
the components of a rendered image that is presented on a
display. The view plane defines a frustum that encompasses
all points in the world space that are visible to the virtual
camera 112.

In an embodiment, the projection surface 110 may contain
a view plane of the graphics application. In other words, a
particular projection surface may be co-planar with a near
plane of a view frustum of the image generated by the
graphics application. In some embodiments, the projection
surface 110 can have a larger spatial extents than the view
plane (i.e., at least some of the rays that intersect the
projection surface 110 are not visible in the images produced
by the application). In some cases, the projection surface 110
may be equal to the view plane when a field of view of the
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virtual camera 112 is exactly 90 degrees and an image aspect
ratio is 1:1. When processing points in the world space to
add data to the projective hash map, a point 102 is projected
onto the projection surface 110 to determine a point on the
projection surface 110 corresponding to the point 102. As
shown in FIG. 1B, a ray 114 can be projected from the point
102 to the virtual camera 112, and an intersection between
the ray 114 and the projection surface 110 defines the point
on the projection surface 110, namely the projected coordi-
nates.

The projected coordinates are then processed by a hash
function to generate the hash value, which is used to insert
data related to the point 102 into the projective hash map. In
some embodiments, the hash function can be a standard hash
function such as message digest 5 (MD5), secure hashing
algorithm 2 (e.g., SHA-256, SHA-512, etc.), and the like, or
can be a custom hash function designed for a particular
application (e.g., any cryptographic hash function that pro-
vides a fixed length hash value).

As an example, a 3D point located at <3, 4, 5> might be
projected onto a projection surface that converts the 3D
point to a projected point of <1, 3>. The hash function then
converts the point <1, 3> into a hash value of; e.g., 256-bits
in length, which is used to store data into the projective hash
map. Any conventional hash table format may be used as the
data structure for storing the data in the projective hash map.

In some embodiments, the data format of the coordinates
in the world space is a floating point format (e.g., 32-bit
single precision floating point format defined by IEEE 754).
In other embodiments, the data format of the coordinates in
the world space can be fixed point or integer formats. In
some embodiments, the data format of the coordinates in the
projection surface can be an integer format (e.g., 16-bit
integers) or a fixed point format (e.g., Q1.15). It will be
appreciated that performing a search over the projection
surface using a floating point format for coordinate values
would be excessively complicated and the distance between
adjacent coordinates would increase as the coordinates got
larger. Therefore, floating point values for coordinates of the
projection surface are discouraged. By choosing a fixed
point or integer representation of the projection surface
coordinates, each discrete coordinate value can be fixed and
equidistant from other coordinates at the same level-of-
detail, as discussed more fully below.

As the hash functions are designed to process a bit stream,
the input to the hash function can be generated by appending
the projected coordinates sequentially to create the bit
stream. For example, the first 16 bits of the bit stream
represent the u coordinate and the second 16 bits of the bit
stream represent the v coordinate of the projection surface
110. In some embodiments, the hash key can also include
other values, such as a LOD indicator in multi-level pro-
jective hash maps. It will be appreciated that, as applied to
spatial hashing of a 3D space, while the key to the hash
function can include more than two dimensions, the number
of spatial dimensions is limited to two dimensions to enable
more efficient spatial queries. However, the concepts
described herein for 3D spaces can be extended to N-di-
mensional spaces (e.g., 4-dimensional, 5-dimensional, etc.)
projected into a smaller number of dimensions (e.g., N-1)
for processing by a hash function.

It will be appreciated that, unlike the case of standard
spatial hashing using 3D coordinates, all points that lie on
the ray 114 project to the same point on the projection
surface 110. This makes locating points along the ray 114
relatively straightforward as they cause a collision when
being inserted into the projective hash map. However, any
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points located even slightly off the ray 114 that have
different projected coordinates will generate a different hash
value. Nevertheless, a search within a local area on the
projection surface 110 can locate all points neighboring
point 102. Such a search will actually return any points
within a search frustum that includes the ray 114, and such
points may or may not be “close” to point 102 as such points
may be located at any depth d from the virtual camera 112.
Nevertheless, an exhaustive search of points within a local
area on the projection surface has complexity of O(N"2)
rather than the complexity of O(N"3) as with traditional
spatial hashing and can significantly improve the efficiency
of querying the projective hash map for neighboring points.

It will also be appreciated that not all points in the world
space will be projected onto the projection surface 110, as
any points outside of the viewing frustum may not intersect
the view plane when projected back to the virtual camera
112. In some embodiments, a set of projection surfaces are
defined corresponding to a set of complementary projective
hash maps. In an embodiment, a cube can be defined that
includes six projection surfaces that intersect at twelve
edges. Projecting a ray from the virtual camera 112 through
the point 102 will intersect exactly one of the six projection
surfaces (unless the ray intersects exactly one of the edges
or vertices shared by two or three projection surfaces of the
cube). The projected coordinates are generated for that
projection surface along with a surface index (e.g., 0...5)
corresponding to the intersected projection surface. The
hash function then converts the projected coordinates into a
hash value, and the data for the point is then added to a
particular projective hash map corresponding to the surface
index. In some embodiments, where the ray intersects an
edge between two projection surfaces, or even a vertex
shared by three projection surfaces of the cube, the data can
be added to both (or all three) projective hash maps corre-
sponding to the edge (or vertex).

In one embodiment, separate data structures are generated
and stored in the memory for each distinct projection
surface. In this case, the hash value is based on a key that
includes the two projected coordinates but not the surface
index, which is only used when selecting which data struc-
ture to insert the corresponding data. In another embodi-
ment, a single projective hash map is generated and stored
in the memory for all six projection surfaces, and the hash
value is based on a key that includes the projected coordi-
nates as well as the surface index. Even if the six projection
surfaces utilize similar projected coordinate ranges such that
the same coordinates are associated with different locations
on the six different projection surfaces, the addition of the
surface index to the hash key is enough to cause the same
projected coordinates to hash to different hash values in
order to avoid collisions in the projective hash map.

It will be appreciated that, in some embodiments, the cube
(i.e., where all six projection surfaces are of equal size) can
be a prism (i.e., where six projections surfaces are of
unequal size). For example, where a view frustum is asso-
ciated with a view plane that has different dimensions in the
horizontal and vertical dimension (e.g., corresponding to a
1,920 pixelx1,080 pixel image), then four projection sur-
faces of the cube (e.g., the “sides™) can be rectangular while
two projection surfaces (e.g., the “top” and “bottom™) can be
square, forming a rectangular prism.

It will also be appreciated that points between the pro-
jection surface 110 and the virtual camera 112 can be
projected out towards the projection surface whereas points
beyond the projection surface 110 can be projected back
towards the virtual camera 112. In this manner, all points in
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the world space (with the exception of the location of the
virtual camera 112) have a corresponding projected coordi-
nate. In an embodiment, default projected coordinates for
the location of the virtual camera (e.g., <0, 0>) can be
defined to solve the issue of projection related to this unique
point.

FIG. 1C illustrates a division of a projection surface into
multiple levels of detail (LOD), in accordance with some
embodiments. A projective hash map with a single LOD
refers to a projection surface that is divided into a set of cells
(e.g., pixel elements) where each cell corresponds to a
particular projected coordinate. If the sizes of the cells are
fixed, then the choice of subdivision is such that the pro-
jective hash map has a single LOD.

In order to avoid collisions between different points in the
world space, the subdivisions of the projection surface must
be small enough that it is less likely that any two points
project to the same cell and, therefore, would be hashed
using the same set of projected coordinates. At the same
time, if the cell size is too small, then a query of the
projective hash map for nearest neighbors to a specific point
may be inefficient because the projective hash map is
sparsely populated. In other words, the query algorithm may
need to search hundreds or even thousands of neighboring
cells in order to find an occupied cell with another point (i.e.,
a cell matching a hash value where data has been inserted
into the projective hash map).

In one embodiment, converting the 3D coordinates into
projected coordinates can be performed in accordance with
a desired LOD. For example, as shown in FIG. 1C, a
projection surface 110 can be divided into a number of large
cells (represented by the shaded area) at a first LOD. In
addition, the projection surface 110 can also be divided into
a number of smaller cells (represented by the dashed lines so
that 16 smaller cells are enclosed within each large cell) at
a higher LOD. Each cell at the first LOD can be assigned a
particular projected coordinate, and each cell at the second
LOD can be assigned a different projected coordinate.

For example, each cell can be assigned projected coordi-
nates <row, col> that are incremented from <0, 0> in the
upper row and left-most column. The first LOD has, as
shown in FIG. 1C, 6 rows and 6 columns, but the second
LOD has 24 rows and 24 columns. The point 102 thus has
different projected coordinates at the first LOD and the
second LOD. As depicted in FIG. 1C, the point 102 has
projected coordinates of <2, 3> at the first LOD and pro-
jected coordinates of <9, 14> at the second LOD.

In one embodiment, the projective hash map can be
generated for a specific LOD that can be selected based on
the desired resolution of a particular operation. For example,
a graphics application can determine an appropriate LOD for
a particular operation based on one or more criteria. A lower
LOD (e.g., lower resolution) can be chosen for faster opera-
tions with less accuracy or for fewer data points, and a
higher LOD (e.g., higher resolution) can be chosen for
slower operations that require more accuracy or a large
number of data points. In an embodiment, the graphics
application can set the level of the LOD dynamically based
on, e.g., processing capacity, characteristics of the comput-
ing system, measured performance of prior operations, or
any other desired criteria.

In another embodiment, the projective hash map can be
generated at multiple LOD. An operation to generate pro-
jected coordinates for particular 3D coordinates can generate
projected coordinates corresponding to two or more LODs.
A separate hash value is then generated for each LOD by
hashing the different keys that include, e.g., the projected
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coordinates and a corresponding L.OD indicator. In the
example above, a first hash value can be generated for hash
key <2, 3, 0> and a second hash value can be generated for
hash key <9, 14, 1>. The same data for the point 102 can
then be inserted to the projective hash map using both the
first hash value and the second hash value.

Once a projective hash map has been populated, a query
of the projective hash map can be performed at a desired
LOD. For example, for a coarse search grid, a first LOD can
be used. This allows the query operation to search a larger
volume of world space in a shorter amount of time. How-
ever, at a lower LOD, it is more likely that collisions
between multiple points will occur when building the pro-
jective hash map at that LOD, and a hit for particular
projected coordinates could turn up a large number of points
associated with those projected coordinates. Nevertheless,
the coarse search grid can be useful to quickly narrow a
search down to a particular grid and then a more refined
search at a higher LOD can be performed within that cell of
the projection surface.

Of course, the number of LODs within a particular
projective hash map is not limited. However, the number of
LODs will increase the amount of data that is stored in the
projective hash map and, for a fixed size projective hash
map, could increase the chances of collisions between
points.

In some embodiments, the hash keys can be quantized
based on the desired level of detail. For example, suppose
the size of the cells of the projection surface 110 are fixed at
a particular level of detail, thus each cell represents a
particular area of the projection surface 110. When the point
102 is projected onto the projection surface 110, the result-
ing projected coordinates will overlap one cell (or two or
three cells if the point falls directly on a border between
cells). Once the projective hash map is populated, a lookup
operation for that projected coordinate will return the infor-
mation for the point 102. In general, a memory access
operation will typically fetch a fixed amount of memory,
e.g., 128 bytes, which may be referred to as a cacheline. In
some embodiments, two or more cachelines can be fetched
for each lookup operation of the projective hash map. If each
entry into the projective hash map is stored in, for example,
16 Bytes, then each memory access associated with a lookup
will fetch information for eight entries of the projective hash
map related to sequential hash values (e.g., 8%16=128
bytes). However, these eight entries do not necessarily
correspond to spatially adjacent cells of the projection
surface 110.

In one embodiment, the projected coordinates can be
quantized prior to generating the hash key such that a group
of cells of the projection surface all correspond to the same
hash value. For example, by truncating a least significant bit
of each of the two projected coordinates, the hash function
effectively hashes a group of 2x2 cells to generate a common
hash value for each cell in the group. It will be appreciated
that, in some embodiments, the individual coordinates of the
projected coordinates can be quantized differently, such that
the group of cells can have dimensions of, e.g., a 2x2, 1x4,
4x1, 2x4, 4x2, 4x4, 2x8, or 8x2 arrangement, as well as
further increments based on the power of 2. This can be
performed by truncating varying number of bits from each
projected coordinate to increase the length of the group in
that dimension disproportionately.

While quantizing the projected coordinates when building
the hash keys can increase the rate of collisions in the
projective hash map because it is effectively reducing the
LOD of the projective hash map, it allows a faster 2D search
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to be performed by searching groups of cells rather than
individual cells. Because the processor performing the
lookup accesses a fixed amount of memory, it makes sense
to match the size of the cells to the fixed size of memory that
is fetched by the processor (or multiples thereof). It will be
appreciated that a LOD of the cells and a quantization
parameter for each of two or more projected coordinates can
be implemented in tandem, and that a common quantization
arrangement or different quantization arrangements can be
selected for each of two or more LODs. For example, a first
LOD may utilize quantization parameters that result in
groups of 1x1 cells while a higher LOD that has, e.g., 4x4
cells per cell in the first LOD may choose to utilize quan-
tization parameters that results in groups of 2x2 or 2x4 cells
being stored sequentially using the same hash value.

In some cases, collisions in the group of cells are simply
stored in the cacheline in the order in which the data was
added to the projective hash map. Thus, while a larger group
of cells is likely to cause more collisions, the entry of the
projective hash map can store up to the same number of
blocks of information in a single entry as the number of cells
in the group. In other embodiments, the hash values returned
from the hash function can be combined with the truncated
bits of the projected coordinates (i.e., an offset) to generate
distinct hash values that correspond with the corresponding
cells identified by the original projected coordinates. Thus,
even though all entries corresponding to a group of adjacent
cells on the projective surface 110 will be stored to a
common cacheline, the location (i.e., offset) of the block of
information in the cacheline can also be used to indicate
which cell in the group of cells corresponds to the projected
coordinates for that block of information, and only one entry
per cell is permitted to be stored in a cacheline.

