a2 United States Patent

US011315310B2

ao) Patent No.: US 11,315,310 B2

Wyman et al. 45) Date of Patent: Apr. 26, 2022
(54) RESERVOIR-BASED SPATIOTEMPORAL (58) Field of Classification Search
IMPORTANCE RESAMPLING UTILIZING A CPC ..ocoivvrieriiecic GO6T 15/506; GO6T 15/06
GLOBAL ILLUMINATION DATA See application file for complete search history.

STRUCTURE

(71) Applicant: NVIDIA Corporation, Santa Clara, CA
(US)

(72) Inventors: Christopher Ryan Wyman, Redmond,
WA (US); Morgan McGuire,
Williamstown, MA (US); Peter
Schuyler Shirley, Salt Lake City, UT
(US); Aaron Eliot Lefohn, Kirkland,
WA (US)

(73) Assignee: NVIDIA CORPORATION, Santa
Clara, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 17/152,460
(22) Filed: Jan. 19, 2021

(65) Prior Publication Data
US 2021/0287426 Al Sep. 16, 2021

Related U.S. Application Data
(60) Provisional application No. 62/988,789, filed on Mar.

12, 2020.
(51) Int. CL

GO6T 15/50 (2011.01)

GO6T 15/06 (2011.01)
(52) US.CL

CPC ... GOG6T 15/506 (2013.01); GO6T 15/06

(2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0150938 Al* 6/2008 Pantaleoni GO6T 15/50
345/419
2009/0213118 Al* 82009 Ha ..o GO6T 15/06
345/421
2013/0120384 Al* 5/2013 Jarosz GO6F 17/14
345/426
2014/0327673 Al* 11/2014 Sousa ... GO6T 15/506
345/426
2016/0216107 Al* 7/2016 Barker GO6T 7/73

2017/0263043 Al* 9/2017 Peterson .. GO6T 15/00
2018/0046885 Al* 2/2018 Barker GO6T 7/66
2020/0320684 Al* 10/2020 Wiemker GO6T 7/62

(Continued)

OTHER PUBLICATIONS

Greger et al., “The Irradiance Volume”, 1998 (Year: 1998).*
(Continued)

Primary Examiner — Phong X Nguyen
(74) Attorney, Agent, or Firm — Zilka-Kotab, P.C.

(57) ABSTRACT

A global illumination data structure (e.g., a data structure
created to store global illumination information for geom-
etry within a scene to be rendered) is computed for the scene.
Additionally, reservoir-based spatiotemporal importance
resampling (RESTIR) is used to perform illumination gath-
ering, utilizing the global illumination data structure. The
illumination gathering includes identifying light values for
points within the scene, where one or more points are
selected within the scene based on the light values in order
to perform ray tracing during the rendering of the scene.

22 Claims, 11 Drawing Sheets

100

ey

scene
102

Computing a global illumination data structure for a

'

104

Implementing reservoir-based spatiotemporal
importance resampling (RESTIR) to perform
illumination gathering within the scene, utilizing the
global ilumination data structure

US 11,315,310 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2020/0388004 Al* 12/2020 Zhang GO6T 7/337
2021/0012246 Al* 1/2021 Hazard GO6N 20/00

OTHER PUBLICATIONS

Talbot et al., “Importance Resampling for Global Illumination”,
2005 (Year: 2005).*

Vitter, Random Sampling with a Reservoir, 1985 (Year: 1985).*
Efraimidis et al., Weighted random sampling with a reservoir, 2006
(Year: 2006).*

Huang et al., Sequentialized Sampling Importance Resampling and
Scalable IWAE, 2017 (Year: 2017).*

Burke, NVIDIA RTX Technology Realizes Dream of Real-Time
Cinematic Rendering, 2018 (Year: 2018).*

Majercik et al., “Scaling Probe-Based Real-Time Dynamic Global
Illumination for Production,” Journal of Computer Graphics Tech-
niques, vol. 3, No. 1, 2014, pp. 1-28.

Bitterli et al., “Spatiotemporal reservoir resampling for real-time ray
tracing with dynamic direct lighting,” ACM Transactions on Graph-
ics, vol. 39, No. 4, Nov. 2020, 17 pages.

* cited by examiner

U.S. Patent Apr. 26,2022 Sheet 1 of 11 US 11,315,310 B2

S

100

Computing a global illumination data structure for a
scene
102

'

implementing reservoir-based spatiotemporal
importance resampling (RESTIR) to perform
illumination gathering within the scene, utilizing the
global illumination data structure

104

End

Fig. 1

U.S. Patent Apr. 26,2022 Sheet 2 of 11 US 11,315,310 B2

202 - ! PPU 200
17O Unit Front End Unit

PN <% 215

P Ay o - >

PR

| Scheduler Unit
o i ael
c_: § Hub i
5 " ' 230
E Work Distribution Unit
225

:

™~ 55

GPC |
250(X) ia
I
b
h
XBar 270
i Pl
1
| X
Memory | :
204(Y) F Memory Partition Unit 280(U) |
b s I
;:z _____ |
e
o

U.S. Patent

Apr. 26, 2022

Sheet 3 of 11

To/From XBar 270

T

US 11,315,310 B2

GPC 250 l
Pipeline Manager PROP
™ 310 — 315 [
Y B I
!
v i I
MPC | f
D 330 ¥
|
Primitive ¢ ﬁ I :
Engine ki : l _
335 - N Raster Engine
<—-~|'. I 325
SM i e
340 woth
4l
DPC 320(V) N
gt {
———————————————— ¥ |
________________ l
A
A4
WDX
380
T MMU 380 -
To/From XBar 270 To/From XBar 270

Fig. 34

U.S. Patent Apr. 26,2022 Sheet 4 of 11 US 11,315,310 B2

To/From
XBar 270

?

Memory Partition Unit l

280

ROP 350

I

L2 Cache 360 €ty 10/FrOM
XBar 270

Memory Interface
370

!

|

Tol/From
Memory 204

Fig. 3B

U.S. Patent Apr. 26,2022 Sheet 5 of 11 US 11,315,310 B2

SM 340

Instruction Cache 405

'

Scheduler Unit 410(K)

Register File 420 -+
Core |1 SFU || Lsu |
450(L-1) |1 452(M-1) |1 454(N-1 ¥
] | |
| |]
'—,_—_—_i_—_—_—_—'_l '—._—_—_I_—_—_—_—'_l '—._—_—_i_—_—_—_—'_l
Interconnect Network 480 —

!

Shared Memory/L1 Cache 470

I
v

To/from MMU 390

Fig. 44

U.S. Patent Apr. 26,2022 Sheet 6 of 11 US 11,315,310 B2

‘55/400

CPU 430
202
e Switch 410
-~
204 | PPU 200 PPU 200 | 204
S —
NVLink
L— 210
R
204 | PPU 200 PPU 200 | 204
R
425

Fig. 4B

U.S. Patent

Apr. 26, 2022

Memory

Main

440

Network
Interface
435

Sheet 7 of 11

US 11,315,310 B2

f 465

t

CPU 430

Display
Devices
445

Input
Devices
460

A

i

* 202

A
4754

I Switch 410
-
204 | PPU 200 PPU 200 | 204
-
NVLink
|t 210
-
204 | PPU 200 PPU 200 | 204
R
425

Fig. 4C

U.S. Patent

Apr. 26, 2022 Sheet 8 of 11

Input Data
501

Y

Data Assembly
510

Y

Vertex Shading
520

Y

Primitive Assembly
530

v

Geometry Shading
240

Y

Viewport SCC
550

Y

Rasterization

560

Y

Fragment Shading
270

Y

Raster Operations
280

\/
Output Data
502

Fig. 5

US 11,315,310 B2

A)/ 500

U.S. Patent Apr. 26,2022 Sheet 9 of 11 US 11,315,310 B2

600

S

GAME SERVER(S) 602

RENDERING
COMPONENT 612

T '

GPU(s) RENDER CAPTURE
610 COMPONENT 614

CPU(s) ENCODER
608 616

:

COMM. INTERFACE
618

NETWORK(S)
606

COMM. INTERFACE INPUT DEVICE(S)
620 626

'

™\ 4 N
DECODER DisPLAY
622 624

\. J

CLIENT DEVICE(S) 604

Fig. 6

U.S. Patent Apr. 26,2022 Sheet 10 of 11 US 11,315,310 B2

700

S

MEMORY
704

I/O COMPONENTS
114

CPU(s)
706

POWER SUPPLY
716

PRESENTATION
COMPONENT(S)
718

CoMM. INTERFACE
710

LoGIC UNIT(s)
£20

/O PORT(S) ' \
112 702

Fig. 7

U.S. Patent

Apr. 26, 2022 Sheet 11 of 11

US 11,315,310 B2

800

S X%
£
y
i§
»

804C

804D

808

806

Fig. 8

US 11,315,310 B2

1
RESERVOIR-BASED SPATIOTEMPORAL
IMPORTANCE RESAMPLING UTILIZING A
GLOBAL ILLUMINATION DATA
STRUCTURE

CLAIM OF PRIORITY

This application claims the benefit of U.S. Provisional
Application No. 62/988,789, filed on Mar. 12, 2020, which
is hereby incorporated by reference in its entirety.

TECHNICAL FIELD

The present invention relates to image rendering, and
more particularly to performing light gathering within a
scene.

BACKGROUND

Reservoir importance resampling provides an effective
means to compute lighting parameters from multiple light
sources. However, current reservoir importance resampling
implementations only consider direct lighting sources, and
not indirect lighting. There is therefore a need to improve
this resampling technique by including the consideration of
indirect lighting during resampling.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flowchart of a method for reservoir-
based spatiotemporal importance resampling utilizing a
global illumination data structure, in accordance with an
embodiment.

FIG. 2 illustrates a parallel processing unit, in accordance
with an embodiment.

FIG. 3A illustrates a general processing cluster within the
parallel processing unit of FIG. 2, in accordance with an
embodiment.

FIG. 3B illustrates a memory partition unit of the parallel
processing unit of FIG. 2, in accordance with an embodi-
ment.

FIG. 4A illustrates the streaming multi-processor of FIG.
3A, in accordance with an embodiment.

FIG. 4B is a conceptual diagram of a processing system
implemented using the PPU of FIG. 2, in accordance with an
embodiment.

FIG. 4C illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented.

FIG. 5 is a conceptual diagram of a graphics processing
pipeline implemented by the PPU of FIG. 2, in accordance
with an embodiment.

FIG. 6 is a block diagram of an example game streaming
system suitable for use in implementing some embodiments
of the present disclosure.

FIG. 7 is a block diagram of an example computing
device suitable for use in implementing some embodiments
of the present disclosure.

FIG. 8 illustrates an exemplary scene for which illumi-
nation gathering is being performed utilizing RESTIR and a
global illumination data structure, in accordance with one
embodiment.

