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A method for generating temporally stable hash values
reduces visual artifacts associated with stochastic sampling
of data for graphics applications. A given hash value can be
generated from a scaled and discretized object-space for a
geometric object within a scene. Through appropriate scal-
ing, the hash value can be discretized and remain constant
within a threshold distance from a pixel center. As the
geometric object moves within the scene, a hash value
associated with a given feature of the geometric object
remains constant because the hash value is generated using
an object-space coordinate anchored to the feature. In one
embodiment, alpha testing threshold values are assigned
random, but temporally stable hash output values generated
using object-space coordinate positions for primitive frag-
ments undergoing alpha testing. Alpha tested fragments are
temporally stable, beneficially improving image quality.
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‘/S// 120
// Find the derxivatives of our coordinates
float pixDeriv = max{ length{dFdx(objCooxrd.xy)), 121
length {dFdy (objCoord.xy) ) ) :
// Scale of noise in pixels (w/ user param g HashScale) 122
float pixScale = 1.0/(g_HashScale*pixDeriv);
// Compute alpha threshold {or) 123
float «r = hash3D( floor(pixScale*objCoord.xyz) )
Fig. 1B
130
// define hash3D{vec3) - start with hash(vec2)
float hash( vec2 in ) {
return fract( 1.0e4 * sin( 17.0%in.x + 0.1%in.y ) * 131
{ 0.1 + abs{ sin{ 13.0*in.y + in.x }))
)
}
//
float hash3D( vec3 in } { 132

return hash( vec2( hash( in.xy ), in.z2 } }:
} -

Fig. IC
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140

3

// Find discretized derivatives of 3D poistion
float maxDeriv = max( length(dFdx(objCoord.xyz}}, 141
length {dFdy (objCoord.xyz}) };
// Calculate localized scale
float pixScale = 1.0/(g_HashScale*maxDeriv);
142
// Find two nearest log-discretized noise scales
vec2 pixScales = vec2( exp2(floor(log2(pixScale))},
exp2 {(ceil (log2 {(pixScale)})) };

// Compute alpha thresholds at two noise scales
vec? alpha = vec2(hash3D(floor (pixScales.x*objiCoord.xyz)),
hash3D{floor (pixScales.y*objCoord.xyz))) ;

143

// Factor to linearly interpolate {lerp)
float lerpFactor = fract{ log2(pixScale) };

// Interpolate alpha threshold from noise at two scales
fleoat x = {l~lerpFactor)*alpha.x + lerpfactor*alpha.y;

—
N
(3

// Pass into CDF to compute uniformly distributed threshold
float a = min( lerpPactor, l-lerpFactor };
vec3 cases = vec3{ x*x/{(2*%a*(1l-a))},
{x-0.5%a) f(1~a),
1.0-({1-x)*(1~-x)/2%a*(1-a})) ):

146

// Find final, uniformly distributed threshold
float a1 = {(x < (1-a)) ?
{{x<a}) ? cases.x : cases.y)} : cases.z;

147

// Clamp to avoid a1 ==

at = clamp( at, 1.0e-6, 1.0); 148

D e e e

Fig. 1D
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‘;;/,150
// Find the discretized derivatives of our coordinates R
vec3 anisoDeriv = max{ abs (dFdx(objCoord.xyz)},
abs (dFdy {objCoord.xyz)} };
> 151
vec3 anisoScales = vec3(0.707/(g_HashScale*ansioDeriv.x),
0.707/ (g_HashScale*anisoDeriv.y),
0.707/ (g_HashScale*anisoDerxriv.z) }: y

// Find log-discretized noise scales

US 10,417,813 B2

vec3 scaleFlr = vec3( exp2(floor{log2(anisoScales.x}}},
expl {floor{log2 {anisoScales.y}) ),
expl (floor(log2 (anisoScales.z)}) }; 152
vec3 scaleCeil = vec3{ exp2{ceil(log2(anisoScales.x})}},
exp2{(ceil {log2{anisoScales.y}}},
exp2(ceil {(loeg2(anisoScales.z))) )
// Compute alpha thresholds at our two noise scales
vecZ alpha = vec2(hash3D(floor (scaleFlr*objCoord.xyz)}, :}>>153
hash3D (floor (scaleCeil*ocbijCoord.xyz})}) ;
// Factor to linearly interpolate with
vec3 fractlLoc = vec3( fract{log2( anisoScale.x }),
fract{log2( anisoScale.y }),
fract{log2{ anisoScale.z )} )’ 154
vec2 toCorners = vec2{ length(fractloc),
length(vec3(1.0f)-fractloc) );
float lerpFactor = toCorners.x/{toCorners.x+toCorners.y):
// Interpolate alpha threshold from noise at two scales
float x = (l-lerpFactor)*alpha.x + lerpFactor*alpha.y; 155
// Pass into CDF to compute uniformly distrib threshold
float a = min( lerpFactor, l-lerpFactor };
vecl3 cases = vec3{ x*x/(2*a*{(1l-a)), 156
(x~0.5%a)/(1~a),
1.0-{{1-x)*(1-x)/(2%a* (1~-a)}) }:
// Find final, uniformly distributed alpha threshold
float a1 = (x < {l-a)) ? 157
({x < a) ? cases.x : cases.y) : cases.z;
// Clamp to avoid a1 == :})>158
at = clamp( ot , 1.0e-6, 1.0 )

Fig.