It will be appreciated that, in embodiments that combine
the returned hash value with the truncated bits of the
projected coordinates, blocks of information for different,
unrelated groups of cells can be stored in a single allocated
block of memory (e.g., a cacheline), which can lead to a
more efficient use of memory when the points are sparsely
populated. For example, if one point projected into a first
group of cells corresponds to a first offset of the hash value
and a second point projected into a second group of cells
corresponds to a second offset of the hash value, and even
though the two groups of cells are unrelated and have
different projected coordinates, the information for both the
first point and the second point can be stored in the same
entry of the hash map as long as the offset values (i.e., the
truncated bits of the projected coordinates) for the points are
not the same.

For example, if the group of cells is a 2x2 group of cells,
then the offset value is given by the two truncated bits of the
projected coordinates, one truncated bit from each dimen-
sion of the projected coordinates and has a value within the
range of {0,1}x{0,1}. The final hash index into the cacheline
is given by h_final=h+o_x+2%*o_y. The advantage of this is
that information projected into cells adjacent in world space
can be stored in adjacent locations in memory without
having to a priori reserve the entire cacheline for the group
of cells without knowing how it will be populated. The
cacheline can then be populated for points until there is a
collision based on both the hash value h and the offset o. It
will be appreciated that the same concept can be adapted for
projective hash maps of higher dimensions, such as four
dimensions, where the projected coordinates include three
dimensions. In that case, the final hash index into the
cacheline is given by h_final=h+o_x+2*(o_y+2*0_z).

20

40

45

50

12

FIG. 1D illustrates a projection operation 170 associated
with a spherical surface, in accordance with other embodi-
ments. It will be appreciated that the projection surfaces are
not required to be flat in the world space. In an embodiment,
the projection surface 120 is a sphere, centered on the virtual
camera 112. A ray 114, projected from the point 102 back to
the virtual camera 112 intersects the projection surface 120
at a point that can be defined, using spherical coordinates
<0,W>, where 0 represents a longitude dimension 122 and ¥
represents a latitude dimension 124. In this case, every point
in the world space has corresponding projected spherical
coordinates corresponding to the projection surface 120.
Consequently, unlike the embodiment described above using
a set of projection surfaces to capture all points in world
space, this embodiment can utilize a single projection sur-
face to project all points in the world space into the projected
coordinates space.

In the case of a spherical projection surface, a search
among a local area of longitude and latitude coordinates can
be used to find all points close to the point 102, which will
project to a small area on the spherical projection surface.
Other types of complex projection surfaces are contemplated
as being within the scope of the present disclosure as long
as each point in the world space can be mapped to a single
corresponding point on the projection surface and neighbor-
ing points in world space project to a corresponding neigh-
boring area on the projection surface.

FIG. 2A illustrates a system 200 for generating a projec-
tive hash map 230, in accordance with some embodiments.
In an embodiment, the system includes a processor 220 and
a memory that stores model data 210 and a data structure for
a projective hash map 230. In an embodiment, the model
data 210 comprises geometry data including 3D coordinates
202 associated with points in a space, such as a 3D space
(e.g., world space) associated with a graphics application.
Each point corresponding to 3D coordinates 202 can also,
optionally, include data 204. The data 204 can be, e.g.,
additional data such as a surface normal vector, color
information, an identifier of an object associated with the
point, a value such as a temperature or other measurement
associated with the point, and so forth. The data 204 can
encompass any type of data that can be associated with a
point in space, including a vector of one or more scalar
values, a data structure, or a file storing information. The
type of data 204 is not relevant for generating the hash value
for the point and, therefore, will only affect the size and/or
structure of the data structure for the projective hash map
230. In some embodiments, the data 204 can be omitted and
the 3D coordinates 202 for each point are substituted as the
data 204 for the point that is stored in the projective hash
map 230. For example, such embodiments may be useful
when storing a point cloud (absent any other data other than
the coordinates for the point) in an acceleration data struc-
ture such as the projective hash map.

For each point in the model data 210, the processor 220
is configured to read the 3D coordinates 202 and the
corresponding data 204 (if available) from the memory.
Although not shown explicitly in FIG. 2A, the memory can
be any volatile or non-volatile memory such as a dynamic
random access memory (DRAM), flash memory device,
hard disk drive (HDD), solid state drive (SSD), or the like,
as well as combinations thereof, capable of storing the
model data 210. In an embodiment, the model data 210
comprises a set of geometry primitives (e.g., triangles,
quads, triangle fans, lines, points, etc.) as may be defined in
accordance with a computer graphics standard such as
OpenGL or Direct3D, among others. In other cases, the
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model data 210 can be data in another format, such as point
cloud data generated by a light detection and ranging
(LiDAR) device, depth camera, or similar technology.

The processor 220 is configured to execute a two-step
process. A first step includes processing the 3D coordinates
202 in accordance with a projection operation to generate
projected coordinates corresponding to the 3D coordinates
202. In one embodiment, the projected coordinates are 2D
coordinates associated with the projection surface. In one
embodiment, the 2D coordinates can be a screen space
coordinate <u, v> associated with a screen space corre-
sponding to a view plane (e.g., a pixel coordinate). In
another embodiment, the 2D coordinates can be 3D coor-
dinates of the intersection point between a ray 114 and the
projection surface 110, where one dimension of the 3D
coordinates is truncated because all points on the projection
surface 110 have the same coordinates in that single dimen-
sion (e.g., one and only one of the X, y, or z coordinates is
constant for each surface of a cube that is aligned with the
three orthogonal axes of the world space). In other words,
the 2D coordinates are selected as two of the three coordi-
nates of the 3D coordinates in world space of the intersection
point of the ray 114 with the projection surface 110 (e.g., <x',
y'>, <x', z'>, or <y', z'>). In yet another embodiment, the 2D
coordinates are spherical coordinates <6, ¥> associated
with a spherical projection surface.

Once the processor 220 has converted the 3D coordinates
202 into corresponding projected coordinates, the processor
220 executes a second step that applies a hash function to a
hash key to generate a hash value 206. The hash key can be
the projected coordinates or the projected coordinates as
well as some additional information such as a LOD indica-
tor, and the like. The processor 220 then stores the data 204
corresponding to the point having the 3D coordinates 202
into the projective hash map 230 using the hash value 206
as an index for the data 204. In some embodiments, the data
204 can include a copy of 3D coordinate data 202 corre-
sponding with the data 204, such that the processor 220 can
easily read the 3D coordinates for the point from the data
stored in the projective hash map 230.

In one embodiment, the processor may also generate at
least one map index 208 that is used to select one or more
related projective hash maps 230 in which to store the data
204 corresponding to the hash value 206. As described
above, in some embodiments, the first step can include
determining which of a plurality of projection surfaces are
intersected by a ray 114 in order to identify an index
associated with the intersected projection surface. Each
projection surface has a corresponding projective hash map
230, and the identified index for the projection surface is
used to select a corresponding one of the projective hash
maps 230. In the case where a ray 114 intersects an edge or
a vertex between two or more projection surfaces, then the
map index 208 can include multiple indices for the projec-
tive hash maps corresponding to the projection surfaces that
share the edge or vertex. In another embodiment, the map
index 208 can be included in the hash key and used to vary
the hash value for the projected coordinates based on the
particular projection surface intersected by the ray 114. In
such cases, only a single data structure is used for the
projective hash map 230, which stores data for the full set of
projection surfaces.

FIG. 2B illustrates a world space 250 associated with the
projective hash map 230, which is subdivided into slices, in
accordance with some embodiments. It will be appreciated
that a search over the local area on the projection surface 110
can return both neighboring points in the world space as well
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as points that are located far from the query point 102 but
that are projected close to the query point on the projection
surface. For example, generating a projective hash map for
the three points in FIG. 2B generates hash values for the
points 102, 252, and 254 that have projected coordinates on
the projection surface 110 that are within a small local area
on the projection surface 110. Therefore, a search looking
for neighboring points to point 102, conducted over the
small local area on the projection surface 110 surrounding
the projected coordinates for point 102, will likely return
data for points 252 and 254. However, point 252 is located
much closer to point 102 than point 254. In algorithms that
conduct a search for neighboring points to point 102, results
to a query of the projective hash map may still require
significant culling of the search query results to determine
which points are actually close to the query point in the
world space.

In an embodiment, the projective hash map 230 can
include multiple slices, where each slice stores data for a
separate subset of points in the world space. In an embodi-
ment, each slice corresponds to a slice index that is calcu-
lated as a function of a depth d of the point from the virtual
camera 112. Rather than simply using the depth d for each
point as a third coordinate of the hash key directly, the depth
d can be transformed and quantized to create convex hulls
that encompass different subsets of points in the world
space, with each convex hull corresponding to a separate
slice of the projective depth map. The separation between
slices is illustrated conceptually by the dotted lines that
delineate borders between adjacent slices. Consequently,
point 102 and 252 are located in one slice whereas point 254
is located in another slice.

For example, in an embodiment, a projective hash map
230 for the projection surface 110 can be divided into eight
slices, with each slice representing a different range of the
extent of the dimension d for all points in the world space.
In one embodiment, the processor 220 can be configured to
split the first step into a multi-pass process. In the first pass,
the processor 220 reads all of the 3D coordinates 202
corresponding to the points in the world space to determine
a minimum and a maximum value of the dimension d for the
plurality of points. In the second pass, the processor 202 can
calculate the projected coordinates, as described above, but
can also calculate a slice index based on the dimension d and
the range of dimension d (max_d—min_d+€, where € is some
small amount so the ratio below is never equal to 1) for the
set of points. For example, if the projective hash map 230 is
divided into n slices, then the slice index for a particular
point is equal to the floor of the product of a number of slices
and the ratio of dimension d minus minimum d in the range
divided by the range of the dimension d, as shown below:

Eq. D

d—min_d
SI = floor (n- )

range_d

It will be appreciated that Eq. 1 is a simple solution that
equally divides the range of the distance dimension into a
number of equal subdivisions, with each division of the
range corresponding to a particular slice of the projective
hash map. Further, as described herein, a slice of the
projective hash map refers to a copy of the data structure
format for a single projective hash map that stores different
subsets of data related to different subsets of points based on
the dimension d. In some embodiments, the range can be set
without knowing the distribution of points in the world
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space by setting the min_d equal to O and the max_d equal
to a maximum potential distance of a point based on the
extents of the world space and/or the location of the virtual
camera within the world space.

In other embodiments, the algorithm for determining the
slice index can be more complicated, such as dividing the
range of the dimension d into unequal slices. For example,
slices closer to the virtual camera 112 can be smaller (i.e.,
correspond to a smaller range of dimension d) than slices
further away from the virtual camera 112. In one embodi-
ment, the size of each slice increases by the power of two as
d increases. In other words, the first slice index represents a
base range of d, where each successive slice index represents
twice the range of d as the previous slice index, as calculated
according to the following:

) d —min d Eq. 2
S1 = floor (logz(l - gremsiiees _ ) — ——— )) (- 2)
range_d

In the example of Eq. 2 above, given a projective hash
map 230 divided into four slices, a first slice (slice index 0)
will correspond to a portion of approximately V15 of the
range of d, a second slice (slice index 1) will correspond to
a portion of approximately %15 of the range of d, a third slice
(slice index 2) will correspond to a portion of approximately
415 of the range of d, and a fourth slice (slice index 3) will
correspond to a portion of approximately %15 of the range of
d. It will be appreciated that an unequal division of the range
of dimension d can be beneficial where the point data may
have a distribution of points concentrated closer to the
virtual camera 112 such that points distributed in a fore-
ground of the image are associated with a lower slice index.

The benefits of dividing a projective hash map into slices,
as described above, is that a search for neighboring points to
a given point can be limited to a small number of slices (e.g.,
the slice index corresponding to the query point and, option-
ally, adjacent slice indices to the slice index corresponding
to the query point). Depending on the number of slices, this
can significantly decrease the number of returned points to
evaluate as potential neighboring points and limit the com-
plexity of the search query to O(N"2) rather than O(N"3),
which is still a vast improvement on conventional spatial
hashing that may require an exhaustive search of all non-
empty cells of the spatial hash map.

It will also be appreciated that the slice index can be
adapted to divide the world space into different subsets
based on a dimension other than the depth. For example, a
slice can be defined based on the degree of angular offset of
a projected ray for a point compared to a surface normal of
the projection surface (or any other vector). The boundaries
of such slices could be described as a series of concentric
cones where the angular slope of the cone is increasing the
as the projected coordinates for a ray move away from the
center of the projection surface. While such slices might not
be as useful for querying the projective hash map for a
nearest neighbor for a query point, these alternative slices
could be useful in other applications that could benefit from
a different division of the world space to accelerate queries.

FIG. 3A illustrates a flowchart of a method 300 for
generating a projective hash map, in accordance with an
embodiment. Each block (step) of method 300, described
herein, comprises a computing process that may be per-
formed using any combination of hardware, firmware, and/
or software. For instance, various functions may be carried
out by a processor executing instructions stored in memory.
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The method may also be embodied as computer-usable
instructions stored on computer storage media. The method
may be provided by a standalone application, a service or
hosted service (standalone or in combination with another
hosted service), or a plug-in to another product, to name a
few potential implementations. In addition, method 300 is
described, by way of example, with respect to the system of
FIG. 2A. However, this method may additionally or alter-
natively be executed by any one system, or any combination
of systems, including, but not limited to, those described
herein. Furthermore, persons of ordinary skill in the art will
understand that any system that performs method 300 is
within the scope and spirit of embodiments of the present
disclosure.