DETAILED DESCRIPTION

Current reservoir importance resampling is used during
image rendering to determine lighting parameters from

10

35

40

45

55

65

2

multiple light sources within a scene being rendered, but this
method only considers direct lighting sources, and not
indirect lighting. In response, a global illumination data
structure (e.g., a data structure created to store global
illumination information for geometry within a scene to be
rendered) is computed for the scene. Additionally, reservoir-
based spatiotemporal importance resampling (RESTIR) is
used to perform illumination gathering, utilizing the global
illumination data structure. The illumination gathering
includes identifying light values for points within the scene,
where one or more points are selected within the scene based
on the light values in order to perform ray tracing during the
rendering of the scene. In this way, indirect lighting may be
considered as well as direct lighting during image rendering.

FIG. 1 illustrates a flowchart of a method 100 for reser-
voir-based spatiotemporal importance resampling utilizing a
global illumination data structure, in accordance with an
embodiment. Although method 100 is described in the
context of a processing unit, the method 100 may also be
performed by a program, custom circuitry, or by a combi-
nation of custom circuitry and a program. For example, the
method 100 may be executed by a GPU (graphics processing
unit), CPU (central processing unit), or any processor
capable of performing parallel path space filtering by hash-
ing. Furthermore, persons of ordinary skill in the art will
understand that any system that performs method 100 is
within the scope and spirit of embodiments of the present
invention.

It should be understood that this and other arrangements
described herein are set forth only as examples. Other
arrangements and elements (e.g., machines, interfaces, func-
tions, orders, groupings of functions, etc.) may be used in
addition to or instead of those shown, and some elements
may be omitted altogether. Further, many of the elements
described herein are functional entities that may be imple-
mented as discrete or distributed components or in conjunc-
tion with other components, and in any suitable combination
and location. Various functions described herein as being
performed by entities may be carried out by hardware,
firmware, and/or software. For instance, various functions
may be carried out by a processor executing instructions
stored in memory.

As shown in operation 102, a global illumination data
structure is computed for a scene. In one embodiment, the
global illumination data structure may include a world-space
data structure such as one or more of an RTX global
illumination (RTXGI) data structure, a photon map, a light
map, a radiance cache, an irradiance cache, a radiosity value
data structure, a light probe data structure, etc. In another
embodiment, the global illumination information may
include a sum of indirect and direct light values for a
predetermined point/pixel within the scene.

Additionally, in one embodiment, the global illumination
data structure may include any data structure created to store
global illumination information for elements (e.g., surfaces
(geometry), volumetrics (clouds), probe data, etc.) within
the scene. For example, additional information (e.g., dis-
tance values from various points in the scene, direction
information, and other heuristics information) may be stored
within the global illumination data structure. In another
example, the global illumination data structure may be
hashed, implemented hierarchically, etc.

Also, as shown in operation 104, reservoir-based spa-
tiotemporal importance resampling (RESTIR) is imple-
mented to perform illumination gathering within the scene,
utilizing the global illumination data structure. In one
embodiment, reservoir-based spatiotemporal importance

US 11,315,310 B2

3

resampling (RESTIR) may identify a predetermined set of
candidate light sources within a scene to be rendered.

Additionally, in one embodiment, RESTIR may identify a
random set of points on the candidate light sources, and may
evaluate their potential lighting contribution to the scene
(e.g., their overall brightness, etc.). For example, the lighting
contribution of each of the identified points may be deter-
mined utilizing a predetermined lighting equation. In
another embodiment, using RESTIR, one or more of the
random set of points on the candidate light sources may be
selected, where a probability of point selection is propor-
tional to the potential lighting contribution of the point.

Further, in one embodiment, a visibility ray (e.g., a
shadow ray, etc.) may then be sent from a point being shaded
in the scene to each of the selected points. In another
embodiment, RESTIR may resample a set of candidate light
samples and apply additional spatial and temporal resam-
pling to leverage information from relevant nearby samples,
utilizing a streaming reservoir algorithm.

Further still, in one embodiment, the global illumination
data structure may expand RESTIR by treating all surfaces
in the scene as candidate light sources during illumination
gathering. For example, the surfaces may include all tri-
angles (or other primitives/geometry) within the scene.

In addition, in one embodiment, the lighting contribution
from actual candidate light sources may be determined
utilizing a predetermined lighting equation within RESTIR.
In another embodiment, the lighting contribution from all
other surfaces within the scene may be determined by
performing a data lookup within the global illumination data
structure (e.g., instead of utilizing the predetermined light-
ing equation).

Furthermore, in one embodiment, both the lighting con-
tribution from actual candidate light sources and the lighting
contribution from all other surfaces within the scene may be
determined utilizing the global illumination data structure.
In this way, both direct and indirect lighting may be
accounted for when implementing RESTIR within a scene to
be rendered. More specifically, all surfaces within a scene to
be rendered may be treated as candidate light sources
(utilizing the global illumination data structure) when per-
forming illumination gathering using RESTIR. This may
improve ray tracing by reducing an amount of noise in a
resulting rendered scene, increasing a level of detail in a
resulting rendered scene, etc.

Further still, in one embodiment, results of the illumina-
tion gathering may be computed on a first computing device,
a first processor, etc. and may be shared with another
separate computing device, another processor, etc. In
another embodiment, the global illumination data structure
may be computed locally (e.g., at the device implementing
RESTIR, etc.). In yet another embodiment, the global illu-
mination data structure may be computed remotely (e.g., at
a cloud-based computing system separate from the device
implementing RESTIR, etc.), and may be sent to a local
device implementing RESTIR (e.g., a mobile device, etc.) in
order to accelerate the rendering computations performed at
the local device.

Also, in one embodiment, when creating an RTXGI data
structure, RESTIR may be used to calculate irradiance
probes with visibility information. For example, the visibil-
ity information may be determined during runtime. In
another embodiment, RESTIR may also be used across all
surfaces of light probes during the creation of the global
illumination data structure (e.g., the RTXGI data structure).

10

15

20

25

30

40

45

50

55

60

65

4

In yet another embodiment, reservoir-based spatiotempo-
ral importance resampling may be performed utilizing a
parallel processing unit (PPU) such as the PPU 200 illus-
trated in FIG. 2.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which
the foregoing framework may be implemented, per the
desires of the user. It should be strongly noted that the
following information is set forth for illustrative purposes
and should not be construed as limiting in any manner. Any
of the following features may be optionally incorporated
with or without the exclusion of other features described.

Parallel Processing Architecture

FIG. 2 illustrates a parallel processing unit (PPU) 200, in
accordance with an embodiment. In an embodiment, the
PPU 200 is a multi-threaded processor that is implemented
on one or more integrated circuit devices. The PPU 200 is a
latency hiding architecture designed to process many threads
in parallel. A thread (i.e., a thread of execution) is an
instantiation of a set of instructions configured to be
executed by the PPU 200. In an embodiment, the PPU 200
is a graphics processing unit (GPU) configured to implement
a graphics rendering pipeline for processing three-dimen-
sional (3D) graphics data in order to generate two-dimen-
sional (2D) image data for display on a display device such
as a liquid crystal display (LCD) device. In other embodi-
ments, the PPU 200 may be utilized for performing general-
purpose computations. While one exemplary parallel pro-
cessor is provided herein for illustrative purposes, it should
be strongly noted that such processor is set forth for illus-
trative purposes only, and that any processor may be
employed to supplement and/or substitute for the same.

One or more PPUs 200 may be configured to accelerate
thousands of High Performance Computing (HPC), data
center, and machine learning applications. The PPU 200
may be configured to accelerate numerous deep learning
systems and applications including autonomous vehicle
platforms, deep learning, high-accuracy speech, image, and
text recognition systems, intelligent video analytics,
molecular simulations, drug discovery, disease diagnosis,
weather forecasting, big data analytics, astronomy, molecu-
lar dynamics simulation, financial modeling, robotics, fac-
tory automation, real-time language translation, online
search optimizations, and personalized user recommenda-
tions, and the like.

As shown in FIG. 2, the PPU 200 includes an Input/
Output (I/0) unit 205, a front end unit 215, a scheduler unit
220, a work distribution unit 225, a hub 230, a crossbar
(Xbar) 270, one or more general processing clusters (GPCs)
250, and one or more partition units 280. The PPU 200 may
be connected to a host processor or other PPUs 200 via one
or more high-speed NVLink 210 interconnect. The PPU 200
may be connected to a host processor or other peripheral
devices via an interconnect 202. The PPU 200 may also be
connected to a local memory comprising a number of
memory devices 204. In an embodiment, the local memory
may comprise a number of dynamic random access memory
(DRAM) devices. The DRAM devices may be configured as
a high-bandwidth memory (HBM) subsystem, with multiple
DRAM dies stacked within each device.

The NVLink 210 interconnect enables systems to scale
and include one or more PPUs 200 combined with one or
more CPUs, supports cache coherence between the PPUs
200 and CPUs, and CPU mastering. Data and/or commands
may be transmitted by the NVLink 210 through the hub 230

US 11,315,310 B2

5

to/from other units of the PPU 200 such as one or more copy
engines, a video encoder, a video decoder, a power man-
agement unit, etc. (not explicitly shown). The NVLink 210
is described in more detail in conjunction with FIG. 4B.

The 1/O unit 205 is configured to transmit and receive
communications (i.e., commands, data, etc.) from a host
processor (not shown) over the interconnect 202. The I/O
unit 205 may communicate with the host processor directly
via the interconnect 202 or through one or more intermediate
devices such as a memory bridge. In an embodiment, the [/O
unit 205 may communicate with one or more other proces-
sors, such as one or more the PPUs 200 via the interconnect
202. In an embodiment, the /O unit 205 implements a
Peripheral Component Interconnect Express (PCle) inter-
face for communications over a PCle bus and the intercon-
nect 202 is a PCle bus. In alternative embodiments, the 1/0O
unit 205 may implement other types of well-known inter-
faces for communicating with external devices.

The 1/O unit 205 decodes packets received via the inter-
connect 202. In an embodiment, the packets represent com-
mands configured to cause the PPU 200 to perform various
operations. The I/O unit 205 transmits the decoded com-
mands to various other units of the PPU 200 as the com-
mands may specify. For example, some commands may be
transmitted to the front end unit 215. Other commands may
be transmitted to the hub 230 or other units of the PPU 200
such as one or more copy engines, a video encoder, a video
decoder, a power management unit, etc. (not explicitly
shown). In other words, the I/O unit 205 is configured to
route communications between and among the various logi-
cal units of the PPU 200.

In an embodiment, a program executed by the host
processor encodes a command stream in a buffer that pro-
vides workloads to the PPU 200 for processing. A workload
may comprise several instructions and data to be processed
by those instructions. The buffer is a region in a memory that
is accessible (i.e., read/write) by both the host processor and
the PPU 200. For example, the /O unit 205 may be
configured to access the buffer in a system memory con-
nected to the interconnect 202 via memory requests trans-
mitted over the interconnect 202. In an embodiment, the host
processor writes the command stream to the buffer and then
transmits a pointer to the start of the command stream to the
PPU 200. The front end unit 215 receives pointers to one or
more command streams. The front end unit 215 manages the
one or more streams, reading commands from the streams
and forwarding commands to the various units of the PPU
200.