At step 302, model data is received. In an embodiment,
the model data includes N-dimensional coordinates for one
or more points in an N-dimensional space as well as data
associated with the points. In some embodiments, the N-di-
mensional space is a 3D space. In some cases, the data
associated with each point can include the 3D coordinates
for the point. In an embodiment, the model data is stored in
a memory, including a volatile memory such as DRAM or
a non-volatile memory such as flash memory, a HDD, or a
SSD. In some embodiments, the model data is generated by
an application such as a graphics application, game appli-
cation, or the like. For example, the model data can comprise
geometry data associated with the rendering of frames for a
video game application. In other embodiments, the model
data can comprise point cloud data. In some embodiments,
the model data can be received from a processor of a local
device. In other embodiments, the model data can be
received from a remote device, such as data received at a
client device, from a server device, via a network.

At step 304, N-dimensional coordinates for each point are
projected onto a projection surface to generate correspond-
ing projected coordinates. In an embodiment, the projection
surface comprises a particular projection surface of one or
more projection surfaces. The projection surface(s) may be
associated with a virtual camera, where the location of the
virtual camera defines the projection function. In an embodi-
ment, the projected coordinates can be identified by calcu-
lating an intersection point of the projection surface and a
ray connected between the 3D coordinates for the point and
3D coordinates associated with the virtual camera. In one
embodiment, the projection surface is one of six projection
surfaces forming a cube or prism that defines a volume that
includes the location of the virtual camera. In one embodi-
ment, one of the projection surfaces is sized to match a view
plane associated with a rendered image of the model data,
generated using a rendering algorithm, as described in more
detail below. In other embodiments, the projection surface is
a spherical projection surface and the projected coordinates
comprise spherical coordinates.

At step 306, a hash value is generated for each point using
a hash key. In an embodiment, the hash key includes the
projected coordinates and is processed by a hash function,
such as MD5 or SHA-256, to generate a hash value. In
another embodiment, the hash key includes the projected
coordinates as well as one or more additional values such as
a LOD indicator, a surface index, or a slice index. It will be
appreciated that the LOD indicator, surface index, and/or
slice index can be combined in the same hash key to utilize,
for example, both multiple LOD and slice functionality
described above in a single projective hash map.

At step 308, data corresponding to each point is inserted
into the projective hash map based on the corresponding
hash value. The projective hash map is a data structure that
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stores key-value pairs, where the keys are the hash value for
a point and the values are the corresponding data associated
with the point. In some embodiments, each key is associated
with a single entry (i.e., no collisions are allowed). In other
embodiments, each key is associated with one or more
entries, where the value associated with a key is a pointer to
a separate data structure that stores the data associated with
multiple 3D coordinates that hashed to the same key (i.e.,
collisions are allowed). In some embodiments, the hash
value can be truncated, such as by taking a subset of bits of
the hash value to use as the index into the projective hash
map. For example, the 16 most significant bits of the 256-bit
hash value generated by the SHA-256 hash function can be
used as the index into the projective hash map, which
includes 2716 distinct slots for storing data.

The method 300 can be utilized by an application to
construct a projective hash map from a set of model data
(e.g., geometry data, point cloud data). Once the projective
hash map is constructed, a subsequent operation can query
the projective hash map to make certain operations more
efficient. For example, the path space filtering example
mentioned in the background section may be improved by
using a projective hash map rather than a conventional hash
map using 3D coordinates as a hash key.

FIG. 3B illustrates a flowchart of a method 350 for
querying a projective hash map to find neighboring points,
in accordance with an embodiment. Each block (step) of
method 350, described herein, comprises a computing pro-
cess that may be performed using any combination of
hardware, firmware, and/or software. For instance, various
functions may be carried out by a processor executing
instructions stored in memory. The method may also be
embodied as computer-usable instructions stored on com-
puter storage media. The method may be provided by a
standalone application, a service or hosted service (stand-
alone or in combination with another hosted service), or a
plug-in to another product, to name a few potential imple-
mentations. In addition, method 350 is described, by way of
example, with respect to the system of FIG. 2A. More
specifically, the processor 220 can query the projective hash
map to find points stored in the projective hash map within
a local region of a query point. However, this method may
additionally or alternatively be executed by any one system,
or any combination of systems, including, but not limited to,
those described herein. Furthermore, persons of ordinary
skill in the art will understand that any system that performs
method 350 is within the scope and spirit of embodiments of
the present disclosure.

At step 352, a projective hash map is received. In an
embodiment, the projective hash map is generated in a
manner such as described in method 300 of FIG. 3A. In
another embodiment, the projective hash map can be
received via a network and stored in a memory associated
with a processor. In other words, the projective hash map can
be generated by another system and transmitted to a local
system to be queried.

At step 354, a search area on a projective surface is
identified. The size of the search area can be defined based
on a size of the neighborhood surrounding a query point that
should be searched. In one embodiment, the search area
represents a subset of the projection surface that includes the
projected coordinates associated with the query point. For
example, if the query point associated with the 3D coordi-
nates <X, Vo, Zo> has projected coordinates of <u,, v,> on
the projection surface, then the search area can encompass
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all points on the projection surface associated with projected
coordinates <u, v> within the range [u,-Au, uy+Au], [v,—Av,
Vot+Av].

In some embodiments, the search area can wrap over the
edge of the projection surface and extend into another
projection surface. For example, using the cube structure
shown in FIG. 1B, if the query point is projected close to an
edge of the projection surface, then the search area may
wrap around the edge of the cube to the adjacent projection
surface. In such cases, the search area can include a first
portion of the search area on a first projection surface and a
second portion of the search area on a second projection
surface.

At step 356, hash values corresponding to the projected
coordinates in the search area are determined. In an embodi-
ment, an exhaustive search is performed for all distinct
projected coordinates in the search area. In other words, all
cells on the projection surface with distinct projected coor-
dinates in the search area are determined by, e.g., increment-
ing each possible value of the projected coordinates by the
smallest possible amount (e.g., 1 for integers, or a fraction
with fixed point values). In other embodiments, a subset of
projected coordinates within the search area are converted to
hash values. For example, a grid of points within the search
area that represents a sample of unique projected coordinates
can be searched. In other embodiments, points along a
search path within the search area can be searched (e.g.,
horizontal, vertical, and diagonal lines within the search area
that pass through or adjacent to the projected coordinates for
the query point). While searching only a portion of the
search area is not guaranteed to find all neighboring points
to the query point, it can speed up the search algorithm
significantly while providing a high likelihood of finding
neighboring points. In some cases, a faster algorithm that
provides a likelihood of success can be a bigger benefit than
a slow algorithm that ensures success.

In an embodiment, multiple hash values can be consid-
ered for projected coordinates in the search area. For
example, the projected coordinates can be combined with
different values for a slice index and/or a LOD indicator to
generate different hash keys for the same projected coordi-
nates.

In some embodiments, where the search area comprises
areas on two or more projection surfaces, then the hash
values associated with the search area will be generated
using hash keys that have a corresponding surface index
value that matches the projection surface corresponding to
the projected coordinates in that portion of the search area.
It will be appreciated that being able to search across the
edge of the cube (or prism) defined as the set of projection
surfaces can be useful in certain graphics applications, such
as in a graphics application that jitters sample positions
associated with one or more rays in order to reduce image
artifacts associated with discrete sampling.

At step 358, the projective hash map is queried using the
hash values identified for the search area to identify neigh-
boring points near the query point. In an embodiment, any
returned point from the projective hash map is evaluated to
determine a distance between the N-dimensional coordi-
nates for the returned point and the N-Dimensional coordi-
nates for the query point. If the distance between the points
is greater than a threshold value, then the returned point is
discarded, otherwise, the returned point is identified as a
neighboring point of the query point.

It will be appreciated that, in some embodiments, a
graphics application for rendering images for display can be
configured to utilize projective hash maps for various opera-
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tions. In a first operation, the graphics application can be
configured to build the projective hash map using model
data, as described in method 300. In a second operation, the
graphics application can then use the projective hash map to
accelerate certain operations. In some embodiments, the
graphics application comprises a rendering algorithm that
relies on ray-tracing to generate image data for display. For
example, a projective hash map can be used to find all
geometry in a scene that is close to a light source in order to
calculate illumination values of objects based on a reflec-
tance model for the light from the light source. Nothing in
this disclosure should be construed as limiting projective
hash maps to rendering applications as any algorithm that
can utilize the projective hash map to accelerate an operation
based on spatial queries is within the scope of the present
disclosure.

Various examples of the use of projective hash maps are
now described. In one example application, one or more
projective hash maps could be deployed in a cloud gaming
architecture, where points are added to the projective hash
map(s) according to the input from multiple users (players)
connected to a server hosting the game. Thus, the different
users moving throughout the same virtual world in different
locations can generate different sets of points that are added
to a common projective hash map. Such an implementation
is effectively a collaborative way to amortize the cost of
computation and storage across a large number of users.

As another example application, a projective hash map
could be utilized to store light maps for a scene. In such
cases, a set of projective hash maps could be pre-filled at a
number of locations in the scene, thereby storing lighting
information for a number of points of surfaces projected
onto the projection surface. Scenes can then be rendered by
finding a hash value (i.e., a projected coordinate based on an
origin of the projective hash map) for a point in the scene
and looking up the lighting information nearest to that point
from the projective hash map. In other words, the projected
coordinate of that point is then used as a query point to
search the projective hash map to find all lighting informa-
tion that may be close to that point. It will be appreciated that
the returned lighting information from the query may need
to be culled to find the closest lighting information to the
point. However, this technique benefits by not requiring a
two-dimensional texture coordinate to perform a texture
map lookup and can reduce distortion problems that arise
from applying a two-dimensional texture map to a complex
three-dimensional surface.

In yet another example, the projective hash maps can be
utilized in autonomous vehicle applications or robotics
systems that use sensors like LiDAR to reconstruct a version
of the world around the vehicle or robot. Such information
can be used in various processes such as collision avoidance
and navigation algorithms.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which
the foregoing framework may be implemented, per the
desires of the user. It should be strongly noted that the
following information is set forth for illustrative purposes
and should not be construed as limiting in any manner. Any
of the following features may be optionally incorporated
with or without the exclusion of other features described.

It should be understood that the aforementioned embodi-
ments and other arrangements described herein are set forth
only as examples. Other arrangements and/or elements (e.g.,
machines, interfaces, functions, orders, groupings of func-
tions, etc.) may be used in addition to or instead of those
shown, and some elements may be omitted altogether.
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Further, many of the elements described herein are func-
tional entities that may be implemented as discrete or
distributed components or in conjunction with other com-
ponents, and in any suitable combination and location.
Various functions described herein as being performed by
entities may be carried out by hardware, firmware, and/or
software. For instance, various functions may be carried out
by a processor executing instructions stored in memory.
Furthermore, persons of ordinary skill in the art will under-
stand that any system that performs the operations described
herein is within the scope and spirit of embodiments of the
present disclosure.

Parallel Processing Architecture

FIG. 4 illustrates a parallel processing unit (PPU) 400, in
accordance with an embodiment. In some embodiments, the
PPU 400 may be included in the system 200, such as the
processor 220 or as a co-processor to a host CPU. The PPU
400 may be used to implement one or more of the functions
described above, such as the steps of the methods 300 or
350.

In an embodiment, the PPU 400 is a multi-threaded
processor that is implemented on one or more integrated
circuit devices. The PPU 400 is a latency hiding architecture
designed to process many threads in parallel. A thread (e.g.,
a thread of execution) is an instantiation of a set of instruc-
tions configured to be executed by the PPU 400. In an
embodiment, the PPU 400 is a graphics processing unit
(GPU) configured to implement a graphics rendering pipe-
line for processing three-dimensional (3D) graphics data in
order to generate two-dimensional (2D) image data for
display on a display device. In other embodiments, the PPU
400 may be utilized for performing general-purpose com-
putations. While one exemplary parallel processor is pro-
vided herein for illustrative purposes, it should be strongly
noted that such processor is set forth for illustrative purposes
only, and that any processor may be employed to supplement
and/or substitute for the same.

One or more PPUs 400 may be configured to accelerate
thousands of High Performance Computing (HPC), data
center, cloud computing, and machine learning applications.
The PPU 400 may be configured to accelerate numerous
deep learning systems and applications for autonomous
vehicles, simulation, computational graphics such as ray or
path tracing, deep learning, high-accuracy speech, image,
and text recognition systems, intelligent video analytics,
molecular simulations, drug discovery, disease diagnosis,
weather forecasting, big data analytics, astronomy, molecu-
lar dynamics simulation, financial modeling, robotics, fac-
tory automation, real-time language translation, online
search optimizations, and personalized user recommenda-
tions, and the like.

As shown in FIG. 4, the PPU 400 includes an Input/
Output (I/0) unit 405, a front end unit 415, a scheduler unit
420, a work distribution unit 425, a hub 430, a crossbar
(Xbar) 470, one or more general processing clusters (GPCs)
450, and one or more memory partition units 480. The PPU
400 may be connected to a host processor or other PPUs 400
via one or more high-speed NVLink 410 interconnect. The
PPU 400 may be connected to a host processor or other
peripheral devices via an interconnect 402. The PPU 400
may also be connected to a local memory 404 comprising a
number of memory devices. In an embodiment, the local
memory may comprise a number of dynamic random access
memory (DRAM) devices. The DRAM devices may be
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configured as a high-bandwidth memory (HBM) subsystem,
with multiple DRAM dies stacked within each device.

The NVLink 410 interconnect enables systems to scale
and include one or more PPUs 400 combined with one or
more CPUs, supports cache coherence between the PPUs
400 and CPUs, and CPU mastering. Data and/or commands
may be transmitted by the NVLink 410 through the hub 430
to/from other units of the PPU 400 such as one or more copy
engines, a video encoder, a video decoder, a power man-
agement unit, etc. (not explicitly shown). The NVLink 410
is described in more detail in conjunction with FIG. 5B.