The front end unit 215 is coupled to a scheduler unit 220
that configures the various GPCs 250 to process tasks
defined by the one or more streams. The scheduler unit 220
is configured to track state information related to the various
tasks managed by the scheduler unit 220. The state may
indicate which GPC 250 a task is assigned to, whether the
task is active or inactive, a priority level associated with the
task, and so forth. The scheduler unit 220 manages the
execution of a plurality of tasks on the one or more GPCs
250.

The scheduler unit 220 is coupled to a work distribution
unit 225 that is configured to dispatch tasks for execution on
the GPCs 250. The work distribution unit 225 may track a
number of scheduled tasks received from the scheduler unit
220. In an embodiment, the work distribution unit 225
manages a pending task pool and an active task pool for each
of the GPCs 250. The pending task pool may comprise a
number of slots (e.g., 32 slots) that contain tasks assigned to
be processed by a particular GPC 250. The active task pool

10

15

20

25

30

40

45

50

55

60

65

6

may comprise a number of slots (e.g., 4 slots) for tasks that
are actively being processed by the GPCs 250. As a GPC 250
finishes the execution of a task, that task is evicted from the
active task pool for the GPC 250 and one of the other tasks
from the pending task pool is selected and scheduled for
execution on the GPC 250. If an active task has been idle on
the GPC 250, such as while waiting for a data dependency
to be resolved, then the active task may be evicted from the
GPC 250 and returned to the pending task pool while
another task in the pending task pool is selected and sched-
uled for execution on the GPC 250.

The work distribution unit 225 communicates with the
one or more GPCs 250 via XBar 270. The XBar 270 is an
interconnect network that couples many of the units of the
PPU 200 to other units of the PPU 200. For example, the
XBar 270 may be configured to couple the work distribution
unit 225 to a particular GPC 250. Although not shown
explicitly, one or more other units of the PPU 200 may also
be connected to the XBar 270 via the hub 230.

The tasks are managed by the scheduler unit 220 and
dispatched to a GPC 250 by the work distribution unit 225.
The GPC 250 is configured to process the task and generate
results. The results may be consumed by other tasks within
the GPC 250, routed to a different GPC 250 via the XBar
270, or stored in the memory 204. The results can be written
to the memory 204 via the partition units 280, which
implement a memory interface for reading and writing data
to/from the memory 204. The results can be transmitted to
another PPU 200 or CPU via the NVLink 210. In an
embodiment, the PPU 200 includes a number U of partition
units 280 that is equal to the number of separate and distinct
memory devices 204 coupled to the PPU 200. A partition
unit 280 will be described in more detail below in conjunc-
tion with FIG. 3B.

In an embodiment, a host processor executes a driver
kernel that implements an application programming inter-
face (API) that enables one or more applications executing
on the host processor to schedule operations for execution
on the PPU 200. In an embodiment, multiple compute
applications are simultaneously executed by the PPU 200
and the PPU 200 provides isolation, quality of service
(QoS), and independent address spaces for the multiple
compute applications. An application may generate instruc-
tions (i.e., API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 200. The driver
kernel outputs tasks to one or more streams being processed
by the PPU 200. Each task may comprise one or more
groups of related threads, referred to herein as a warp. In an
embodiment, a warp comprises 32 related threads that may
be executed in parallel. Cooperating threads may refer to a
plurality of threads including instructions to perform the task
and that may exchange data through shared memory.
Threads and cooperating threads are described in more detail
in conjunction with FIG. 4A.

FIG. 3A illustrates a GPC 250 of the PPU 200 of FIG. 2,
in accordance with an embodiment. As shown in FIG. 3A,
each GPC 250 includes a number of hardware units for
processing tasks. In an embodiment, each GPC 250 includes
a pipeline manager 310, a pre-raster operations unit (PROP)
315, a raster engine 325, a work distribution crossbar
(WDX) 380, a memory management unit (MMU) 390, and
one or more Data Processing Clusters (DPCs) 320. It will be
appreciated that the GPC 250 of FIG. 3A may include other
hardware units in lieu of or in addition to the units shown in
FIG. 3A.

In an embodiment, the operation of the GPC 250 is
controlled by the pipeline manager 310. The pipeline man-

US 11,315,310 B2

7

ager 310 manages the configuration of the one or more DPCs
320 for processing tasks allocated to the GPC 250. In an
embodiment, the pipeline manager 310 may configure at
least one of the one or more DPCs 320 to implement at least
a portion of a graphics rendering pipeline. For example, a
DPC 320 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 340. The pipeline manager 310 may also be configured
to route packets received from the work distribution unit 225
to the appropriate logical units within the GPC 250. For
example, some packets may be routed to fixed function
hardware units in the PROP 315 and/or raster engine 325
while other packets may be routed to the DPCs 320 for
processing by the primitive engine 335 or the SM 340. In an
embodiment, the pipeline manager 310 may configure at
least one of the one or more DPCs 320 to implement a neural
network model and/or a computing pipeline.

The PROP unit 315 is configured to route data generated
by the raster engine 325 and the DPCs 320 to a Raster
Operations (ROP) unit, described in more detail in conjunc-
tion with FIG. 3B. The PROP unit 315 may also be config-
ured to perform optimizations for color blending, organize
pixel data, perform address translations, and the like.

The raster engine 325 includes a number of fixed function
hardware units configured to perform various raster opera-
tions. In an embodiment, the raster engine 325 includes a
setup engine, a coarse raster engine, a culling engine, a
clipping engine, a fine raster engine, and a tile coalescing
engine. The setup engine receives transformed vertices and
generates plane equations associated with the geometric
primitive defined by the vertices. The plane equations are
transmitted to the coarse raster engine to generate coverage
information (e.g., an X,y coverage mask for a tile) for the
primitive. The output of the coarse raster engine is trans-
mitted to the culling engine where fragments associated with
the primitive that fail a z-test are culled, and transmitted to
a clipping engine where fragments lying outside a viewing
frustum are clipped. Those fragments that survive clipping
and culling may be passed to the fine raster engine to
generate attributes for the pixel fragments based on the plane
equations generated by the setup engine. The output of the
raster engine 325 comprises fragments to be processed, for
example, by a fragment shader implemented within a DPC
320.

Each DPC 320 included in the GPC 250 includes an
M-Pipe Controller (MPC) 330, a primitive engine 335, and
one or more SMs 340. The MPC 330 controls the operation
of the DPC 320, routing packets received from the pipeline
manager 310 to the appropriate units in the DPC 320. For
example, packets associated with a vertex may be routed to
the primitive engine 335, which is configured to fetch vertex
attributes associated with the vertex from the memory 204.
In contrast, packets associated with a shader program may
be transmitted to the SM 340.

The SM 340 comprises a programmable streaming pro-
cessor that is configured to process tasks represented by a
number of threads. Each SM 340 is multi-threaded and
configured to execute a plurality of threads (e.g., 32 threads)
from a particular group of threads concurrently. In an
embodiment, the SM 340 implements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
in a group of threads (i.e., a warp) is configured to process
a different set of data based on the same set of instructions.
All threads in the group of threads execute the same instruc-
tions. In another embodiment, the SM 340 implements a
SIMT (Single-Instruction, Multiple Thread) architecture
where each thread in a group of threads is configured to

5

10

15

20

25

30

40

45

50

55

60

65

8

process a different set of data based on the same set of
instructions, but where individual threads in the group of
threads are allowed to diverge during execution. In an
embodiment, a program counter, call stack, and execution
state is maintained for each warp, enabling concurrency
between warps and serial execution within warps when
threads within the warp diverge. In another embodiment, a
program counter, call stack, and execution state is main-
tained for each individual thread, enabling equal concur-
rency between all threads, within and between warps. When
execution state is maintained for each individual thread,
threads executing the same instructions may be converged
and executed in parallel for maximum efficiency. The SM
340 will be described in more detail below in conjunction
with FIG. 4A.

The MMU 390 provides an interface between the GPC
250 and the partition unit 280. The MMU 390 may provide
translation of virtual addresses into physical addresses,
memory protection, and arbitration of memory requests. In
an embodiment, the MMU 390 provides one or more trans-
lation lookaside buffers (TLB s) for performing translation
of virtual addresses into physical addresses in the memory
204.

FIG. 3B illustrates a memory partition unit 280 of the
PPU 200 of FIG. 2, in accordance with an embodiment. As
shown in FIG. 3B, the memory partition unit 280 includes a
Raster Operations (ROP) unit 350, a level two (L2) cache
360, and a memory interface 370. The memory interface 370
is coupled to the memory 204. Memory interface 370 may
implement 32, 64, 128, 1024-bit data buses, or the like, for
high-speed data transfer. In an embodiment, the PPU 200
incorporates U memory interfaces 370, one memory inter-
face 370 per pair of partition units 280, where each pair of
partition units 280 is connected to a corresponding memory
device 204. For example, PPU 200 may be connected to up
to Y memory devices 204, such as high bandwidth memory
stacks or graphics double-data-rate, version 5, synchronous
dynamic random access memory, or other types of persistent
storage.

In an embodiment, the memory interface 370 implements
an HBM2 memory interface and Y equals half U. In an
embodiment, the HBM2 memory stacks are located on the
same physical package as the PPU 200, providing substan-
tial power and area savings compared with conventional
GDDRS5 SDRAM systems. In an embodiment, each HBM2
stack includes four memory dies and Y equals 4, with HBM2
stack including two 128-bit channels per die for a total of 8
channels and a data bus width of 1024 bits.

In an embodiment, the memory 204 supports Single-Error
Correcting Double-Error Detecting (SECDED) Error Cor-
rection Code (ECC) to protect data. ECC provides higher
reliability for compute applications that are sensitive to data
corruption. Reliability is especially important in large-scale
cluster computing environments where PPUs 200 process
very large datasets and/or run applications for extended
periods.

In an embodiment, the PPU 200 implements a multi-level
memory hierarchy. In an embodiment, the memory partition
unit 280 supports a unified memory to provide a single
unified virtual address space for CPU and PPU 200 memory,
enabling data sharing between virtual memory systems. In
an embodiment the frequency of accesses by a PPU 200 to
memory located on other processors is traced to ensure that
memory pages are moved to the physical memory of the
PPU 200 that is accessing the pages more frequently. In an
embodiment, the NVLink 210 supports address translation

US 11,315,310 B2

9

services allowing the PPU 200 to directly access a CPU’s
page tables and providing full access to CPU memory by the
PPU 200.

In an embodiment, copy engines transfer data between
multiple PPUs 200 or between PPUs 200 and CPUs. The
copy engines can generate page faults for addresses that are
not mapped into the page tables. The memory partition unit
280 can then service the page faults, mapping the addresses
into the page table, after which the copy engine can perform
the transfer. In a conventional system, memory is pinned
(i.e., non-pageable) for multiple copy engine operations
between multiple processors, substantially reducing the
available memory. With hardware page faulting, addresses
can be passed to the copy engines without worrying if the
memory pages are resident, and the copy process is trans-
parent.