The 1/O unit 405 is configured to transmit and receive
communications (e.g., commands, data, etc.) from a host
processor (not shown) over the interconnect 402. The I/O
unit 405 may communicate with the host processor directly
via the interconnect 402 or through one or more intermediate
devices such as a memory bridge. In an embodiment, the [/O
unit 405 may communicate with one or more other proces-
sors, such as one or more the PPUs 400 via the interconnect
402. In an embodiment, the /O unit 405 implements a
Peripheral Component Interconnect Express (PCle) inter-
face for communications over a PCle bus and the intercon-
nect 402 is a PCle bus. In alternative embodiments, the 1/0O
unit 405 may implement other types of well-known inter-
faces for communicating with external devices.

The 1/O unit 405 decodes packets received via the inter-
connect 402. In an embodiment, the packets represent com-
mands configured to cause the PPU 400 to perform various
operations. The I/O unit 405 transmits the decoded com-
mands to various other units of the PPU 400 as the com-
mands may specify. For example, some commands may be
transmitted to the front end unit 415. Other commands may
be transmitted to the hub 430 or other units of the PPU 400
such as one or more copy engines, a video encoder, a video
decoder, a power management unit, etc. (not explicitly
shown). In other words, the I/O unit 405 is configured to
route communications between and among the various logi-
cal units of the PPU 400.

In an embodiment, a program executed by the host
processor encodes a command stream in a buffer that pro-
vides workloads to the PPU 400 for processing. A workload
may comprise several instructions and data to be processed
by those instructions. The buffer is a region in a memory that
is accessible (e.g., read/write) by both the host processor and
the PPU 400. For example, the /O unit 405 may be
configured to access the buffer in a system memory con-
nected to the interconnect 402 via memory requests trans-
mitted over the interconnect 402. In an embodiment, the host
processor writes the command stream to the buffer and then
transmits a pointer to the start of the command stream to the
PPU 400. The front end unit 415 receives pointers to one or
more command streams. The front end unit 415 manages the
one or more streams, reading commands from the streams
and forwarding commands to the various units of the PPU
400.

The front end unit 415 is coupled to a scheduler unit 420
that configures the various GPCs 450 to process tasks
defined by the one or more streams. The scheduler unit 420
is configured to track state information related to the various
tasks managed by the scheduler unit 420. The state may
indicate which GPC 450 a task is assigned to, whether the
task is active or inactive, a priority level associated with the
task, and so forth. The scheduler unit 420 manages the
execution of a plurality of tasks on the one or more GPCs
450.

The scheduler unit 420 is coupled to a work distribution
unit 425 that is configured to dispatch tasks for execution on
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the GPCs 450. The work distribution unit 425 may track a
number of scheduled tasks received from the scheduler unit
420. In an embodiment, the work distribution unit 425
manages a pending task pool and an active task pool for each
of the GPCs 450. As a GPC 450 finishes the execution of a
task, that task is evicted from the active task pool for the
GPC 450 and one of the other tasks from the pending task
pool is selected and scheduled for execution on the GPC
450. If an active task has been idle on the GPC 450, such as
while waiting for a data dependency to be resolved, then the
active task may be evicted from the GPC 450 and returned
to the pending task pool while another task in the pending
task pool is selected and scheduled for execution on the GPC
450.

In an embodiment, a host processor executes a driver
kernel that implements an application programming inter-
face (API) that enables one or more applications executing
on the host processor to schedule operations for execution
on the PPU 400. In an embodiment, multiple compute
applications are simultaneously executed by the PPU 400
and the PPU 400 provides isolation, quality of service
(QoS), and independent address spaces for the multiple
compute applications. An application may generate instruc-
tions (e.g., API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 400. The driver
kernel outputs tasks to one or more streams being processed
by the PPU 400. Each task may comprise one or more
groups of related threads, referred to herein as a warp. In an
embodiment, a warp comprises 32 related threads that may
be executed in parallel. Cooperating threads may refer to a
plurality of threads including instructions to perform the task
and that may exchange data through shared memory. The
tasks may be allocated to one or more processing units
within a GPC 450 and instructions are scheduled for execu-
tion by at least one warp.

The work distribution unit 425 communicates with the
one or more GPCs 450 via XBar 470. The XBar 470 is an
interconnect network that couples many of the units of the
PPU 400 to other units of the PPU 400. For example, the
XBar 470 may be configured to couple the work distribution
unit 425 to a particular GPC 450. Although not shown
explicitly, one or more other units of the PPU 400 may also
be connected to the XBar 470 via the hub 430.

The tasks are managed by the scheduler unit 420 and
dispatched to a GPC 450 by the work distribution unit 425.
The GPC 450 is configured to process the task and generate
results. The results may be consumed by other tasks within
the GPC 450, routed to a different GPC 450 via the XBar
470, or stored in the memory 404. The results can be written
to the memory 404 via the memory partition units 480,
which implement a memory interface for reading and writ-
ing data to/from the memory 404. The results can be
transmitted to another PPU 400 or CPU via the NVLink 410.
In an embodiment, the PPU 400 includes a number U of
memory partition units 480 that is equal to the number of
separate and distinct memory devices of the memory 404
coupled to the PPU 400. Each GPC 450 may include a
memory management unit to provide translation of virtual
addresses into physical addresses, memory protection, and
arbitration of memory requests. In an embodiment, the
memory management unit provides one or more translation
lookaside buffers (TLBs) for performing translation of vir-
tual addresses into physical addresses in the memory 404.

In an embodiment, the memory partition unit 480 includes
a Raster Operations (ROP) unit, a level two (L.2) cache, and
a memory interface that is coupled to the memory 404. The
memory interface may implement 32, 64, 128, 1024-bit data
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buses, or the like, for high-speed data transfer. The PPU 400
may be connected to up to Y memory devices, such as high
bandwidth memory stacks or graphics double-data-rate,
version 5, synchronous dynamic random access memory, or
other types of persistent storage. In an embodiment, the
memory interface implements an HBM2 memory interface
and Y equals half U. In an embodiment, the HBM2 memory
stacks are located on the same physical package as the PPU
400, providing substantial power and area savings compared
with conventional GDDRS SDRAM systems. In an embodi-
ment, each HBM2 stack includes four memory dies and Y
equals 4, with each HBM2 stack including two 128-bit
channels per die for a total of 8 channels and a data bus
width of 1024 bits.

In an embodiment, the memory 404 supports Single-Error
Correcting Double-Error Detecting (SECDED) Error Cor-
rection Code (ECC) to protect data. ECC provides higher
reliability for compute applications that are sensitive to data
corruption. Reliability is especially important in large-scale
cluster computing environments where PPUs 400 process
very large datasets and/or run applications for extended
periods.

In an embodiment, the PPU 400 implements a multi-level
memory hierarchy. In an embodiment, the memory partition
unit 480 supports a unified memory to provide a single
unified virtual address space for CPU and PPU 400 memory,
enabling data sharing between virtual memory systems. In
an embodiment the frequency of accesses by a PPU 400 to
memory located on other processors is traced to ensure that
memory pages are moved to the physical memory of the
PPU 400 that is accessing the pages more frequently. In an
embodiment, the NVLink 410 supports address translation
services allowing the PPU 400 to directly access a CPU’s
page tables and providing full access to CPU memory by the
PPU 400.

In an embodiment, copy engines transfer data between
multiple PPUs 400 or between PPUs 400 and CPUs. The
copy engines can generate page faults for addresses that are
not mapped into the page tables. The memory partition unit
480 can then service the page faults, mapping the addresses
into the page table, after which the copy engine can perform
the transfer. In a conventional system, memory is pinned
(e.g., non-pageable) for multiple copy engine operations
between multiple processors, substantially reducing the
available memory. With hardware page faulting, addresses
can be passed to the copy engines without worrying if the
memory pages are resident, and the copy process is trans-
parent.

Data from the memory 404 or other system memory may
be fetched by the memory partition unit 480 and stored in the
L2 cache 460, which is located on-chip and is shared
between the various GPCs 450. As shown, each memory
partition unit 480 includes a portion of the L2 cache asso-
ciated with a corresponding memory 404. Lower level
caches may then be implemented in various units within the
GPCs 450. For example, each of the processing units within
a GPC 450 may implement a level one (L1) cache. The .1
cache is private memory that is dedicated to a particular
processing unit. The L2 cache 460 is coupled to the memory
interface 470 and the XBar 470 and data from the L2 cache
may be fetched and stored in each of the L1 caches for
processing.

In an embodiment, the processing units within each GPC
450 implement a SIMD (Single-Instruction, Multiple-Data)
architecture where each thread in a group of threads (e.g., a
warp) is configured to process a different set of data based
on the same set of instructions. All threads in the group of

20

30

35

40

45

55

24

threads execute the same instructions. In another embodi-
ment, the processing unit implements a SIMT (Single-
Instruction, Multiple Thread) architecture where each thread
in a group of threads is configured to process a different set
of data based on the same set of instructions, but where
individual threads in the group of threads are allowed to
diverge during execution. In an embodiment, a program
counter, call stack, and execution state is maintained for
each warp, enabling concurrency between warps and serial
execution within warps when threads within the warp
diverge. In another embodiment, a program counter, call
stack, and execution state is maintained for each individual
thread, enabling equal concurrency between all threads,
within and between warps. When execution state is main-
tained for each individual thread, threads executing the same
instructions may be converged and executed in parallel for
maximum efficiency.

Cooperative Groups is a programming model for orga-
nizing groups of communicating threads that allows devel-
opers to express the granularity at which threads are com-
municating, enabling the expression of richer, more efficient
parallel decompositions. Cooperative launch APIs support
synchronization amongst thread blocks for the execution of
parallel algorithms. Conventional programming models pro-
vide a single, simple construct for synchronizing cooperat-
ing threads: a barrier across all threads of a thread block
(e.g., the syncthreads( ) function). However, programmers
would often like to define groups of threads at smaller than
thread block granularities and synchronize within the
defined groups to enable greater performance, design flex-
ibility, and software reuse in the form of collective group-
wide function interfaces.

Cooperative Groups enables programmers to define
groups of threads explicitly at sub-block (e.g., as small as a
single thread) and multi-block granularities, and to perform
collective operations such as synchronization on the threads
in a cooperative group. The programming model supports
clean composition across software boundaries, so that librar-
ies and utility functions can synchronize safely within their
local context without having to make assumptions about
convergence. Cooperative Groups primitives enable new
patterns of cooperative parallelism, including producer-con-
sumer parallelism, opportunistic parallelism, and global
synchronization across an entire grid of thread blocks.

Each processing unit includes a large number (e.g., 128,
etc.) of distinct processing cores (e.g., functional units) that
may be fully-pipelined, single-precision, double-precision,
and/or mixed precision and include a floating point arith-
metic logic unit and an integer arithmetic logic unit. In an
embodiment, the floating point arithmetic logic units imple-
ment the IEEE 754-2008 standard for floating point arith-
metic. In an embodiment, the cores include 64 single-
precision (32-bit) floating point cores, 64 integer cores, 32
double-precision (64-bit) floating point cores, and 8 tensor
cores.

Tensor cores configured to perform matrix operations. In
particular, the tensor cores are configured to perform deep
learning matrix arithmetic, such as GEMM (matrix-matrix
multiplication) for convolution operations during neural
network training and inferencing. In an embodiment, each
tensor core operates on a 4x4 matrix and performs a matrix
multiply and accumulate operation D=AxB+C, where A, B,
C, and D are 4x4 matrices.

In an embodiment, the matrix multiply inputs A and B
may be integer, fixed-point, or floating point matrices, while
the accumulation matrices C and D may be integer, fixed-
point, or floating point matrices of equal or higher bitwidths.
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In an embodiment, tensor cores operate on one, four, or eight
bit integer input data with 32-bit integer accumulation. The
8-bit integer matrix multiply requires 1024 operations and
results in a full precision product that is then accumulated
using 32-bit integer addition with the other intermediate
products for a 8x8x16 matrix multiply. In an embodiment,
tensor Cores operate on 16-bit floating point input data with
32-bit floating point accumulation. The 16-bit floating point
multiply requires 64 operations and results in a full precision
product that is then accumulated using 32-bit floating point
addition with the other intermediate products for a 4x4x4
matrix multiply. In practice, Tensor Cores are used to
perform much larger two-dimensional or higher dimensional
matrix operations, built up from these smaller elements. An
API, such as CUDA 9 C++ AP, exposes specialized matrix
load, matrix multiply and accumulate, and matrix store
operations to efficiently use Tensor Cores from a CUDA-
C++ program. At the CUDA level, the warp-level interface
assumes 16x16 size matrices spanning all 32 threads of the
warp.

Each processing unit may also comprise M special func-
tion units (SFUs) that perform special functions (e.g., attri-
bute evaluation, reciprocal square root, and the like). In an
embodiment, the SFUs may include a tree traversal unit
configured to traverse a hierarchical tree data structure. In an
embodiment, the SFUs may include texture unit configured
to perform texture map filtering operations. In an embodi-
ment, the texture units are configured to load texture maps
(e.g., a 2D array of texels) from the memory 404 and sample
the texture maps to produce sampled texture values for use
in shader programs executed by the processing unit. In an
embodiment, the texture maps are stored in shared memory
that may comprise or include an .1 cache. The texture units
implement texture operations such as filtering operations
using mip-maps (e.g., texture maps of varying levels of
detail). In an embodiment, each processing unit includes two
texture units.

Each processing unit also comprises N load store units
(LSUs) that implement load and store operations between
the shared memory and the register file. Each processing unit
includes an interconnect network that connects each of the
cores to the register file and the LSU to the register file,
shared memory. In an embodiment, the interconnect network
is a crossbar that can be configured to connect any of the
cores to any of the registers in the register file and connect
the L.SUs to the register file and memory locations in shared
memory.