Data from the memory 204 or other system memory may
be fetched by the memory partition unit 280 and stored in the
L2 cache 360, which is located on-chip and is shared
between the various GPCs 250. As shown, each memory
partition unit 280 includes a portion of the 1.2 cache 360
associated with a corresponding memory device 204. Lower
level caches may then be implemented in various units
within the GPCs 250. For example, each of the SMs 340
may implement a level one (1) cache. The .1 cache is
private memory that is dedicated to a particular SM 340.
Data from the L2 cache 360 may be fetched and stored in
each of the L1 caches for processing in the functional units
of'the SMs 340. The L2 cache 360 is coupled to the memory
interface 370 and the XBar 270.

The ROP unit 350 performs graphics raster operations
related to pixel color, such as color compression, pixel
blending, and the like. The ROP unit 350 also implements
depth testing in conjunction with the raster engine 325,
receiving a depth for a sample location associated with a
pixel fragment from the culling engine of the raster engine
325. The depth is tested against a corresponding depth in a
depth buffer for a sample location associated with the
fragment. If the fragment passes the depth test for the sample
location, then the ROP unit 350 updates the depth buffer and
transmits a result of the depth test to the raster engine 325.
It will be appreciated that the number of partition units 280
may be different than the number of GPCs 250 and, there-
fore, each ROP unit 350 may be coupled to each of the GPCs
250. The ROP unit 350 tracks packets received from the
different GPCs 250 and determines which GPC 250 that a
result generated by the ROP unit 350 is routed to through the
Xbar 270. Although the ROP unit 350 is included within the
memory partition unit 280 in FIG. 3B, in other embodiment,
the ROP unit 350 may be outside of the memory partition
unit 280. For example, the ROP unit 350 may reside in the
GPC 250 or another unit.

FIG. 4A illustrates the streaming multi-processor 340 of
FIG. 3A, in accordance with an embodiment. As shown in
FIG. 4A, the SM 340 includes an instruction cache 405, one
or more scheduler units 410(K), a register file 420, one or
more processing cores 450, one or more special function
units (SFUs) 452, one or more load/store units (LSUs) 454,
an interconnect network 480, a shared memory/[.1 cache
470.

As described above, the work distribution unit 225 dis-
patches tasks for execution on the GPCs 250 of the PPU 200.
The tasks are allocated to a particular DPC 320 within a
GPC 250 and, if the task is associated with a shader
program, the task may be allocated to an SM 340. The
scheduler unit 410(K) receives the tasks from the work
distribution unit 225 and manages instruction scheduling for

20

30

40

45

55

60

10

one or more thread blocks assigned to the SM 340. The
scheduler unit 410(K) schedules thread blocks for execution
as warps of parallel threads, where each thread block is
allocated at least one warp. In an embodiment, each warp
executes 32 threads. The scheduler unit 410(K) may manage
a plurality of different thread blocks, allocating the warps to
the different thread blocks and then dispatching instructions
from the plurality of different cooperative groups to the
various functional units (i.e., cores 450, SFUs 452, and
LSUs 454) during each clock cycle.

Cooperative Groups is a programming model for orga-
nizing groups of communicating threads that allows devel-
opers to express the granularity at which threads are com-
municating, enabling the expression of richer, more efficient
parallel decompositions. Cooperative launch APIs support
synchronization amongst thread blocks for the execution of
parallel algorithms. Conventional programming models pro-
vide a single, simple construct for synchronizing cooperat-
ing threads: a barrier across all threads of a thread block (i.e.,
the syncthreads() function). However, programmers would
often like to define groups of threads at smaller than thread
block granularities and synchronize within the defined
groups to enable greater performance, design flexibility, and
software reuse in the form of collective group-wide function
interfaces.

Cooperative Groups enables programmers to define
groups of threads explicitly at sub-block (i.e., as small as a
single thread) and multi-block granularities, and to perform
collective operations such as synchronization on the threads
in a cooperative group. The programming model supports
clean composition across software boundaries, so that librar-
ies and utility functions can synchronize safely within their
local context without having to make assumptions about
convergence. Cooperative Groups primitives enable new
patterns of cooperative parallelism, including producer-con-
sumer parallelism, opportunistic parallelism, and global
synchronization across an entire grid of thread blocks.

A dispatch unit 415 is configured to transmit instructions
to one or more of the functional units. In the embodiment,
the scheduler unit 410(K) includes two dispatch units 415
that enable two different instructions from the same warp to
be dispatched during each clock cycle. In alternative
embodiments, each scheduler unit 410(K) may include a
single dispatch unit 415 or additional dispatch units 415.

Each SM 340 includes a register file 420 that provides a
set of registers for the functional units of the SM 340. In an
embodiment, the register file 420 is divided between each of
the functional units such that each functional unit is allo-
cated a dedicated portion of the register file 420. In another
embodiment, the register file 420 is divided between the
different warps being executed by the SM 340. The register
file 420 provides temporary storage for operands connected
to the data paths of the functional units.

Each SM 340 comprises L processing cores 450. In an
embodiment, the SM 340 includes a large number (e.g., 128,
etc.) of distinct processing cores 450. Each core 450 may
include a fully-pipelined, single-precision, double-precision,
and/or mixed precision processing unit that includes a
floating point arithmetic logic unit and an integer arithmetic
logic unit. In an embodiment, the floating point arithmetic
logic units implement the IEEE 754-2008 standard for
floating point arithmetic. In an embodiment, the cores 450
include 64 single-precision (32-bit) floating point cores, 64
integer cores, 32 double-precision (64-bit) floating point
cores, and 8 tensor cores.

Tensor cores configured to perform matrix operations,
and, in an embodiment, one or more tensor cores are

US 11,315,310 B2

11

included in the cores 450. In particular, the tensor cores are
configured to perform deep learning matrix arithmetic, such
as convolution operations for neural network training and
inferencing. In an embodiment, each tensor core operates on
a 4x4 matrix and performs a matrix multiply and accumulate
operation D=AxB+C, where A, B, C, and D are 4x4 matri-
ces.

In an embodiment, the matrix multiply inputs A and B are
16-bit floating point matrices, while the accumulation matri-
ces C and D may be 16-bit floating point or 32-bit floating
point matrices. Tensor Cores operate on 16-bit floating point
input data with 32-bit floating point accumulation. The
16-bit floating point multiply requires 64 operations and
results in a full precision product that is then accumulated
using 32-bit floating point addition with the other interme-
diate products for a 4x4x4 matrix multiply. In practice,
Tensor Cores are used to perform much larger two-dimen-
sional or higher dimensional matrix operations, built up
from these smaller elements. An API, such as CUDA 9 C++
API, exposes specialized matrix load, matrix multiply and
accumulate, and matrix store operations to efficiently use
Tensor Cores from a CUDA-C++ program. At the CUDA
level, the warp-level interface assumes 16x16 size matrices
spanning all 32 threads of the warp.

Each SM 340 also comprises M SFUs 452 that perform
special functions (e.g., attribute evaluation, reciprocal
square root, and the like). In an embodiment, the SFUs 452
may include a tree traversal unit configured to traverse a
hierarchical tree data structure. In an embodiment, the SFUs
452 may include texture unit configured to perform texture
map filtering operations. In an embodiment, the texture units
are configured to load texture maps (e.g., a 2D array of
texels) from the memory 204 and sample the texture maps
to produce sampled texture values for use in shader pro-
grams executed by the SM 340. In an embodiment, the
texture maps are stored in the shared memory/IL1 cache 370.
The texture units implement texture operations such as
filtering operations using mip-maps (i.e., texture maps of
varying levels of detail). In an embodiment, each SM 240
includes two texture units.

Each SM 340 also comprises N LSUs 454 that implement
load and store operations between the shared memory/L.1
cache 470 and the register file 420. Each SM 340 includes
an interconnect network 480 that connects each of the
functional units to the register file 420 and the LSU 454 to
the register file 420, shared memory/L.1 cache 470. In an
embodiment, the interconnect network 480 is a crossbar that
can be configured to connect any of the functional units to
any of the registers in the register file 420 and connect the
LSUs 454 to the register file and memory locations in shared
memory/L.1 cache 470.

The shared memory/L.1 cache 470 is an array of on-chip
memory that allows for data storage and communication
between the SM 340 and the primitive engine 335 and
between threads in the SM 340. In an embodiment, the
shared memory/LL1 cache 470 comprises 128 KB of storage
capacity and is in the path from the SM 340 to the partition
unit 280. The shared memory/L.1 cache 470 can be used to
cache reads and writes. One or more of the shared memory/
L1 cache 470, [.2 cache 360, and memory 204 are backing
stores.

Combining data cache and shared memory functionality
into a single memory block provides the best overall per-
formance for both types of memory accesses. The capacity
is usable as a cache by programs that do not use shared
memory. For example, if shared memory is configured to use
half of the capacity, texture and load/store operations can use

10

15

20

25

30

35

40

45

50

55

60

65

12

the remaining capacity. Integration within the shared
memory/L.1 cache 470 enables the shared memory/L.1 cache
470 to function as a high-throughput conduit for streaming
data while simultaneously providing high-bandwidth and
low-latency access to frequently reused data.

When configured for general purpose parallel computa-
tion, a simpler configuration can be used compared with
graphics processing. Specifically, the fixed function graphics
processing units shown in FIG. 2, are bypassed, creating a
much simpler programming model. In the general purpose
parallel computation configuration, the work distribution
unit 225 assigns and distributes blocks of threads directly to
the DPCs 320. The threads in a block execute the same
program, using a unique thread ID in the calculation to
ensure each thread generates unique results, using the SM
340 to execute the program and perform calculations, shared
memory/L.1 cache 470 to communicate between threads, and
the LLSU 454 to read and write global memory through the
shared memory/L.1 cache 470 and the memory partition unit
280. When configured for general purpose parallel compu-
tation, the SM 340 can also write commands that the
scheduler unit 220 can use to launch new work on the DPCs
320.

The PPU 200 may be included in a desktop computer, a
laptop computer, a tablet computer, servers, supercomputers,
a smart-phone (e.g., a wireless, hand-held device), personal
digital assistant (PDA), a digital camera, a vehicle, a head
mounted display, a hand-held electronic device, and the like.
In an embodiment, the PPU 200 is embodied on a single
semiconductor substrate. In another embodiment, the PPU
200 is included in a system-on-a-chip (SoC) along with one
or more other devices such as additional PPUs 200, the
memory 204, a reduced instruction set computer (RISC)
CPU, a memory management unit (MMU), a digital-to-
analog converter (DAC), and the like.

In an embodiment, the PPU 200 may be included on a
graphics card that includes one or more memory devices
204. The graphics card may be configured to interface with
a PCle slot on a motherboard of a desktop computer. In yet
another embodiment, the PPU 200 may be an integrated
graphics processing unit (iGPU) or parallel processor
included in the chipset of the motherboard.

Exemplary Computing System

Systems with multiple GPUs and CPUs are used in a
variety of industries as developers expose and leverage more
parallelism in applications such as artificial intelligence
computing. High-performance GPU-accelerated systems
with tens to many thousands of compute nodes are deployed
in data centers, research facilities, and supercomputers to
solve ever larger problems. As the number of processing
devices within the high-performance systems increases, the
communication and data transfer mechanisms need to scale
to support the increased bandwidth.