The shared memory is an array of on-chip memory that
allows for data storage and communication between the
processing units and between threads within a processing
unit. In an embodiment, the shared memory comprises 128
KB of storage capacity and is in the path from each of the
processing units to the memory partition unit 480. The
shared memory can be used to cache reads and writes. One
or more of the shared memory, L1 cache, .2 cache, and
memory 404 are backing stores.

Combining data cache and shared memory functionality
into a single memory block provides the best overall per-
formance for both types of memory accesses. The capacity
is usable as a cache by programs that do not use shared
memory. For example, if shared memory is configured to use
half of the capacity, texture and load/store operations can use
the remaining capacity. Integration within the shared
memory enables the shared memory to function as a high-
throughput conduit for streaming data while simultaneously
providing high-bandwidth and low-latency access to fre-
quently reused data.
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When configured for general purpose parallel computa-
tion, a simpler configuration can be used compared with
graphics processing. Specifically, fixed function graphics
processing units, are bypassed, creating a much simpler
programming model. In the general purpose parallel com-
putation configuration, the work distribution unit 425
assigns and distributes blocks of threads directly to the
processing units within the GPCs 450. Threads execute the
same program, using a unique thread ID in the calculation to
ensure each thread generates unique results, using the pro-
cessing unit(s) to execute the program and perform calcu-
lations, shared memory to communicate between threads,
and the LSU to read and write global memory through the
shared memory and the memory partition unit 480. When
configured for general purpose parallel computation, the
processing units can also write commands that the scheduler
unit 420 can use to launch new work on the processing units.

The PPUs 400 may each include, and/or be configured to
perform functions of, one or more processing cores and/or
components thereof, such as Tensor Cores (TCs), Tensor
Processing Units (TPUs), Pixel Visual Cores (PVCs), Ray
Tracing (RT) Cores, Vision Processing Units (VPUs),
Graphics Processing Clusters (GPCs), Texture Processing
Clusters (TPCs), Streaming Multiprocessors (SMs), Tree
Traversal Units (TTUs), Artificial Intelligence Accelerators
(AlAs), Deep Learning Accelerators (DLAs), Arithmetic-
Logic Units (ALUs), Application-Specific Integrated Cir-
cuits (ASICs), Floating Point Units (FPUs), input/output
(I/0) elements, peripheral component interconnect (PCI) or
peripheral component interconnect express (PCle) elements,
and/or the like.

The PPU 400 may be included in a desktop computer, a
laptop computer, a tablet computer, servers, supercomputers,
a smart-phone (e.g., a wireless, hand-held device), personal
digital assistant (PDA), a digital camera, a vehicle, a head
mounted display, a hand-held electronic device, and the like.
In an embodiment, the PPU 400 is embodied on a single
semiconductor substrate. In another embodiment, the PPU
400 is included in a system-on-a-chip (SoC) along with one
or more other devices such as additional PPUs 400, the
memory 404, a reduced instruction set computer (RISC)
CPU, a memory management unit (MMU), a digital-to-
analog converter (DAC), and the like.

In an embodiment, the PPU 400 may be included on a
graphics card that includes one or more memory devices.
The graphics card may be configured to interface with a
PCle slot on a motherboard of a desktop computer. In yet
another embodiment, the PPU 400 may be an integrated
graphics processing unit (iGPU) or parallel processor
included in the chipset of the motherboard. In yet another
embodiment, the PPU 400 may be realized in reconfigurable
hardware. In yet another embodiment, parts of the PPU 400
may be realized in reconfigurable hardware.

Exemplary Computing System

Systems with multiple GPUs and CPUs are used in a
variety of industries as developers expose and leverage more
parallelism in applications such as artificial intelligence
computing. High-performance GPU-accelerated systems
with tens to many thousands of compute nodes are deployed
in data centers, research facilities, and supercomputers to
solve ever larger problems. As the number of processing
devices within the high-performance systems increases, the
communication and data transfer mechanisms need to scale
to support the increased bandwidth.
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FIG. 5A is a conceptual diagram of a processing system
500 implemented using the PPU 400 of FIG. 4, in accor-
dance with an embodiment. The exemplary system 565 may
be configured to implement the method 300 shown in FIG.
3 A and/or the method 350 shown in FIG. 3B. The processing
system 500 includes a CPU 530, switch 510, and multiple
PPUs 400, and respective memories 404.

The NVLink 410 provides high-speed communication
links between each of the PPUs 400. Although a particular
number of NVLink 410 and interconnect 402 connections
are illustrated in FIG. 5B, the number of connections to each
PPU 400 and the CPU 530 may vary. The switch 510
interfaces between the interconnect 402 and the CPU 530.
The PPUs 400, memories 404, and NVLinks 410 may be
situated on a single semiconductor platform to form a
parallel processing module 525. In an embodiment, the
switch 510 supports two or more protocols to interface
between various different connections and/or links.

In another embodiment (not shown), the NVLink 410
provides one or more high-speed communication links
between each of the PPUs 400 and the CPU 530 and the
switch 510 interfaces between the interconnect 402 and each
of the PPUs 400. The PPUs 400, memories 404, and
interconnect 402 may be situated on a single semiconductor
platform to form a parallel processing module 525. In yet
another embodiment (not shown), the interconnect 402
provides one or more communication links between each of
the PPUs 400 and the CPU 530 and the switch 510 interfaces
between each of the PPUs 400 using the NVLink 410 to
provide one or more high-speed communication links
between the PPUs 400. In another embodiment (not shown),
the NVLink 410 provides one or more high-speed commu-
nication links between the PPUs 400 and the CPU 530
through the switch 510. In yet another embodiment (not
shown), the interconnect 402 provides one or more commu-
nication links between each of the PPUs 400 directly. One
or more of the NVLink 410 high-speed communication links
may be implemented as a physical NVLink interconnect or
either an on-chip or on-die interconnect using the same
protocol as the NVLink 410.

In the context of the present description, a single semi-
conductor platform may refer to a sole unitary semiconduc-
tor-based integrated circuit fabricated on a die or chip. It
should be noted that the term single semiconductor platform
may also refer to multi-chip modules with increased con-
nectivity which simulate on-chip operation and make sub-
stantial improvements over utilizing a conventional bus
implementation. Of course, the various circuits or devices
may also be situated separately or in various combinations
of semiconductor platforms per the desires of the user.
Alternately, the parallel processing module 525 may be
implemented as a circuit board substrate and each of the
PPUs 400 and/or memories 404 may be packaged devices.
In an embodiment, the CPU 530, switch 510, and the parallel
processing module 525 are situated on a single semiconduc-
tor platform.

In an embodiment, the signaling rate of each NVLink 410
is 20 to 25 Gigabits/second and each PPU 400 includes six
NVLink 410 interfaces (as shown in FIG. 5A, five NVLink
410 interfaces are included for each PPU 400). Each
NVLink 410 provides a data transfer rate of 25 Gigabytes/
second in each direction, with six links providing 400
Gigabytes/second. The NVLinks 410 can be used exclu-
sively for PPU-t0-PPU communication as shown in FIG.
5A, or some combination of PPU-to-PPU and PPU-to-CPU,
when the CPU 530 also includes one or more NVLink 410
interfaces.
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In an embodiment, the NVLink 410 allows direct load/
store/atomic access from the CPU 530 to each PPU’s 400
memory 404. In an embodiment, the NVLink 410 supports
coherency operations, allowing data read from the memories
404 to be stored in the cache hierarchy of the CPU 530,
reducing cache access latency for the CPU 530. In an
embodiment, the NVLink 410 includes support for Address
Translation Services (ATS), allowing the PPU 400 to
directly access page tables within the CPU 530. One or more
of the NVLinks 410 may also be configured to operate in a
low-power mode.

FIG. 5B illustrates an exemplary system 565 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. The exemplary
system 565 may be configured to implement the method 300
shown in FIG. 3A and/or the method 350 shown in FIG. 3B.

As shown, a system 565 is provided including at least one
central processing unit 530 that is connected to a commu-
nication bus 575. The communication bus 575 may directly
or indirectly couple one or more of the following devices:
main memory 540, network interface 535, CPU(s) 530,
display device(s) 545, input device(s) 560, switch 510, and
parallel processing system 525. The communication bus 575
may be implemented using any suitable protocol and may
represent one or more links or busses, such as an address
bus, a data bus, a control bus, or a combination thereof. The
communication bus 575 may include one or more bus or link
types, such as an industry standard architecture (ISA) bus,
an extended industry standard architecture (EISA) bus, a
video electronics standards association (VESA) bus, a
peripheral component interconnect (PCI) bus, a peripheral
component interconnect express (PCle) bus, HyperTrans-
port, and/or another type of bus or link. In some embodi-
ments, there are direct connections between components. As
an example, the CPU(s) 530 may be directly connected to
the main memory 540. Further, the CPU(s) 530 may be
directly connected to the parallel processing system 525.
Where there is direct, or point-to-point connection between
components, the communication bus 575 may include a
PCle link to carry out the connection. In these examples, a
PCI bus need not be included in the system 565.

Although the various blocks of FIG. 5C are shown as
connected via the communication bus 575 with lines, this is
not intended to be limiting and is for clarity only. For
example, in some embodiments, a presentation component,
such as display device(s) 545, may be considered an 1/O
component, such as input device(s) 560 (e.g., if the display
is a touch screen). As another example, the CPU(s) 530
and/or parallel processing system 525 may include memory
(e.g., the main memory 540 may be representative of a
storage device in addition to the parallel processing system
525, the CPUs 530, and/or other components). In other
words, the computing device of FIG. 5C is merely illustra-
tive. Distinction is not made between such categories as
“workstation,” “server,” “laptop,” “desktop,” “tablet,” “cli-
ent device,” “mobile device,” “hand-held device,” “game
console,” “electronic control unit (ECU),” “virtual reality
system,” and/or other device or system types, as all are
contemplated within the scope of the computing device of
FIG. 5C.

The system 565 also includes a main memory 540.
Control logic (software) and data are stored in the main
memory 540 which may take the form of a variety of
computer-readable media. The computer-readable media
may be any available media that may be accessed by the
system 565. The computer-readable media may include both
volatile and nonvolatile media, and removable and non-
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removable media. By way of example, and not limitation,
the computer-readable media may comprise computer-stor-
age media and communication media.

The computer-storage media may include both volatile
and nonvolatile media and/or removable and non-removable
media implemented in any method or technology for storage
of information such as computer-readable instructions, data
structures, program modules, and/or other data types. For
example, the main memory 540 may store computer-read-
able instructions (e.g., that represent a program(s) and/or a
program element(s), such as an operating system. Computer-
storage media may include, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technol-
ogy, CD-ROM, digital versatile disks (DVD) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which may be used to store the desired information
and which may be accessed by system 565. As used herein,
computer storage media does not comprise signals per se.

The computer storage media may embody computer-
readable instructions, data structures, program modules,
and/or other data types in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” may refer to a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, the computer storage media may include wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, RF, infrared and other
wireless media. Combinations of any of the above should
also be included within the scope of computer-readable
media.

Computer programs, when executed, enable the system
565 to perform various functions. The CPU(s) 530 may be
configured to execute at least some of the computer-readable
instructions to control one or more components of the
system 565 to perform one or more of the methods and/or
processes described herein. The CPU(s) 530 may each
include one or more cores (e.g., one, two, four, eight,
twenty-eight, seventy-two, etc.) that are capable of handling
a multitude of software threads simultaneously. The CPU(s)
530 may include any type of processor, and may include
different types of processors depending on the type of
system 565 implemented (e.g., processors with fewer cores
for mobile devices and processors with more cores for
servers). For example, depending on the type of system 565,
the processor may be an Advanced RISC Machines (ARM)
processor implemented using Reduced Instruction Set Com-
puting (RISC) or an x86 processor implemented using
Complex Instruction Set Computing (CISC). The system
565 may include one or more CPUs 530 in addition to one
Or more MIiCroprocessors or supplementary co-processors,
such as math co-processors.

In addition to or alternatively from the CPU(s) 530, the
parallel processing module 525 may be configured to
execute at least some of the computer-readable instructions
to control one or more components of the system 565 to
perform one or more of the methods and/or processes
described herein. The parallel processing module 525 may
be used by the system 565 to render graphics (e.g., 3D
graphics) or perform general purpose computations. For
example, the parallel processing module 525 may be used
for General-Purpose computing on GPUs (GPGPU). In
embodiments, the CPU(s) 530 and/or the parallel processing
module 525 may discretely or jointly perform any combi-
nation of the methods, processes and/or portions thereof.
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The system 565 also includes input device(s) 560, the
parallel processing system 525, and display device(s) 545.
The display device(s) 545 may include a display (e.g., a
monitor, a touch screen, a television screen, a heads-up-
display (HUD), other display types, or a combination
thereof), speakers, and/or other presentation components.
The display device(s) 545 may receive data from other
components (e.g., the parallel processing system 525, the
CPU(s) 530, etc.), and output the data (e.g., as an image,
video, sound, etc.).

The network interface 535 may enable the system 565 to
be logically coupled to other devices including the input
devices 560, the display device(s) 545, and/or other com-
ponents, some of which may be built in to (e.g., integrated
in) the system 565. Illustrative input devices 560 include a
microphone, mouse, keyboard, joystick, game pad, game
controller, satellite dish, scanner, printer, wireless device,
etc. The input devices 560 may provide a natural user
interface (NUI) that processes air gestures, voice, or other
physiological inputs generated by a user. In some instances,
inputs may be transmitted to an appropriate network element
for further processing. An NUI may implement any combi-
nation of speech recognition, stylus recognition, facial rec-
ognition, biometric recognition, gesture recognition both on
screen and adjacent to the screen, air gestures, head and eye
tracking, and touch recognition (as described in more detail
below) associated with a display of the system 565. The
system 565 may be include depth cameras, such as stereo-
scopic camera systems, infrared camera systems, RGB cam-
era systems, touchscreen technology, and combinations of
these, for gesture detection and recognition. Additionally,
the system 565 may include accelerometers or gyroscopes
(e.g., as part of an inertia measurement unit (IMU)) that
enable detection of motion. In some examples, the output of
the accelerometers or gyroscopes may be used by the system
565 to render immersive augmented reality or virtual reality.