FIG. 4B is a conceptual diagram of a processing system
400 implemented using the PPU 200 of FIG. 2, in accor-
dance with an embodiment. The exemplary system 465 may
be configured to implement the method 100 shown in FIG.
1. The processing system 400 includes a CPU 430, switch
410, and multiple PPUs 200 each and respective memories
204. The NVLink 210 provides high-speed communication
links between each of the PPUs 200. Although a particular
number of NVLink 210 and interconnect 202 connections
are illustrated in FIG. 4B, the number of connections to each
PPU 200 and the CPU 430 may vary. The switch 410
interfaces between the interconnect 202 and the CPU 430.

US 11,315,310 B2

13
The PPUs 200, memories 204, and NVLinks 210 may be
situated on a single semiconductor platform to form a
parallel processing module 425. In an embodiment, the
switch 410 supports two or more protocols to interface
between various different connections and/or links.

In another embodiment (not shown), the NVLink 210
provides one or more high-speed communication links
between each of the PPUs 200 and the CPU 430 and the
switch 410 interfaces between the interconnect 202 and each
of the PPUs 200. The PPUs 200, memories 204, and
interconnect 202 may be situated on a single semiconductor
platform to form a parallel processing module 425. In yet
another embodiment (not shown), the interconnect 202
provides one or more communication links between each of
the PPUs 200 and the CPU 430 and the switch 410 interfaces
between each of the PPUs 200 using the NVLink 210 to
provide one or more high-speed communication links
between the PPUs 200. In another embodiment (not shown),
the NVLink 210 provides one or more high-speed commu-
nication links between the PPUs 200 and the CPU 430
through the switch 410. In yet another embodiment (not
shown), the interconnect 202 provides one or more commu-
nication links between each of the PPUs 200 directly. One
or more of the NVLink 210 high-speed communication links
may be implemented as a physical NVLink interconnect or
either an on-chip or on-die interconnect using the same
protocol as the NVLink 210.

In the context of the present description, a single semi-
conductor platform may refer to a sole unitary semiconduc-
tor-based integrated circuit fabricated on a die or chip. It
should be noted that the term single semiconductor platform
may also refer to multi-chip modules with increased con-
nectivity which simulate on-chip operation and make sub-
stantial improvements over utilizing a conventional bus
implementation. Of course, the various circuits or devices
may also be situated separately or in various combinations
of semiconductor platforms per the desires of the user.
Alternately, the parallel processing module 425 may be
implemented as a circuit board substrate and each of the
PPUs 200 and/or memories 204 may be packaged devices.
In an embodiment, the CPU 430, switch 410, and the parallel
processing module 425 are situated on a single semiconduc-
tor platform.

In an embodiment, the signaling rate of each NVLink 210
is 20 to 25 Gigabits/second and each PPU 200 includes six
NVLink 210 interfaces (as shown in FIG. 4B, five NVLink
210 interfaces are included for each PPU 200). Each
NVLink 210 provides a data transfer rate of 25 Gigabytes/
second in each direction, with six links providing 300
Gigabytes/second. The NVLinks 210 can be used exclu-
sively for PPU-to-PPU communication as shown in FIG. 4B,
or some combination of PPU-to-PPU and PPU-to-CPU,
when the CPU 430 also includes one or more NVLink 210
interfaces.

In an embodiment, the NVLink 210 allows direct load/
store/atomic access from the CPU 430 to each PPU’s 200
memory 204. In an embodiment, the NVLink 210 supports
coherency operations, allowing data read from the memories
204 to be stored in the cache hierarchy of the CPU 430,
reducing cache access latency for the CPU 430. In an
embodiment, the NVLink 210 includes support for Address
Translation Services (ATS), allowing the PPU 200 to
directly access page tables within the CPU 430. One or more
of the NVLinks 210 may also be configured to operate in a
low-power mode.

FIG. 4C illustrates an exemplary system 465 in which the
various architecture and/or functionality of the various pre-

10

15

20

25

30

35

40

45

50

55

60

65

14

vious embodiments may be implemented. The exemplary
system 465 may be configured to implement the method 100
shown in FIG. 1.

As shown, a system 465 is provided including at least one
central processing unit 430 that is connected to a commu-
nication bus 475. The communication bus 475 may be
implemented using any suitable protocol, such as PCI (Pe-
ripheral Component Interconnect), PCI-Express, AGP (Ac-
celerated Graphics Port), HyperTransport, or any other bus
or point-to-point communication protocol(s). The system
465 also includes a main memory 440. Control logic (soft-
ware) and data are stored in the main memory 440 which
may take the form of random access memory (RAM).

The system 465 also includes input devices 460, the
parallel processing system 425, and display devices 445, i.e.
a conventional CRT (cathode ray tube), LCD (liquid crystal
display), LED (light emitting diode), plasma display or the
like. User input may be received from the input devices 460,
e.g., keyboard, mouse, touchpad, microphone, and the like.
Each of the foregoing modules and/or devices may even be
situated on a single semiconductor platform to form the
system 465. Alternately, the various modules may also be
situated separately or in various combinations of semicon-
ductor platforms per the desires of the user.

Further, the system 465 may be coupled to a network
(e.g., a telecommunications network, local area network
(LAN), wireless network, wide area network (WAN) such as
the Internet, peer-to-peer network, cable network, or the
like) through a network interface 435 for communication
purposes.

The system 465 may also include a secondary storage (not
shown). The secondary storage includes, for example, a hard
disk drive and/or a removable storage drive, representing a
floppy disk drive, a magnetic tape drive, a compact disk
drive, digital versatile disk (DVD) drive, recording device,
universal serial bus (USB) flash memory. The removable
storage drive reads from and/or writes to a removable
storage unit in a well-known manner.

Computer programs, or computer control logic algo-
rithms, may be stored in the main memory 440 and/or the
secondary storage. Such computer programs, when
executed, enable the system 465 to perform various func-
tions. The memory 440, the storage, and/or any other storage
are possible examples of computer-readable media.

The architecture and/or functionality of the various pre-
vious figures may be implemented in the context of a general
computer system, a circuit board system, a game console
system dedicated for entertainment purposes, an application-
specific system, and/or any other desired system. For
example, the system 465 may take the form of a desktop
computer, a laptop computer, a tablet computer, servers,
supercomputers, a smart-phone (e.g., a wireless, hand-held
device), personal digital assistant (PDA), a digital camera, a
vehicle, a head mounted display, a hand-held electronic
device, a mobile phone device, a television, workstation,
game consoles, embedded system, and/or any other type of
logic.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.

Graphics Processing Pipeline

In an embodiment, the PPU 200 comprises a graphics
processing unit (GPU). The PPU 200 is configured to

US 11,315,310 B2

15

receive commands that specify shader programs for process-
ing graphics data. Graphics data may be defined as a set of
primitives such as points, lines, triangles, quads, triangle
strips, and the like. Typically, a primitive includes data that
specifies a number of vertices for the primitive (e.g., in a
model-space coordinate system) as well as attributes asso-
ciated with each vertex of the primitive. The PPU 200 can
be configured to process the graphics primitives to generate
a frame buffer (i.e., pixel data for each of the pixels of the
display).

An application writes model data for a scene (ie., a
collection of vertices and attributes) to a memory such as a
system memory or memory 204. The model data defines
each of the objects that may be visible on a display. The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed. The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data. The commands may reference different shader
programs to be implemented on the SMs 340 of the PPU 200
including one or more of a vertex shader, hull shader,
domain shader, geometry shader, and a pixel shader. For
example, one or more of the SMs 340 may be configured to
execute a vertex shader program that processes a number of
vertices defined by the model data. In an embodiment, the
different SMs 340 may be configured to execute different
shader programs concurrently. For example, a first subset of
SMs 340 may be configured to execute a vertex shader
program while a second subset of SMs 340 may be config-
ured to execute a pixel shader program. The first subset of
SMs 340 processes vertex data to produce processed vertex
data and writes the processed vertex data to the .2 cache 360
and/or the memory 204. After the processed vertex data is
rasterized (i.e., transformed from three-dimensional data
into two-dimensional data in screen space) to produce
fragment data, the second subset of SMs 340 executes a
pixel shader to produce processed fragment data, which is
then blended with other processed fragment data and written
to the frame buffer in memory 204. The vertex shader
program and pixel shader program may execute concur-
rently, processing different data from the same scene in a
pipelined fashion until all of the model data for the scene has
been rendered to the frame buffer. Then, the contents of the
frame buffer are transmitted to a display controller for
display on a display device.

FIG. 5 is a conceptual diagram of a graphics processing
pipeline 500 implemented by the PPU 200 of FIG. 2, in
accordance with an embodiment. The graphics processing
pipeline 500 is an abstract flow diagram of the processing
steps implemented to generate 2D computer-generated
images from 3D geometry data. As is well-known, pipeline
architectures may perform long latency operations more
efficiently by splitting up the operation into a plurality of
stages, where the output of each stage is coupled to the input
of the next successive stage. Thus, the graphics processing
pipeline 500 receives input data 501 that is transmitted from
one stage to the next stage of the graphics processing
pipeline 500 to generate output data 502. In an embodiment,
the graphics processing pipeline 500 may represent a graph-
ics processing pipeline defined by the OpenGL® API. As an
option, the graphics processing pipeline 500 may be imple-
mented in the context of the functionality and architecture of
the previous Figures and/or any subsequent Figure(s).

As shown in FIG. 5, the graphics processing pipeline 500
comprises a pipeline architecture that includes a number of
stages. The stages include, but are not limited to, a data
assembly stage 510, a vertex shading stage 520, a primitive

10

20

40

45

16

assembly stage 530, a geometry shading stage 540, a view-
port scale, cull, and clip (VSCC) stage 550, a rasterization
stage 560, a fragment shading stage 570, and a raster
operations stage 580. In an embodiment, the input data 501
comprises commands that configure the processing units to
implement the stages of the graphics processing pipeline 500
and geometric primitives (e.g., points, lines, triangles,
quads, triangle strips or fans, etc.) to be processed by the
stages. The output data 502 may comprise pixel data (i.e.,
color data) that is copied into a frame buffer or other type of
surface data structure in a memory.

The data assembly stage 510 receives the input data 501
that specifies vertex data for high-order surfaces, primitives,
or the like. The data assembly stage 510 collects the vertex
data in a temporary storage or queue, such as by receiving
a command from the host processor that includes a pointer
to a buffer in memory and reading the vertex data from the
buffer. The vertex data is then transmitted to the vertex
shading stage 520 for processing.

The vertex shading stage 520 processes vertex data by
performing a set of operations (i.e., a vertex shader or a
program) once for each of the vertices. Vertices may be, e.g.,
specified as a 4-coordinate vector (i.e., <X, y, Z, W>) asso-
ciated with one or more vertex attributes (e.g., color, texture
coordinates, surface normal, etc.). The vertex shading stage
520 may manipulate individual vertex attributes such as
position, color, texture coordinates, and the like. In other
words, the vertex shading stage 520 performs operations on
the vertex coordinates or other vertex attributes associated
with a vertex. Such operations commonly including lighting
operations (i.e., modifying color attributes for a vertex) and
transformation operations (i.e., modifying the coordinate
space for a vertex). For example, vertices may be specified
using coordinates in an object-coordinate space, which are
transformed by multiplying the coordinates by a matrix that
translates the coordinates from the object-coordinate space
into a world space or a normalized-device-coordinate (NCD)
space. The vertex shading stage 520 generates transformed
vertex data that is transmitted to the primitive assembly
stage 530.

The primitive assembly stage 530 collects vertices output
by the vertex shading stage 520 and groups the vertices into
geometric primitives for processing by the geometry shading
stage 540. For example, the primitive assembly stage 530
may be configured to group every three consecutive vertices
as a geometric primitive (i.e., a triangle) for transmission to
the geometry shading stage 540. In some embodiments,
specific vertices may be reused for consecutive geometric
primitives (e.g., two consecutive triangles in a triangle strip
may share two vertices). The primitive assembly stage 530
transmits geometric primitives (i.e., a collection of associ-
ated vertices) to the geometry shading stage 540.

The geometry shading stage 540 processes geometric
primitives by performing a set of operations (i.e., a geometry
shader or program) on the geometric primitives. Tessellation
operations may generate one or more geometric primitives
from each geometric primitive. In other words, the geometry
shading stage 540 may subdivide each geometric primitive
into a finer mesh of two or more geometric primitives for
processing by the rest of the graphics processing pipeline
500. The geometry shading stage 540 transmits geometric
primitives to the viewport SCC stage 550.

In an embodiment, the graphics processing pipeline 500
may operate within a streaming multiprocessor and the
vertex shading stage 520, the primitive assembly stage 530,
the geometry shading stage 540, the fragment shading stage
570, and/or hardware/software associated therewith, may

US 11,315,310 B2

17

sequentially perform processing operations. Once the
sequential processing operations are complete, in an
embodiment, the viewport SCC stage 550 may utilize the
data. In an embodiment, primitive data processed by one or
more of the stages in the graphics processing pipeline 500
may be written to a cache (e.g. L1 cache, a vertex cache,
etc.). In this case, in an embodiment, the viewport SCC stage
550 may access the data in the cache. In an embodiment, the
viewport SCC stage 550 and the rasterization stage 560 are
implemented as fixed function circuitry.

The viewport SCC stage 550 performs viewport scaling,
culling, and clipping of the geometric primitives. Each
surface being rendered to is associated with an abstract
camera position. The camera position represents a location
of a viewer looking at the scene and defines a viewing
frustum that encloses the objects of the scene. The viewing
frustum may include a viewing plane, a rear plane, and four
clipping planes. Any geometric primitive entirely outside of
the viewing frustum may be culled (i.e., discarded) because
the geometric primitive will not contribute to the final
rendered scene. Any geometric primitive that is partially
inside the viewing frustum and partially outside the viewing
frustum may be clipped (i.e., transformed into a new geo-
metric primitive that is enclosed within the viewing frustum.
Furthermore, geometric primitives may each be scaled based
on a depth of the viewing frustum. All potentially visible
geometric primitives are then transmitted to the rasterization
stage 560.

The rasterization stage 560 converts the 3D geometric
primitives into 2D fragments (e.g. capable of being utilized
for display, etc.). The rasterization stage 560 may be con-
figured to utilize the vertices of the geometric primitives to
setup a set of plane equations from which various attributes
can be interpolated. The rasterization stage 560 may also
compute a coverage mask for a plurality of pixels that
indicates whether one or more sample locations for the pixel
intercept the geometric primitive. In an embodiment, z-test-
ing may also be performed to determine if the geometric
primitive is occluded by other geometric primitives that
have already been rasterized. The rasterization stage 560
generates fragment data (i.e., interpolated vertex attributes
associated with a particular sample location for each covered
pixel) that are transmitted to the fragment shading stage 570.

The fragment shading stage 570 processes fragment data
by performing a set of operations (i.e., a fragment shader or
a program) on each of the fragments. The fragment shading
stage 570 may generate pixel data (i.e., color values) for the
fragment such as by performing lighting operations or
sampling texture maps using interpolated texture coordi-
nates for the fragment. The fragment shading stage 570
generates pixel data that is transmitted to the raster opera-
tions stage 580.

The raster operations stage 580 may perform various
operations on the pixel data such as performing alpha tests,
stencil tests, and blending the pixel data with other pixel data
corresponding to other fragments associated with the pixel.
When the raster operations stage 580 has finished processing
the pixel data (i.e., the output data 502), the pixel data may
be written to a render target such as a frame buffer, a color
buffer, or the like.

It will be appreciated that one or more additional stages
may be included in the graphics processing pipeline 500 in
addition to or in lieu of one or more of the stages described
above. Various implementations of the abstract graphics
processing pipeline may implement different stages. Fur-
thermore, one or more of the stages described above may be
excluded from the graphics processing pipeline in some

10

15

20

25

30

35

40

45

50

55

60

65

18

embodiments (such as the geometry shading stage 540).
Other types of graphics processing pipelines are contem-
plated as being within the scope of the present disclosure.
Furthermore, any of the stages of the graphics processing
pipeline 500 may be implemented by one or more dedicated
hardware units within a graphics processor such as PPU 200.
Other stages of the graphics processing pipeline 500 may be
implemented by programmable hardware units such as the
SM 340 of the PPU 200.

The graphics processing pipeline 500 may be imple-
mented via an application executed by a host processor, such
as a CPU. In an embodiment, a device driver may implement
an application programming interface (API) that defines
various functions that can be utilized by an application in
order to generate graphical data for display. The device
driver is a software program that includes a plurality of
instructions that control the operation of the PPU 200. The
API provides an abstraction for a programmer that lets a
programmer utilize specialized graphics hardware, such as
the PPU 200, to generate the graphical data without requir-
ing the programmer to utilize the specific instruction set for
the PPU 200. The application may include an API call that
is routed to the device driver for the PPU 200. The device
driver interprets the API call and performs various opera-
tions to respond to the API call. In some instances, the
device driver may perform operations by executing instruc-
tions on the CPU. In other instances, the device driver may
perform operations, at least in part, by launching operations
on the PPU 200 utilizing an input/output interface between
the CPU and the PPU 200. In an embodiment, the device
driver is configured to implement the graphics processing
pipeline 500 utilizing the hardware of the PPU 200.

Various programs may be executed within the PPU 200 in
order to implement the various stages of the graphics
processing pipeline 500. For example, the device driver may
launch a kernel on the PPU 200 to perform the vertex
shading stage 520 on one SM 340 (or multiple SMs 340).
The device driver (or the initial kernel executed by the PPU
300) may also launch other kernels on the PPU 300 to
perform other stages of the graphics processing pipeline
500, such as the geometry shading stage 540 and the
fragment shading stage 570. In addition, some of the stages
of'the graphics processing pipeline 500 may be implemented
on fixed unit hardware such as a rasterizer or a data
assembler implemented within the PPU 300. It will be
appreciated that results from one kernel may be processed
by one or more intervening fixed function hardware units
before being processed by a subsequent kernel on an SM
340.

Example Game Streaming System

Now referring to FIG. 6, FIG. 6 is an example system
diagram for a game streaming system 600, in accordance
with some embodiments of the present disclosure. FIG. 6
includes game server(s) 602 (which may include similar
components, features, and/or functionality to the example
computing device 700 of FIG. 7), client device(s) 604
(which may include similar components, features, and/or
functionality to the example computing device 700 of FIG.
7), and network(s) 606 (which may be similar to the
network(s) described herein). In some embodiments of the
present disclosure, the system 600 may be implemented.

In the system 600, for a game session, the client device(s)
604 may only receive input data in response to inputs to the
input device(s), transmit the input data to the game server(s)
602, receive encoded display data from the game server(s)

US 11,315,310 B2

19

602, and display the display data on the display 624. As
such, the more computationally intense computing and
processing is offloaded to the game server(s) 602 (e.g.,
rendering—in particular ray or path tracing—for graphical
output of the game session is executed by the GPU(s) of the
game server(s) 602). In other words, the game session is
streamed to the client device(s) 604 from the game server(s)
602, thereby reducing the requirements of the client
device(s) 604 for graphics processing and rendering.

For example, with respect to an instantiation of a game
session, a client device 604 may be displaying a frame of the
game session on the display 624 based on receiving the
display data from the game server(s) 602. The client device
604 may receive an input to one of the input device(s) and
generate input data in response. The client device 604 may
transmit the input data to the game server(s) 602 via the
communication interface 620 and over the network(s) 606
(e.g., the Internet), and the game server(s) 602 may receive
the input data via the communication interface 618. The
CPU(s) may receive the input data, process the input data,
and transmit data to the GPU(s) that causes the GPU(s) to
generate a rendering of the game session. For example, the
input data may be representative of a movement of a
character of the user in a game, firing a weapon, reloading,
passing a ball, turning a vehicle, etc. The rendering com-
ponent 612 may render the game session (e.g., representa-
tive of the result of the input data) and the render capture
component 614 may capture the rendering of the game
session as display data (e.g., as image data capturing the
rendered frame of the game session). The rendering of the
game session may include ray or path-traced lighting and/or
shadow effects, computed using one or more parallel pro-
cessing units—such as GPUs, which may further employ the
use of one or more dedicated hardware accelerators or
processing cores to perform ray or path-tracing techniques—
of'the game server(s) 602. The encoder 616 may then encode
the display data to generate encoded display data and the
encoded display data may be transmitted to the client device
604 over the network(s) 606 via the communication inter-
face 618. The client device 604 may receive the encoded
display data via the communication interface 620 and the
decoder 622 may decode the encoded display data to gen-
erate the display data. The client device 604 may then
display the display data via the display 624.

Example Computing Device

FIG. 7 is a block diagram of an example computing
device(s) 700 suitable for use in implementing some
embodiments of the present disclosure. Computing device
700 may include an interconnect system 702 that directly or
indirectly couples the following devices: memory 704, one
or more central processing units (CPUs) 706, one or more
graphics processing units (GPUs) 708, a communication
interface 710, input/output (I/O) ports 712, input/output
components 714, a power supply 716, one or more presen-
tation components 718 (e.g., display(s)), and one or more
logic units 720.

Although the various blocks of FIG. 7 are shown as
connected via the interconnect system 702 with lines, this is
not intended to be limiting and is for clarity only. For
example, in some embodiments, a presentation component
718, such as a display device, may be considered an 1/O
component 714 (e.g., if the display is a touch screen). As
another example, the CPUs 706 and/or GPUs 708 may
include memory (e.g., the memory 704 may be representa-
tive of a storage device in addition to the memory of the

10

15

20

25

30

35

40

45

50

55

60

65

20

GPUs 708, the CPUs 706, and/or other components). In
other words, the computing device of FIG. 7 is merely
illustrative. Distinction is not made between such categories
as “workstation,” “server,” “laptop,” “desktop,” “tablet,”
“client device,” “mobile device,” “hand-held device,”
“game console,” “electronic control unit (ECU),” “virtual
reality system,” and/or other device or system types, as all
are contemplated within the scope of the computing device
of FIG. 7.