Further, the system 565 may be coupled to a network
(e.g., a telecommunications network, local area network
(LAN), wireless network, wide area network (WAN) such as
the Internet, peer-to-peer network, cable network, or the
like) through a network interface 535 for communication
purposes. The system 565 may be included within a distrib-
uted network and/or cloud computing environment.

The network interface 535 may include one or more
receivers, transmitters, and/or transceivers that enable the
system 565 to communicate with other computing devices
via an electronic communication network, included wired
and/or wireless communications. The network interface 535
may include components and functionality to enable com-
munication over any of a number of different networks, such
as wireless networks (e.g., Wi-Fi, Z-Wave, Bluetooth, Blu-
etooth LE, ZigBee, etc.), wired networks (e.g., communi-
cating over Ethernet or InfiniBand), low-power wide-area
networks (e.g., LoRaWAN, SigFox, etc.), and/or the Inter-
net.

The system 565 may also include a secondary storage (not
shown). The secondary storage 610 includes, for example, a
hard disk drive and/or a removable storage drive, represent-
ing a floppy disk drive, a magnetic tape drive, a compact
disk drive, digital versatile disk (DVD) drive, recording
device, universal serial bus (USB) flash memory. The
removable storage drive reads from and/or writes to a
removable storage unit in a well-known manner. The system
565 may also include a hard-wired power supply, a battery
power supply, or a combination thereof (not shown). The
power supply may provide power to the system 565 to
enable the components of the system 565 to operate.
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Each of the foregoing modules and/or devices may even
be situated on a single semiconductor platform to form the
system 565. Alternately, the various modules may also be
situated separately or in various combinations of semicon-
ductor platforms per the desires of the user. While various
embodiments have been described above, it should be under-
stood that they have been presented by way of example only,
and not limitation. Thus, the breadth and scope of a preferred
embodiment should not be limited by any of the above-
described exemplary embodiments, but should be defined
only in accordance with the following claims and their
equivalents.

Example Network Environments

Network environments suitable for use in implementing
embodiments of the disclosure may include one or more
client devices, servers, network attached storage (NAS),
other backend devices, and/or other device types. The client
devices, servers, and/or other device types (e.g., each
device) may be implemented on one or more instances of the
processing system 500 of FIG. 5A and/or exemplary system
565 of FIG. 5B—e.g., each device may include similar
components, features, and/or functionality of the processing
system 500 and/or exemplary system 565.

Components of a network environment may communicate
with each other via a network(s), which may be wired,
wireless, or both. The network may include multiple net-
works, or a network of networks. By way of example, the
network may include one or more Wide Area Networks
(WANSs), one or more Local Area Networks (LANs), one or
more public networks such as the Internet and/or a public
switched telephone network (PSTN), and/or one or more
private networks. Where the network includes a wireless
telecommunications network, components such as a base
station, a communications tower, or even access points (as
well as other components) may provide wireless connectiv-
ity.

Compatible network environments may include one or
more peer-to-peer network environments—in which case a
server may not be included in a network environment—and
one or more client-server network environments—in which
case one or more servers may be included in a network
environment. In peer-to-peer network environments, func-
tionality described herein with respect to a server(s) may be
implemented on any number of client devices.

In at least one embodiment, a network environment may
include one or more cloud-based network environments, a
distributed computing environment, a combination thereof,
etc. A cloud-based network environment may include a
framework layer, a job scheduler, a resource manager, and a
distributed file system implemented on one or more of
servers, which may include one or more core network
servers and/or edge servers. A framework layer may include
a framework to support software of a software layer and/or
one or more application(s) of an application layer. The
software or application(s) may respectively include web-
based service software or applications. In embodiments, one
or more of the client devices may use the web-based service
software or applications (e.g., by accessing the service
software and/or applications via one or more application
programming interfaces (APIs)). The framework layer may
be, but is not limited to, a type of free and open-source
software web application framework such as that may use a
distributed file system for large-scale data processing (e.g.,
“big data”).
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A cloud-based network environment may provide cloud
computing and/or cloud storage that carries out any combi-
nation of computing and/or data storage functions described
herein (or one or more portions thereof). Any of these
various functions may be distributed over multiple locations
from central or core servers (e.g., of one or more data centers
that may be distributed across a state, a region, a country, the
globe, etc.). If a connection to a user (e.g., a client device)
is relatively close to an edge server(s), a core server(s) may
designate at least a portion of the functionality to the edge
server(s). A cloud-based network environment may be pri-
vate (e.g., limited to a single organization), may be public
(e.g., available to many organizations), and/or a combination
thereof (e.g., a hybrid cloud environment).

The client device(s) may include at least some of the
components, features, and functionality of the example
processing system 500 of FIG. 5B and/or exemplary system
565 of FIG. 5C. By way of example and not limitation, a
client device may be embodied as a Personal Computer
(PC), a laptop computer, a mobile device, a smartphone, a
tablet computer, a smart watch, a wearable computer, a
Personal Digital Assistant (PDA), an MP3 player, a virtual
reality headset, a Global Positioning System (GPS) or
device, a video player, a video camera, a surveillance device
or system, a vehicle, a boat, a flying vessel, a virtual
machine, a drone, a robot, a handheld communications
device, a hospital device, a gaming device or system, an
entertainment system, a vehicle computer system, an embed-
ded system controller, a remote control, an appliance, a
consumer electronic device, a workstation, an edge device,
any combination of these delineated devices, or any other
suitable device.

Machine Learning

Deep neural networks (DNNs) developed on processors,
such as the PPU 400 have been used for diverse use cases,
from self-driving cars to faster drug development, from
automatic image captioning in online image databases to
smart real-time language translation in video chat applica-
tions. Deep learning is a technique that models the neural
learning process of the human brain, continually learning,
continually getting smarter, and delivering more accurate
results more quickly over time. A child is initially taught by
an adult to correctly identify and classify various shapes,
eventually being able to identify shapes without any coach-
ing. Similarly, a deep learning or neural learning system
needs to be trained in object recognition and classification
for it get smarter and more efficient at identifying basic
objects, occluded objects, etc., while also assigning context
to objects.

At the simplest level, neurons in the human brain look at
various inputs that are received, importance levels are
assigned to each of these inputs, and output is passed on to
other neurons to act upon. An artificial neuron or perceptron
is the most basic model of a neural network. In one example,
a perceptron may receive one or more inputs that represent
various features of an object that the perceptron is being
trained to recognize and classify, and each of these features
is assigned a certain weight based on the importance of that
feature in defining the shape of an object.

A deep neural network (DNN) model includes multiple
layers of many connected nodes (e.g., perceptrons, Boltz-
mann machines, radial basis functions, convolutional layers,
etc.) that can be trained with enormous amounts of input
data to quickly solve complex problems with high accuracy.
In one example, a first layer of the DNN model breaks down
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an input image of an automobile into various sections and
looks for basic patterns such as lines and angles. The second
layer assembles the lines to look for higher level patterns
such as wheels, windshields, and mirrors. The next layer
identifies the type of vehicle, and the final few layers
generate a label for the input image, identifying the model
of a specific automobile brand.

Once the DNN is trained, the DNN can be deployed and
used to identify and classify objects or patterns in a process
known as inference. Examples of inference (the process
through which a DNN extracts useful information from a
given input) include identifying handwritten numbers on
checks deposited into ATM machines, identifying images of
friends in photos, delivering movie recommendations to
over fifty million users, identifying and classifying different
types of automobiles, pedestrians, and road hazards in
driverless cars, or translating human speech in real-time.

During training, data flows through the DNN in a forward
propagation phase until a prediction is produced that indi-
cates a label corresponding to the input. If the neural
network does not correctly label the input, then errors
between the correct label and the predicted label are ana-
lyzed, and the weights are adjusted for each feature during
a backward propagation phase until the DNN correctly
labels the input and other inputs in a training dataset.
Training complex neural networks requires massive
amounts of parallel computing performance, including float-
ing-point multiplications and additions that are supported by
the PPU 400. Inferencing is less compute-intensive than
training, being a latency-sensitive process where a trained
neural network is applied to new inputs it has not seen before
to classify images, detect emotions, identify recommenda-
tions, recognize and translate speech, and generally infer
new information.

Neural networks rely heavily on matrix math operations,
and complex multi-layered networks require tremendous
amounts of floating-point performance and bandwidth for
both efficiency and speed. With thousands of processing
cores, optimized for matrix math operations, and delivering
tens to hundreds of TFLOPS of performance, the PPU 400
is a computing platform capable of delivering performance
required for deep neural network-based artificial intelligence
and machine learning applications.

Furthermore, images generated applying one or more of
the techniques disclosed herein may be used to train, test, or
certify DNNs used to recognize objects and environments in
the real world. Such images may include scenes of road-
ways, factories, buildings, urban settings, rural settings,
humans, animals, and any other physical object or real-
world setting. Such images may be used to train, test, or
certify DNNs that are employed in machines or robots to
manipulate, handle, or modify physical objects in the real
world. Furthermore, such images may be used to train, test,
or certify DNNs that are employed in autonomous vehicles
to navigate and move the vehicles through the real world.
Additionally, images generated applying one or more of the
techniques disclosed herein may be used to convey infor-
mation to users of such machines, robots, and vehicles.

FIG. 5C illustrates components of an exemplary system
555 that can be used to train and utilize machine learning, in
accordance with at least one embodiment. As will be dis-
cussed, various components can be provided by various
combinations of computing devices and resources, or a
single computing system, which may be under control of a
single entity or multiple entities. Further, aspects may be
triggered, initiated, or requested by different entities. In at
least one embodiment training of a neural network might be
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instructed by a provider associated with provider environ-
ment 506, while in at least one embodiment training might
be requested by a customer or other user having access to a
provider environment through a client device 502 or other
such resource. In at least one embodiment, training data (or
data to be analyzed by a trained neural network) can be
provided by a provider, a user, or a third party content
provider 524. In at least one embodiment, client device 502
may be a vehicle or object that is to be navigated on behalf
of a user, for example, which can submit requests and/or
receive instructions that assist in navigation of a device.

In at least one embodiment, requests are able to be
submitted across at least one network 504 to be received by
a provider environment 506. In at least one embodiment, a
client device may be any appropriate electronic and/or
computing devices enabling a user to generate and send such
requests, such as, but not limited to, desktop computers,
notebook computers, computer servers, smartphones, tablet
computers, gaming consoles (portable or otherwise), com-
puter processors, computing logic, and set-top boxes. Net-
work(s) 504 can include any appropriate network for trans-
mitting a request or other such data, as may include Internet,
an intranet, an Ethernet, a cellular network, a local area
network (LAN), a wide area network (WAN), a personal
area network (PAN), an ad hoc network of direct wireless
connections among peers, and so on.

In at least one embodiment, requests can be received at an
interface layer 508, which can forward data to a training and
inference manager 532, in this example. The training and
inference manager 532 can be a system or service including
hardware and software for managing requests and service
corresponding data or content, in at least one embodiment,
the training and inference manager 532 can receive a request
to train a neural network, and can provide data for a request
to a training module 512. In at least one embodiment,
training module 512 can select an appropriate model or
neural network to be used, if not specified by the request,
and can train a model using relevant training data. In at least
one embodiment, training data can be a batch of data stored
in a training data repository 514, received from client device
502, or obtained from a third party provider 524. In at least
one embodiment, training module 512 can be responsible for
training data. A neural network can be any appropriate
network, such as a recurrent neural network (RNN) or
convolutional neural network (CNN). Once a neural net-
work is trained and successfully evaluated, a trained neural
network can be stored in a model repository 516, for
example, that may store different models or networks for
users, applications, or services, etc. In at least one embodi-
ment, there may be multiple models for a single application
or entity, as may be utilized based on a number of different
factors.

In at least one embodiment, at a subsequent point in time,
a request may be received from client device 502 (or another
such device) for content (e.g., path determinations) or data
that is at least partially determined or impacted by a trained
neural network. This request can include, for example, input
data to be processed using a neural network to obtain one or
more inferences or other output values, classifications, or
predictions, or for at least one embodiment, input data can
be received by interface layer 508 and directed to inference
module 518, although a different system or service can be
used as well. In at least one embodiment, inference module
518 can obtain an appropriate trained network, such as a
trained deep neural network (DNN) as discussed herein,
from model repository 516 if not already stored locally to
inference module 518. Inference module 518 can provide
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data as input to a trained network, which can then generate
one or more inferences as output. This may include, for
example, a classification of an instance of input data. In at
least one embodiment, inferences can then be transmitted to
client device 502 for display or other communication to a
user. In at least one embodiment, context data for a user may
also be stored to a user context data repository 522, which
may include data about a user which may be useful as input
to a network in generating inferences, or determining data to
return to a user after obtaining instances. In at least one
embodiment, relevant data, which may include at least some
of input or inference data, may also be stored to a local
database 534 for processing future requests. In at least one
embodiment, a user can use account information or other
information to access resources or functionality of a pro-
vider environment. In at least one embodiment, if permitted
and available, user data may also be collected and used to
further train models, in order to provide more accurate
inferences for future requests. In at least one embodiment,
requests may be received through a user interface to a
machine learning application 526 executing on client device
502, and results displayed through a same interface. A client
device can include resources such as a processor 528 and
memory 562 for generating a request and processing results
or a response, as well as at least one data storage element
552 for storing data for machine learning application 526.