The interconnect system 702 may represent one or more
links or buses, such as an address bus, a data bus, a control
bus, or a combination thereof. The interconnect system 702
may include one or more bus or link types, such as an
industry standard architecture (ISA) bus, an extended indus-
try standard architecture (EISA) bus, a video electronics
standards association (VESA) bus, a peripheral component
interconnect (PCI) bus, a peripheral component interconnect
express (PCle) bus, and/or another type of bus or link. In
some embodiments, there are direct connections between
components. As an example, the CPU 706 may be directly
connected to the memory 704. Further, the CPU 706 may be
directly connected to the GPU 708. Where there is direct, or
point-to-point connection between components, the inter-
connect system 702 may include a PCle link to carry out the
connection. In these examples, a PCI bus need not be
included in the computing device 700.

The memory 704 may include any of a variety of com-
puter-readable media. The computer-readable media may be
any available media that may be accessed by the computing
device 700. The computer-readable media may include both
volatile and nonvolatile media, and removable and non-
removable media. By way of example, and not limitation,
the computer-readable media may comprise computer-stor-
age media and communication media.

The computer-storage media may include both volatile
and nonvolatile media and/or removable and non-removable
media implemented in any method or technology for storage
of information such as computer-readable instructions, data
structures, program modules, and/or other data types. For
example, the memory 704 may store computer-readable
instructions (e.g., that represent a program(s) and/or a pro-
gram element(s), such as an operating system. Computer-
storage media may include, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technol-
ogy, CD-ROM, digital versatile disks (DVD) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which may be used to store the desired information
and which may be accessed by computing device 700. As
used herein, computer storage media does not comprise
signals per se.

The computer storage media may embody computer-
readable instructions, data structures, program modules,
and/or other data types in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” may refer to a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not
limitation, the computer storage media may include wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, RF, infrared and other
wireless media. Combinations of any of the above should
also be included within the scope of computer-readable
media.

The CPU(s) 706 may be configured to execute at least
some of the computer-readable instructions to control one or

US 11,315,310 B2

21

more components of the computing device 700 to perform
one or more of the methods and/or processes described
herein. The CPU(s) 706 may each include one or more cores
(e.g., one, two, four, eight, twenty-eight, seventy-two, etc.)
that are capable of handling a multitude of software threads
simultaneously. The CPU(s) 706 may include any type of
processor, and may include different types of processors
depending on the type of computing device 700 imple-
mented (e.g., processors with fewer cores for mobile devices
and processors with more cores for servers). For example,
depending on the type of computing device 700, the pro-
cessor may be an Advanced RISC Machines (ARM) pro-
cessor implemented using Reduced Instruction Set Comput-
ing (RISC) or an x86 processor implemented using Complex
Instruction Set Computing (CISC). The computing device
700 may include one or more CPUs 706 in addition to one
Or more MIiCroprocessors or supplementary co-processors,
such as math co-processors.

In addition to or alternatively from the CPU(s) 706, the
GPU(s) 708 may be configured to execute at least some of
the computer-readable instructions to control one or more
components of the computing device 700 to perform one or
more of the methods and/or processes described herein. One
or more of the GPU(s) 708 may be an integrated GPU (e.g.,
with one or more of the CPU(s) 706 and/or one or more of
the GPU(s) 708 may be a discrete GPU. In embodiments,
one or more of the GPU(s) 708 may be a coprocessor of one
or more of the CPU(s) 706. The GPU(s) 708 may be used by
the computing device 700 to render graphics (e.g., 3D
graphics) or perform general purpose computations. For
example, the GPU(s) 708 may be used for General-Purpose
computing on GPUs (GPGPU). The GPU(s) 708 may
include hundreds or thousands of cores that are capable of
handling hundreds or thousands of software threads simul-
taneously. The GPU(s) 708 may generate pixel data for
output images in response to rendering commands (e.g.,
rendering commands from the CPU(s) 706 received via a
host interface). The GPU(s) 708 may include graphics
memory, such as display memory, for storing pixel data or
any other suitable data, such as GPGPU data. The display
memory may be included as part of the memory 704. The
GPU(s) 708 may include two or more GPUs operating in
parallel (e.g., via a link). The link may directly connect the
GPUs (e.g., using NVLINK) or may connect the GPUs
through a switch (e.g., using NVSwitch). When combined
together, each GPU 708 may generate pixel data or GPGPU
data for different portions of an output or for different
outputs (e.g., a first GPU for a first image and a second GPU
for a second image). Each GPU may include its own
memory, or may share memory with other GPUs.

In addition to or alternatively from the CPU(s) 706 and/or
the GPU(s) 708, the logic unit(s) 720 may be configured to
execute at least some of the computer-readable instructions
to control one or more components of the computing device
700 to perform one or more of the methods and/or processes
described herein. In embodiments, the CPU(s) 706, the
GPU(s) 708, and/or the logic unit(s) 720 may discretely or
jointly perform any combination of the methods, processes
and/or portions thereof. One or more of the logic units 720
may be part of and/or integrated in one or more of the
CPU(s) 706 and/or the GPU(s) 708 and/or one or more of the
logic units 720 may be discrete components or otherwise
external to the CPU(s) 706 and/or the GPU(s) 708. In
embodiments, one or more of the logic units 720 may be a
coprocessor of one or more of the CPU(s) 706 and/or one or
more of the GPU(s) 708.

10

15

20

25

30

35

40

45

50

55

60

65

22

Examples of the logic unit(s) 720 include one or more
processing cores and/or components thereof, such as Tensor
Cores (TCs), Tensor Processing Units (TPUs), Pixel Visual
Cores (PVCs), Vision Processing Units (VPUs), Graphics
Processing Clusters (GPCs), Texture Processing Clusters
(TPCs), Streaming Multiprocessors (SMs), Tree Traversal
Units (TTUs), Artificial Intelligence Accelerators (AlAs),
Deep Learning Accelerators (DLAs), Arithmetic-Logic
Units (ALUs), Application-Specific Integrated Circuits
(ASICs), Floating Point Units (FPUs), input/output (I/O)
elements, peripheral component interconnect (PCI) or
peripheral component interconnect express (PCle) elements,
and/or the like.

The communication interface 710 may include one or
more receivers, transmitters, and/or transceivers that enable
the computing device 700 to communicate with other com-
puting devices via an electronic communication network,
included wired and/or wireless communications. The com-
munication interface 710 may include components and
functionality to enable communication over any of a number
of different networks, such as wireless networks (e.g., Wi-Fi,
Z-Wave, Bluetooth, Bluetooth LE, ZigBee, etc.), wired
networks (e.g., communicating over Ethernet or InfiniBand),
low-power wide-area networks (e.g., LoRaWAN, SigFox,
etc.), and/or the Internet.

The 1/0O ports 712 may enable the computing device 700
to be logically coupled to other devices including the I/O
components 714, the presentation component(s) 718, and/or
other components, some of which may be built in to (e.g.,
integrated in) the computing device 700. Illustrative 1/O
components 714 include a microphone, mouse, keyboard,
joystick, game pad, game controller, satellite dish, scanner,
printer, wireless device, etc. The /O components 714 may
provide a natural user interface (NUI) that processes air
gestures, voice, or other physiological inputs generated by a
user. In some instances, inputs may be transmitted to an
appropriate network element for further processing. An NUI
may implement any combination of speech recognition,
stylus recognition, facial recognition, biometric recognition,
gesture recognition both on screen and adjacent to the
screen, air gestures, head and eye tracking, and touch
recognition (as described in more detail below) associated
with a display of the computing device 700. The computing
device 700 may be include depth cameras, such as stereo-
scopic camera systems, infrared camera systems, RGB cam-
era systems, touchscreen technology, and combinations of
these, for gesture detection and recognition. Additionally,
the computing device 700 may include accelerometers or
gyroscopes (e.g., as part of an inertia measurement unit
(IMU)) that enable detection of motion. In some examples,
the output of the accelerometers or gyroscopes may be used
by the computing device 700 to render immersive aug-
mented reality or virtual reality.

The power supply 716 may include a hard-wired power
supply, a battery power supply, or a combination thereof.
The power supply 716 may provide power to the computing
device 700 to enable the components of the computing
device 700 to operate.

The presentation component(s) 718 may include a display
(e.g., a monitor, a touch screen, a television screen, a
heads-up-display (HUD), other display types, or a combi-
nation thereof), speakers, and/or other presentation compo-
nents. The presentation component(s) 718 may receive data
from other components (e.g., the GPU(s) 708, the CPU(s)
706, etc.), and output the data (e.g., as an image, video,
sound, etc.).

US 11,315,310 B2

23

Example Network Environments

Network environments suitable for use in implementing
embodiments of the disclosure may include one or more
client devices, servers, network attached storage (NAS),
other backend devices, and/or other device types. The client
devices, servers, and/or other device types (e.g., each
device) may be implemented on one or more instances of the
computing device(s) 700 of FIG. 7—e.g., each device may
include similar components, features, and/or functionality of
the computing device(s) 700.

Components of a network environment may communicate
with each other via a network(s), which may be wired,
wireless, or both. The network may include multiple net-
works, or a network of networks. By way of example, the
network may include one or more Wide Area Networks
(WANSs), one or more Local Area Networks (LANs), one or
more public networks such as the Internet and/or a public
switched telephone network (PSTN), and/or one or more
private networks. Where the network includes a wireless
telecommunications network, components such as a base
station, a communications tower, or even access points (as
well as other components) may provide wireless connectiv-
ity.

Compatible network environments may include one or
more peer-to-peer network environments—in which case a
server may not be included in a network environment—and
one or more client-server network environments—in which
case one or more servers may be included in a network
environment. In peer-to-peer network environments, func-
tionality described herein with respect to a server(s) may be
implemented on any number of client devices.

In at least one embodiment, a network environment may
include one or more cloud-based network environments, a
distributed computing environment, a combination thereof,
etc. A cloud-based network environment may include a
framework layer, a job scheduler, a resource manager, and a
distributed file system implemented on one or more of
servers, which may include one or more core network
servers and/or edge servers. A framework layer may include
a framework to support software of a software layer and/or
one or more application(s) of an application layer. The
software or application(s) may respectively include web-
based service software or applications. In embodiments, one
or more of the client devices may use the web-based service
software or applications (e.g., by accessing the service
software and/or applications via one or more application
programming interfaces (APIs)). The framework layer may
be, but is not limited to, a type of free and open-source
software web application framework such as that may use a
distributed file system for large-scale data processing (e.g.,
“big data”).