In at least one embodiment a processor 528 (or a proces-
sor of training module 512 or inference module 518) will be
a central processing unit (CPU). As mentioned, however,
resources in such environments can utilize GPUs to process
data for at least certain types of requests. With thousands of
cores, GPUs, such as PPU 300 are designed to handle
substantial parallel workloads and, therefore, have become
popular in deep learning for training neural networks and
generating predictions. While use of GPUs for offline builds
has enabled faster training of larger and more complex
models, generating predictions offline implies that either
request-time input features cannot be used or predictions
must be generated for all permutations of features and stored
in a lookup table to serve real-time requests. If a deep
learning framework supports a CPU-mode and a model is
small and simple enough to perform a feed-forward on a
CPU with a reasonable latency, then a service on a CPU
instance could host a model. In this case, training can be
done offline on a GPU and inference done in real-time on a
CPU. If a CPU approach is not viable, then a service can run
on a GPU instance. Because GPUs have different perfor-
mance and cost characteristics than CPUs, however, running
a service that offloads a runtime algorithm to a GPU can
require it to be designed differently from a CPU based
service.

In at least one embodiment, video data can be provided
from client device 502 for enhancement in provider envi-
ronment 506. In at least one embodiment, video data can be
processed for enhancement on client device 502. In at least
one embodiment, video data may be streamed from a third
party content provider 524 and enhanced by third party
content provider 524, provider environment 506, or client
device 502. In at least one embodiment, video data can be
provided from client device 502 for use as training data in
provider environment 506.

In at least one embodiment, supervised and/or unsuper-
vised training can be performed by the client device 502
and/or the provider environment 506. In at least one embodi-
ment, a set of training data 514 (e.g., classified or labeled
data) is provided as input to function as training data.
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In at least one embodiment, training data can include
instances of at least one type of object for which a neural
network is to be trained, as well as information that identifies
that type of object. In at least one embodiment, training data
might include a set of images that each includes a repre-
sentation of a type of object, where each image also
includes, or is associated with, a label, metadata, classifica-
tion, or other piece of information identifying a type of
object represented in a respective image. Various other types
of data may be used as training data as well, as may include
text data, audio data, video data, and so on. In at least one
embodiment, training data 514 is provided as training input
to a training module 512. In at least one embodiment,
training module 512 can be a system or service that includes
hardware and software, such as one or more computing
devices executing a training application, for training a neural
network (or other model or algorithm, etc.). In at least one
embodiment, training module 512 receives an instruction or
request indicating a type of model to be used for training, in
at least one embodiment, a model can be any appropriate
statistical model, network, or algorithm useful for such
purposes, as may include an artificial neural network, deep
learning algorithm, learning classifier, Bayesian network,
and so on. In at least one embodiment, training module 512
can select an initial model, or other untrained model, from
an appropriate repository 516 and utilize training data 514 to
train a model, thereby generating a trained model (e.g.,
trained deep neural network) that can be used to classify
similar types of data, or generate other such inferences. In at
least one embodiment where training data is not used, an
appropriate initial model can still be selected for training on
input data per training module 512.

In at least one embodiment, a model can be trained in a
number of different ways, as may depend in part upon a type
of model selected. In at least one embodiment, a machine
learning algorithm can be provided with a set of training
data, where a model is a model artifact created by a training
process. In at least one embodiment, each instance of
training data contains a correct answer (e.g., classification),
which can be referred to as a target or target attribute. In at
least one embodiment, a learning algorithm finds patterns in
training data that map input data attributes to a target, an
answer to be predicted, and a machine learning model is
output that captures these patterns. In at least one embodi-
ment, a machine learning model can then be used to obtain
predictions on new data for which a target is not specified.

In at least one embodiment, training and inference man-
ager 532 can select from a set of machine learning models
including binary classification, multiclass classification,
generative, and regression models. In at least one embodi-
ment, a type of model to be used can depend at least in part
upon a type of target to be predicted.

Graphics Processing Pipeline

In an embodiment, the PPU 400 comprises a graphics
processing unit (GPU). The PPU 400 is configured to
receive commands that specify shader programs for process-
ing graphics data. Graphics data may be defined as a set of
primitives such as points, lines, triangles, quads, triangle
strips, and the like. Typically, a primitive includes data that
specifies a number of vertices for the primitive (e.g., in a
model-space coordinate system) as well as attributes asso-
ciated with each vertex of the primitive. The PPU 400 can
be configured to process the graphics primitives to generate
a frame buffer (e.g., pixel data for each of the pixels of the
display).
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An application writes model data for a scene (e.g., a
collection of vertices and attributes) to a memory such as a
system memory or memory 404. The model data defines
each of the objects that may be visible on a display. The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed. The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data. The commands may reference different shader
programs to be implemented on the processing units within
the PPU 400 including one or more of a vertex shader, hull
shader, domain shader, geometry shader, and a pixel shader.
For example, one or more of the processing units may be
configured to execute a vertex shader program that processes
a number of vertices defined by the model data. In an
embodiment, the different processing units may be config-
ured to execute different shader programs concurrently. For
example, a first subset of processing units may be configured
to execute a vertex shader program while a second subset of
processing units may be configured to execute a pixel shader
program. The first subset of processing units processes
vertex data to produce processed vertex data and writes the
processed vertex data to the L2 cache 460 and/or the
memory 404. After the processed vertex data is rasterized
(e.g., transformed from three-dimensional data into two-
dimensional data in screen space) to produce fragment data,
the second subset of processing units executes a pixel shader
to produce processed fragment data, which is then blended
with other processed fragment data and written to the frame
buffer in memory 404. The vertex shader program and pixel
shader program may execute concurrently, processing dif-
ferent data from the same scene in a pipelined fashion until
all of the model data for the scene has been rendered to the
frame buffer. Then, the contents of the frame buffer are
transmitted to a display controller for display on a display
device.

FIG. 6A is a conceptual diagram of a graphics processing
pipeline 600 implemented by the PPU 400 of FIG. 4, in
accordance with an embodiment. The graphics processing
pipeline 600 is an abstract flow diagram of the processing
steps implemented to generate 2D computer-generated
images from 3D geometry data. As is well-known, pipeline
architectures may perform long latency operations more
efficiently by splitting up the operation into a plurality of
stages, where the output of each stage is coupled to the input
of the next successive stage. Thus, the graphics processing
pipeline 600 receives input data 601 that is transmitted from
one stage to the next stage of the graphics processing
pipeline 600 to generate output data 602. In an embodiment,
the graphics processing pipeline 600 may represent a graph-
ics processing pipeline defined by the OpenGL® API. As an
option, the graphics processing pipeline 600 may be imple-
mented in the context of the functionality and architecture of
the previous figures and/or any subsequent figure(s).

As shown in FIG. 6A, the graphics processing pipeline
600 comprises a pipeline architecture that includes a number
of stages. The stages include, but are not limited to, a data
assembly stage 610, a vertex shading stage 620, a primitive
assembly stage 630, a geometry shading stage 640, a view-
port scale, cull, and clip (VSCC) stage 650, a rasterization
stage 660, a fragment shading stage 670, and a raster
operations stage 680. In an embodiment, the input data 601
comprises commands that configure the processing units to
implement the stages of the graphics processing pipeline 600
and geometric primitives (e.g., points, lines, triangles,
quads, triangle strips or fans, etc.) to be processed by the
stages. The output data 602 may comprise pixel data (e.g.,
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color data) that is copied into a frame buffer or other type of
surface data structure in a memory.

The data assembly stage 610 receives the input data 601
that specifies vertex data for high-order surfaces, primitives,
or the like. The data assembly stage 610 collects the vertex
data in a temporary storage or queue, such as by receiving
a command from the host processor that includes a pointer
to a buffer in memory and reading the vertex data from the
buffer. The vertex data is then transmitted to the vertex
shading stage 620 for processing.

The vertex shading stage 620 processes vertex data by
performing a set of operations (e.g., a vertex shader or a
program) once for each of the vertices. Vertices may be, e.g.,
specified as a 4-coordinate vector (e.g., <X,y,Z,W>) associ-
ated with one or more vertex attributes (e.g., color, texture
coordinates, surface normal, etc.). The vertex shading stage
620 may manipulate individual vertex attributes such as
position, color, texture coordinates, and the like. In other
words, the vertex shading stage 620 performs operations on
the vertex coordinates or other vertex attributes associated
with a vertex. Such operations commonly including lighting
operations (e.g., moditying color attributes for a vertex) and
transformation operations (e.g., modifying the coordinate
space for a vertex). For example, vertices may be specified
using coordinates in an object-coordinate space, which are
transformed by multiplying the coordinates by a matrix that
translates the coordinates from the object-coordinate space
into a world space or a normalized-device-coordinate (NCD)
space. The vertex shading stage 620 generates transformed
vertex data that is transmitted to the primitive assembly
stage 630.

The primitive assembly stage 630 collects vertices output
by the vertex shading stage 620 and groups the vertices into
geometric primitives for processing by the geometry shading
stage 640. For example, the primitive assembly stage 630
may be configured to group every three consecutive vertices
as a geometric primitive (e.g., a triangle) for transmission to
the geometry shading stage 640. In some embodiments,
specific vertices may be reused for consecutive geometric
primitives (e.g., two consecutive triangles in a triangle strip
may share two vertices). The primitive assembly stage 630
transmits geometric primitives (e.g., a collection of associ-
ated vertices) to the geometry shading stage 640.

The geometry shading stage 640 processes geometric
primitives by performing a set of operations (e.g., a geom-
etry shader or program) on the geometric primitives. Tes-
sellation operations may generate one or more geometric
primitives from each geometric primitive. In other words,
the geometry shading stage 640 may subdivide each geo-
metric primitive into a finer mesh of two or more geometric
primitives for processing by the rest of the graphics pro-
cessing pipeline 600. The geometry shading stage 640
transmits geometric primitives to the viewport SCC stage
650.

In an embodiment, the graphics processing pipeline 600
may operate within a streaming multiprocessor and the
vertex shading stage 620, the primitive assembly stage 630,
the geometry shading stage 640, the fragment shading stage
670, and/or hardware/software associated therewith, may
sequentially perform processing operations. Once the
sequential processing operations are complete, in an
embodiment, the viewport SCC stage 650 may utilize the
data. In an embodiment, primitive data processed by one or
more of the stages in the graphics processing pipeline 600
may be written to a cache (e.g. L1 cache, a vertex cache,
etc.). In this case, in an embodiment, the viewport SCC stage
650 may access the data in the cache. In an embodiment, the
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viewport SCC stage 650 and the rasterization stage 660 are
implemented as fixed function circuitry.

The viewport SCC stage 650 performs viewport scaling,
culling, and clipping of the geometric primitives. Each
surface being rendered to is associated with an abstract
camera position. The camera position represents a location
of a viewer looking at the scene and defines a viewing
frustum that encloses the objects of the scene. The viewing
frustum may include a viewing plane, a rear plane, and four
clipping planes. Any geometric primitive entirely outside of
the viewing frustum may be culled (e.g., discarded) because
the geometric primitive will not contribute to the final
rendered scene. Any geometric primitive that is partially
inside the viewing frustum and partially outside the viewing
frustum may be clipped (e.g., transformed into a new
geometric primitive that is enclosed within the viewing
frustum. Furthermore, geometric primitives may each be
scaled based on a depth of the viewing frustum. All poten-
tially visible geometric primitives are then transmitted to the
rasterization stage 660.

The rasterization stage 660 converts the 3D geometric
primitives into 2D fragments (e.g. capable of being utilized
for display, etc.). The rasterization stage 660 may be con-
figured to utilize the vertices of the geometric primitives to
setup a set of plane equations from which various attributes
can be interpolated. The rasterization stage 660 may also
compute a coverage mask for a plurality of pixels that
indicates whether one or more sample locations for the pixel
intercept the geometric primitive. In an embodiment, z-test-
ing may also be performed to determine if the geometric
primitive is occluded by other geometric primitives that
have already been rasterized. The rasterization stage 660
generates fragment data (e.g., interpolated vertex attributes
associated with a particular sample location for each covered
pixel) that are transmitted to the fragment shading stage 670.

The fragment shading stage 670 processes fragment data
by performing a set of operations (e.g., a fragment shader or
a program) on each of the fragments. The fragment shading
stage 670 may generate pixel data (e.g., color values) for the
fragment such as by performing lighting operations or
sampling texture maps using interpolated texture coordi-
nates for the fragment. The fragment shading stage 670
generates pixel data that is transmitted to the raster opera-
tions stage 680.

The raster operations stage 680 may perform various
operations on the pixel data such as performing alpha tests,
stencil tests, and blending the pixel data with other pixel data
corresponding to other fragments associated with the pixel.
When the raster operations stage 680 has finished processing
the pixel data (e.g., the output data 602), the pixel data may
be written to a render target such as a frame buffer, a color
buffer, or the like.

It will be appreciated that one or more additional stages
may be included in the graphics processing pipeline 600 in
addition to or in lieu of one or more of the stages described
above. Various implementations of the abstract graphics
processing pipeline may implement different stages. Fur-
thermore, one or more of the stages described above may be
excluded from the graphics processing pipeline in some
embodiments (such as the geometry shading stage 640).
Other types of graphics processing pipelines are contem-
plated as being within the scope of the present disclosure.
Furthermore, any of the stages of the graphics processing
pipeline 600 may be implemented by one or more dedicated
hardware units within a graphics processor such as PPU 400.
Other stages of the graphics processing pipeline 600 may be
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implemented by programmable hardware units such as the
processing unit within the PPU 400.

The graphics processing pipeline 600 may be imple-
mented via an application executed by a host processor, such
as a CPU. In an embodiment, a device driver may implement
an application programming interface (API) that defines
various functions that can be utilized by an application in
order to generate graphical data for display. The device
driver is a software program that includes a plurality of
instructions that control the operation of the PPU 400. The
API provides an abstraction for a programmer that lets a
programmer utilize specialized graphics hardware, such as
the PPU 400, to generate the graphical data without requir-
ing the programmer to utilize the specific instruction set for
the PPU 400. The application may include an API call that
is routed to the device driver for the PPU 400. The device
driver interprets the API call and performs various opera-
tions to respond to the API call. In some instances, the
device driver may perform operations by executing instruc-
tions on the CPU. In other instances, the device driver may
perform operations, at least in part, by launching operations
on the PPU 400 utilizing an input/output interface between
the CPU and the PPU 400. In an embodiment, the device
driver is configured to implement the graphics processing
pipeline 600 utilizing the hardware of the PPU 400.

Various programs may be executed within the PPU 400 in
order to implement the various stages of the graphics
processing pipeline 600. For example, the device driver may
launch a kernel on the PPU 400 to perform the vertex
shading stage 620 on one processing unit (or multiple
processing units). The device driver (or the initial kernel
executed by the PPU 400) may also launch other kernels on
the PPU 400 to perform other stages of the graphics pro-
cessing pipeline 600, such as the geometry shading stage
640 and the fragment shading stage 670. In addition, some
of' the stages of the graphics processing pipeline 600 may be
implemented on fixed unit hardware such as a rasterizer or
a data assembler implemented within the PPU 400. It will be
appreciated that results from one kernel may be processed
by one or more intervening fixed function hardware units
before being processed by a subsequent kernel on a pro-
cessing unit.

Images generated applying one or more of the techniques
disclosed herein may be displayed on a monitor or other
display device. In some embodiments, the display device
may be coupled directly to the system or processor gener-
ating or rendering the images. In other embodiments, the
display device may be coupled indirectly to the system or
processor such as via a network. Examples of such networks
include the Internet, mobile telecommunications networks, a
WIFI network, as well as any other wired and/or wireless
networking system. When the display device is indirectly
coupled, the images generated by the system or processor
may be streamed over the network to the display device.
Such streaming allows, for example, video games or other
applications, which render images, to be executed on a
server, a data center, or in a cloud-based computing envi-
ronment and the rendered images to be transmitted and
displayed on one or more user devices (such as a computer,
video game console, smartphone, other mobile device, etc.)
that are physically separate from the server or data center.
Hence, the techniques disclosed herein can be applied to
enhance the images that are streamed and to enhance ser-
vices that stream images such as NVIDIA GeForce Now
(GFN), Google Stadia, and the like.

Example Game Streaming System

FIG. 6B is an example system diagram for a game
streaming system 605, in accordance with some embodi-
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ments of the present disclosure. FIG. 6B includes game
server(s) 603 (which may include similar components, fea-
tures, and/or functionality to the example processing system
500 of FIG. 5A and/or exemplary system 565 of FIG. 5B),
client device(s) 604 (which may include similar compo-
nents, features, and/or functionality to the example process-
ing system 500 of FIG. 5A and/or exemplary system 565 of
FIG. 5B), and network(s) 606 (which may be similar to the
network(s) described herein). In some embodiments of the
present disclosure, the system 605 may be implemented.

In the system 605, for a game session, the client device(s)
604 may only receive input data in response to inputs to the
input device(s), transmit the input data to the game server(s)
603, receive encoded display data from the game server(s)
603, and display the display data on the display 624. As
such, the more computationally intense computing and
processing is offloaded to the game server(s) 603 (e.g.,
rendering—in particular ray or path tracing—for graphical
output of the game session is executed by the GPU(s) of the
game server(s) 603). In other words, the game session is
streamed to the client device(s) 604 from the game server(s)
603, thereby reducing the requirements of the client
device(s) 604 for graphics processing and rendering.

For example, with respect to an instantiation of a game
session, a client device 604 may be displaying a frame of the
game session on the display 624 based on receiving the
display data from the game server(s) 603. The client device
604 may receive an input to one of the input device(s) and
generate input data in response. The client device 604 may
transmit the input data to the game server(s) 603 via the
communication interface 621 and over the network(s) 606
(e.g., the Internet), and the game server(s) 603 may receive
the input data via the communication interface 618. The
CPU(s) may receive the input data, process the input data,
and transmit data to the GPU(s) that causes the GPU(s) to
generate a rendering of the game session. For example, the
input data may be representative of a movement of a
character of the user in a game, firing a weapon, reloading,
passing a ball, turning a vehicle, etc. The rendering com-
ponent 612 may render the game session (e.g., representa-
tive of the result of the input data) and the render capture
component 614 may capture the rendering of the game
session as display data (e.g., as image data capturing the
rendered frame of the game session). The rendering of the
game session may include ray or path-traced lighting and/or
shadow effects, computed using one or more parallel pro-
cessing units—such as GPUs, which may further employ the
use of one or more dedicated hardware accelerators or
processing cores to perform ray or path-tracing techniques—
of'the game server(s) 603. The encoder 616 may then encode
the display data to generate encoded display data and the
encoded display data may be transmitted to the client device
604 over the network(s) 606 via the communication inter-
face 618. The client device 604 may receive the encoded
display data via the communication interface 621 and the
decoder 622 may decode the encoded display data to gen-
erate the display data. The client device 604 may then
display the display data via the display 624.

It is noted that the techniques described herein may be
embodied in executable instructions stored in a computer
readable medium for use by or in connection with a pro-
cessor-based instruction execution machine, system, appa-
ratus, or device. It will be appreciated by those skilled in the
art that, for some embodiments, various types of computer-
readable media can be included for storing data. As used
herein, a “computer-readable medium” includes one or more
of any suitable media for storing the executable instructions
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of' a computer program such that the instruction execution
machine, system, apparatus, or device may read (or fetch)
the instructions from the computer-readable medium and
execute the instructions for carrying out the described
embodiments. Suitable storage formats include one or more
of an electronic, magnetic, optical, and electromagnetic
format. A non-exhaustive list of conventional exemplary
computer-readable medium includes: a portable computer
diskette; a random-access memory (RAM); a read-only
memory (ROM); an erasable programmable read only
memory (EPROM); a flash memory device; and optical
storage devices, including a portable compact disc (CD), a
portable digital video disc (DVD), and the like.

It should be understood that the arrangement of compo-
nents illustrated in the attached figures are for illustrative
purposes and that other arrangements are possible. For
example, one or more of the elements described herein may
be realized, in whole or in part, as an electronic hardware
component. Other elements may be implemented in soft-
ware, hardware, or a combination of software and hardware.
Moreover, some or all of these other elements may be
combined, some may be omitted altogether, and additional
components may be added while still achieving the func-
tionality described herein. Thus, the subject matter described
herein may be embodied in many different variations, and all
such variations are contemplated to be within the scope of
the claims.

To facilitate an understanding of the subject matter
described herein, many aspects are described in terms of
sequences of actions. It will be recognized by those skilled
in the art that the various actions may be performed by
specialized circuits or circuitry, by program instructions
being executed by one or more processors, or by a combi-
nation of both. The description herein of any sequence of
actions is not intended to imply that the specific order
described for performing that sequence must be followed.
All methods described herein may be performed in any
suitable order unless otherwise indicated herein or otherwise
clearly contradicted by context.

The use of the terms “a” and “an” and “the” and similar
references in the context of describing the subject matter
(particularly in the context of the following claims) are to be
construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by con-
text. The use of the term “at least one” followed by a list of
one or more items (for example, “at least one of A and B”)
is to be construed to mean one item selected from the listed
items (A or B) or any combination of two or more of the
listed items (A and B), unless otherwise indicated herein or
clearly contradicted by context. Furthermore, the foregoing
description is for the purpose of illustration only, and not for
the purpose of limitation, as the scope of protection sought
is defined by the claims as set forth hereinafter together with
any equivalents thereof. The use of any and all examples, or
exemplary language (e.g., “such as™) provided herein, is
intended merely to better illustrate the subject matter and
does not pose a limitation on the scope of the subject matter
unless otherwise claimed. The use of the term “based on”
and other like phrases indicating a condition for bringing
about a result, both in the claims and in the written descrip-
tion, is not intended to foreclose any other conditions that
bring about that result. No language in the specification
should be construed as indicating any non-claimed element
as essential to the practice of the invention as claimed.

What is claimed is:

1. A computer-implemented method for generating a
projective hash map, comprising:
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receiving data associated with a plurality of points in an
N-dimensional space; and
for each point in the plurality of points:
projecting the point onto a projection surface to gen-
erate projected coordinates for the point, wherein the
projected coordinates have less than N dimensions,
generating a hash value for the point based on a hash
key that includes the projected coordinates, and
adding data corresponding to the point to a data struc-
ture for the projective hash map based on the hash
value.

2. The computer-implemented method of claim 1,
wherein the N-dimensional space is a three-dimensional
space, and the projected coordinates include two-dimen-
sional coordinates <u, v>.

3. The computer-implemented method of claim 2,
wherein:

the data is generated by a graphics application that is

configured to render an image for display in accordance
with a virtual camera position in the N-dimensional
space, and

the projection surface is one of a plurality of projection

surfaces arranged around the virtual camera position,
and a first projection surface is co-planar with a near
plane of a view frustum of the image.

4. The computer-implemented method of claim 3,
wherein projecting the point onto the projection surface
comprises determining a surface index for a particular
projection surface of the plurality of projections surfaces
that intersects a ray that connects the point and the virtual
camera position.

5. The computer-implemented method of claim 4,
wherein the hash key further includes the surface index.

6. The computer-implemented method of claim 5, the
method further comprising:

querying the data structure using a plurality of hash

values, wherein at least two hash values are generated
based on hash keys that include different surface index
values.

7. The computer-implemented method of claim 1,
wherein the N-dimensional space is a three-dimensional
space, the projection surface comprises a spherical surface,
and the projected coordinates include two-dimensional coor-
dinates <0, @>.

8. The computer-implemented method of claim 1,
wherein the hash key further includes a level-of-detail
(LOD) indicator, and wherein adding the data corresponding
to the point to the data structure comprises:

generating multiple hash values for different LOD indi-

cator values; and

adding multiple copies of the data to the data structure in

accordance with the multiple hash values.

9. The computer-implemented method of claim 1,
wherein:

the data is generated by a graphics application that is

configured to render an image for display,

the image is rendered in accordance with a virtual camera

position in the N-dimensional space,

the projection surface is located in the N-dimensional

space relative to the virtual camera position to match a
viewing plane of the image within the graphics appli-
cation, and

a level-of-detail (LOD) corresponding to a subdivision the

projection surface matches a pixel resolution of the
image.

10. The computer-implemented method of claim 1,
wherein the hash key further includes a slice index based on
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a dimension d that indicates a distance from the point to a
virtual camera position associated with the projection sur-
face or a distance from the point to the projection surface.

11. The computer-implemented method of claim 1, the
method further comprising querying the projective hash map
by:

identifying a search area on the projection surface based
on projected coordinates of a query point in the N-di-
mensional space;

determine a plurality of hash values corresponding to the
search area; and

querying the projective hash map in accordance with the
plurality of hash values for the search area to determine
whether the projective hash map includes data for
points that, when projected onto the projection surface,
intersect the search area.

12. The computer-implemented method of claim 1,
wherein at least one of the projected coordinates is quantized
according to a quantization parameter prior to generating the
hash key.

13. The computer-implemented method of claim 1,
wherein the projective hash map is generated by a server or
in a data center and utilized by a graphics application to
generate an image, and the image is streamed to a user
device via a network.

14. The computer-implemented method of claim 1,
wherein the projective hash map is utilized by a graphics
application to generate an image used for training, testing, or
certifying a neural network employed in a machine, robot, or
autonomous vehicle.

15. A system, comprising:

a memory configured to store data associated with a
plurality of points in an N-dimensional space and a data
structure for a projective hash map; and

a processor configured to generate the projective hash
map by, for each point in the plurality of points:
project the point onto a projection surface to generate

projected coordinates for the point, wherein the
projected coordinates have less than N dimensions,
generate a hash value for the point based on a hash key
that includes the projected coordinates, and
add data corresponding to the point to the data structure
for the projective hash map based on the hash value.

16. The system of claim 15, wherein:

the N-dimensional space is a three-dimensional (3D)
space, and the projected coordinates include two-di-
mensional (2D) coordinates <u, v>;

the data is generated by a graphics application that is
configured to render an image for display in accordance
with a virtual camera position in the 3D space, and

the projection surface is one of a plurality of projection
surfaces arranged around the virtual camera position,
and a first projection surface is co-planar with a near
plane of a view frustum of the image.

17. The system of claim 16, wherein projecting the point
onto the projection surface comprises determining a surface
index for a particular projection surface of the plurality of
projection surfaces that intersects a ray that connects the
point and the virtual camera position, and wherein the hash
key further includes the surface index.

18. The system of claim 15, wherein the N-dimensional
space is a three-dimensional space, the projection surface
comprises a spherical surface, and the projected coordinates
include two-dimensional coordinates <8, @>.
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19. The system of claim 15, wherein the hash key further
includes a level-of-detail (LOD) indicator, and wherein
adding the data corresponding to the point to the data
structure comprises:

generating multiple hash values for different LOD indi-

cator values; and

adding multiple copies of the data to the data structure in

accordance with the multiple hash values.

20. The system of claim 15, wherein the processor and the
memory are included in a server or in a data center and the
projective hash map is utilized by a graphics application to
generate an image, and the image is streamed to a user
device via a network.

21. The system of claim 15, wherein at least one of the
projected coordinates is quantized according to a quantiza-
tion parameter prior to generating the hash key.

22. A non-transitory computer-readable media storing
computer instructions for generating a projective hash map
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for storing data associated with a plurality of points in an
N-dimensional space, and the computer instructions, when
executed by one or more processors, cause the one or more
processors to perform the steps of:
receiving data associated with a plurality of points in an
N-dimensional space; and
for each point in the plurality of points:
projecting the point onto a projection surface to gen-
erate projected coordinates for the point, wherein the
projected coordinates have less than N dimensions,
generating a hash value for the point based on a hash
key that includes the projected coordinates, and
adding data corresponding to the point to a data struc-
ture for the projective hash map based on the hash
value.