A cloud-based network environment may provide cloud
computing and/or cloud storage that carries out any combi-
nation of computing and/or data storage functions described
herein (or one or more portions thereof). Any of these
various functions may be distributed over multiple locations
from central or core servers (e.g., of one or more data centers
that may be distributed across a state, a region, a country, the
globe, etc.). If a connection to a user (e.g., a client device)
is relatively close to an edge server(s), a core server(s) may
designate at least a portion of the functionality to the edge
server(s). A cloud-based network environment may be pri-
vate (e.g., limited to a single organization), may be public
(e.g., available to many organizations), and/or a combination
thereof (e.g., a hybrid cloud environment).

20

25

30

40

45

55

24

The client device(s) may include at least some of the
components, features, and functionality of the example
computing device(s) 700 described herein with respect to
FIG. 7. By way of example and not limitation, a client device
may be embodied as a Personal Computer (PC), a laptop
computer, a mobile device, a smartphone, a tablet computer,
a smart watch, a wearable computer, a Personal Digital
Assistant (PDA), an MP3 player, a virtual reality headset, a
Global Positioning System (GPS) or device, a video player,
a video camera, a surveillance device or system, a vehicle,
a boat, a flying vessel, a virtual machine, a drone, a robot,
a handheld communications device, a hospital device, a
gaming device or system, an entertainment system, a vehicle
computer system, an embedded system controller, a remote
control, an appliance, a consumer electronic device, a work-
station, an edge device, any combination of these delineated
devices, or any other suitable device.

Reservoir Importance Resampling for Both Direct and
Indirect Lighting Using Cached Indirect

Gathering from pre-computed global illumination can be
recast as a direct lighting problem. Current methods, includ-
ing resampled importance sampling (RIS) and RESTIR,
include algorithms especially well-suited to scenes with a
large number of lights. In one embodiment, reservoir impor-
tance resampling (RIR) recasts global illumination as direct
lighting to add indirect lighting to previously direct-only
algorithms like RIS and ReSTIR.

Reservoir importance resampling asynchronously com-
putes two elements. The first element is global illumination
throughout space (i.e., a “light field”) that is stored in a
world-space data structure. The second element is global
illumination on visible surfaces, which is computed by
reservoir importance sampling treating all surfaces as light
sources that are themselves emissive or lit by the world-
space data structure.

The world-space data structure may be computed using a
filtered radiance/irradiance volume algorithm based on light
field probes (e.g., RTXGI).

Additionally, in one embodiment, reservoir importance
resampling for direct lighting takes a random set of candi-
date points on light sources, evaluates their potential con-
tribution, and then chooses one of them with a probability of
selection proportional to their potential contribution. A
visibility (shadow) ray is then sent to that point. For
example, a set of candidate points on light sources may be
traversed, keeping track of the “best” candidate as deter-
mined by Monte Carlo sampling. A ray (or a small, fixed
number of rays) may then be sent to the “winning” point.

Further, in one embodiment, a lighting volume may be
computed by dividing a three-dimensional (3D) volume of a
scene into zones (such as a regular or distorted 3D grid) and
storing the light that passes through each vertex (i.e., “light
probe”) of the zones in every direction. These vertices are
generally not on surfaces, and usually some effort is
expended to ensure that they are not on surfaces, as it is the
light in empty space that is useful for the computation. When
shading a 3D point, the incident light may be estimated by
interpolating values from nearby probes.

The interpolation process using the dynamic diffuse
global illumination/RTXGI method uses additional informa-
tion about the distance to nearby occluders to avoid inter-
polating light through walls, and weights the surrounding
probes based on their proximity and the orientation of the
surface being shaded. For example, at a set of points in a grid
precomputed “probes” are interpolated to shade a point on
reflected objects.

US 11,315,310 B2

25

Further still, in one embodiment, RTXGI may be
extended to capture incident radiance filtered with different
kernel sizes, stored in a MIP chain. RTXGI may describe the
equivalent of irradiance probes with visibility; however, the
equivalent of filtered radiance probes with visibility may be
used. Visibility information may be incorporated and com-
puted dynamically at runtime.

Also, in one embodiment, when computing the RTXGI
data structure itself, RESTIR may be used for shading the
ray hit points. Previously, brute force exhaustive direct
illumination may be used, along with recursive use of the
RTXGI data structure. This may be improved by using RIR
across all surfaces (and RTXGI recursively in the process).
The re-use and filtering in RIR may be applied across the
surfaces of the probes instead of across the surface of the
screen.

In addition, in one embodiment, RIR may be extended to
treat all surfaces as light sources. When a surface is chosen
as a sampling candidate, its intensity is treated as the emitted
light (as in RIS) plus the reflected light, which is computed
by shading the hit surface using only the RTXGI data
structure. There is thus no important distinction between
initial light sources and indirect lights in the updated resa-
mpling method.

In one embodiment, the RTXGI data structure may com-
pute several quantities that can be used to choose better
candidates during RESTIR.

FIG. 8 illustrates an exemplary scene 800 for which
illumination gathering is being performed utilizing RESTIR
and a global illumination data structure, according to one
exemplary embodiment. As shown, the scene 800 includes
both light sources 802A-C as well as instances of geometry
804A-D.

In one embodiment, the lighting contribution from a
random set of points from the light sources 802A-C may be
determined utilizing a predetermined lighting equation
within RESTIR. In another embodiment, the lighting con-
tribution from a random set of points from the instances of
geometry 804A-D within the scene 800 may be determined
by performing a data lookup within a global illumination
data structure prepared for the instances of geometry
804A-D (instead of utilizing the predetermined lighting
equation within RESTIR).

However, in another embodiment, both the lighting con-
tribution from points within the light sources 802A-C and
the lighting contribution from points within the instances of
geometry 804A-D within the scene 800 may be determined
utilizing a global illumination data structure prepared for
both the light sources 802A-C and the instances of geometry
804A-D.

Furthermore, in one embodiment, using RESTIR, one of
the random set of points from the light sources 802A-C or
the instances of geometry 804 A-D within the scene 800 may
be selected, where a probability of point selection is pro-
portional to the potential lighting contribution of the point.
Shading calculations may then be performed on this selected
point 804C by casting a shadow ray 808 from a point being
shaded in the scene 806 to the selected point 804C.

In this way, both direct and indirect lighting may be
considered during RESTIR by considering both the light
sources 802A-C and the instances of geometry 804A-D as
sources of illumination during shading.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited

10

15

20

25

30

35

40

45

50

55

60

65

26

by any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.

The disclosure may be described in the general context of
computer code or machine-usable instructions, including
computer-executable instructions such as program modules,
being executed by a computer or other machine, such as a
personal data assistant or other handheld device. Generally,
program modules including routines, programs, objects,
components, data structures, etc., refer to code that perform
particular tasks or implement particular abstract data types.
The disclosure may be practiced in a variety of system
configurations, including hand-held devices, consumer elec-
tronics, general-purpose computers, more specialty comput-
ing devices, etc. The disclosure may also be practiced in
distributed computing environments where tasks are per-
formed by remote-processing devices that are linked through
a communications network.

As used herein, a recitation of “and/or” with respect to
two or more elements should be interpreted to mean only
one element, or a combination of elements. For example,
“element A, element B, and/or element C”” may include only
element A, only element B, only element C, element A and
element B, element A and element C, element B and element
C, or elements A, B, and C. In addition, “at least one of
element A or element B” may include at least one of element
A, at least one of element B, or at least one of element A and
at least one of element B. Further, “at least one of element
A and element B” may include at least one of element A, at
least one of element B, or at least one of element A and at
least one of element B.

The subject matter of the present disclosure is described
with specificity herein to meet statutory requirements. How-
ever, the description itself is not intended to limit the scope
of this disclosure. Rather, the inventors have contemplated
that the claimed subject matter might also be embodied in
other ways, to include different steps or combinations of
steps similar to the ones described in this document, in
conjunction with other present or future technologies. More-
over, although the terms “step” and/or “block” may be used
herein to connote different elements of methods employed,
the terms should not be interpreted as implying any particu-
lar order among or between various steps herein disclosed
unless and except when the order of individual steps is
explicitly described.

What is claimed is:

1. A method comprising:

implementing reservoir importance resampling to com-

pute global illumination on visible surfaces in a scene,
utilizing a world-space data structure.

2. The method of claim 1, further comprising computing
the global illumination throughout space for the scene, and
storing the computed global illumination in the world-space
data structure for the scene.

3. The method of claim 1, wherein the reservoir impor-
tance resampling treats points on reflective objects and lights
as candidates during the computation of global illumination.

4. The method of claim 3, wherein the reservoir impor-
tance selects one of the candidates for shading, the shading
performed by casting a shadow ray from a point being
shaded in the scene to a point corresponding to the selected
candidate.

5. The method of claim 1, wherein the world-space data
structure includes an RTX global illumination (RTXGI) data
structure.

US 11,315,310 B2

27

6. The method of claim 1, wherein an emitted color of
reflective candidates is looked up in the world-space data
structure.

7. The method of claim 1, wherein a filtered radiance/
irradiance volume algorithm is used to compute the world-
space data structure.

8. The method of claim 1, wherein the reservoir impor-
tance resampling treats the visible surfaces as light sources
that are emissive or lit by the world-space data structure.

9. The method of claim 1, wherein the world-space data
structure is generated using a RTX Global Ilumination
(RTXGI) algorithm.

10. The method of claim 9, wherein the RTXGI algorithm
computes the global illumination using only one ray per
sample.

11. The method of claim 1, wherein the reservoir impor-
tance resampling asynchronously computes:

global illumination throughout space for the scene which

is stored in the world-space data structure, and

the global illumination on the visible surfaces in the scene

by treating all surfaces in the scene as light sources.

12. A system comprising:

a processor that is configured to:

implement reservoir importance resampling to compute

global illumination on visible surfaces in a scene,
utilizing a world-space data structure.

13. The system of claim 12, where the processor is further
configured to compute the global illumination throughout
space for the scene, and store the computed global illumi-
nation in the world-space data structure for the scene.

14. The system of claim 12, wherein the reservoir impor-
tance resampling treats points on reflective objects and lights
as candidates during the computation of global illumination.

10

15

20

25

30

28

15. The system of claim 12, wherein the world-space data
structure includes an RTX global illumination (RTXGI) data
structure.

16. The system of claim 12, wherein an emitted color of
reflective candidates is looked up in the world-space data
structure.

17. The system of claim 12, wherein a filtered radiance/
irradiance volume algorithm is used to compute the world-
space data structure.

18. The system of claim 12, wherein the reservoir impor-
tance resampling treats the visible surfaces as light sources
that are emissive or lit by the world-space data structure.

19. The system of claim 12, wherein the world-space data
structure is generated using a RTX Global Ilumination
(RTXGI) algorithm.

20. The system of claim 19, wherein the RTXGI algorithm
computes the global illumination using only one ray per
sample.

21. A non-transitory computer-readable storage medium
storing instructions that, when executed by a processor,
causes the processor to perform steps comprising:

implementing reservoir importance resampling to com-
pute global illumination on visible surfaces in a scene,
utilizing a world-space data structure.

22. The non-transitory computer-readable storage
medium of claim 21, further comprising computing the
global illumination throughout space for the scene, and store
the computed global illumination in the world-space data
structure for the scene.

#* #* #* #* #*