1E
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SYSTEM AND METHOD FOR GENERATING
TEMPORALLY STABLE HASHED VALUES

CLAIM OF PRIORITY

This application claims the benefit of U.S. Provisional
Application No. 62/430,281 titled “Hashed Alpha Testing,”
filed Dec. 5, 2016, the entire contents of which is incorpo-
rated herein by reference.

FIELD OF THE INVENTION

The present invention relates to image rendering, and
more particularly to systems and methods for generating
temporally stable hashed values.

BACKGROUND

One common aspect of image rendering involves sam-
pling a texture map to generate output pixels in a rendered
scene. Certain texture map sampling techniques can be
highly advantageous for rendering performance, but may
produce undesirable visual artifacts. For example, rendering
a simple base geometry (e.g., two triangles forming a
rectangle) using alpha-tested geometry with an associated
texture map of a tree can produce apparent geometric
complexity of leaves and branches that would otherwise
require many thousands of polygons and incur a perfor-
mance penalty. Using alpha-tested geometry, branches and
leaves are typically assigned an opaque alpha value and
open spaces are typically assigned a fully transparent alpha
value. Performance can be improved using alpha-tested
geometry because significant scene detail (e.g., branches and
leaves) need not be processed and rendered as separate
geometric objects, and transparent fragments can be dis-
carded without additional processing. While conventional
alpha-tested geometry techniques offer significant perfor-
mance advantages, undesirable visual artifacts such as flick-
ering and disappearing geometry can occur. Thus, there is a
need for addressing these issues and/or other issues associ-
ated with the prior art.

SUMMARY

A method, computer readable medium, and system are
disclosed for generating temporally stable hash values for
generating graphics data. The method comprises identifying
a three-dimensional (3D) position for a primitive fragment
in a 3D coordinate space, calculating an appropriate, local-
ized scale for discretization of the 3D position, calculating
a discretized position based on the 3D position and the
localized scale, providing the discretized position as an input
to a hash function to produce a random value, sampling an
attribute associated with the primitive fragment to produce
an attribute sample within an associated pixel location for
the primitive fragment, calculating a result based on math-
ematical operations involving the attribute sample and the
random value, generating the graphics data based on the
result. The discretized position is constant within a threshold
distance of the 3D position according to the localized scale.
In one embodiment, a graphics processing unit (GPU) is
configured to sample the attribute associated with the primi-
tive fragment. Furthermore, the GPU is configured to gen-
erate the graphics data.
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2

The computer readable medium includes instructions that,
when executed by a processing unit, perform the method.
Furthermore, the system includes circuitry configured to
perform the method.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates a flowchart of a method for hash
sampling using discretized inputs, in accordance with one
embodiment;

FIG. 1B illustrates programming instructions for calcu-
lating an alpha threshold for hashed alpha testing, in accor-
dance with one embodiment;

FIG. 1C illustrates programming instructions for calcu-
lating an exemplary three-dimensional hash function, in
accordance with one embodiment;

FIG. 1D illustrates programming instructions for calcu-
lating an alpha threshold for isotropic hashed alpha testing,
in accordance with one embodiment;

FIG. 1E illustrates programming instructions for calcu-
lating an alpha threshold for anisotropic hashed alpha test-
ing, in accordance with one embodiment;

FIG. 1F illustrates visual differences between an exem-
plary ground truth image and related images rendered using
various forms of alpha testing, in accordance with one
embodiment;

FIG. 1G illustrates rendering artifacts associated with
different forms of alpha testing, in accordance with one
embodiment;

FIG. 2 illustrates a parallel processing unit, in accordance
with one embodiment;

FIG. 3A illustrates a general processing cluster of the
parallel processing unit of FIG. 2, in accordance with one
embodiment;

FIG. 3B illustrates a partition unit of the parallel process-
ing unit of FIG. 2, in accordance with one embodiment;

FIG. 4 illustrates the streaming multi-processor of FIG.
3A, in accordance with one embodiment;

FIG. 5 illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented; and

FIG. 6 is a conceptual diagram of a graphics processing
pipeline implemented by the parallel processing unit of FIG.
2, in accordance with one embodiment.

DETAILED DESCRIPTION

Embodiments of the present invention improve rendering
quality for alpha tested image sequences. In particular,
various embodiments solve the long-standing problem of
disappearing and/or flickering geometry artifacts associated
with alpha-tested geometry in rendered scenes. Such arti-
facts commonly occur when rendering objects that use
alpha-tested and filtered mipmaps, with alpha-tested geom-
etry disappearing as distance to an observing camera
increases over several frames. The artifacts are due, in part,
to a reduction in alpha variance from filtering that converges
to the mean, which is often less than a fixed 0.5 alpha test
threshold for transparency. In certain settings, such as real-
time games, developers pre-compute per-level-of-detail
alpha thresholds (which can enlarge small details) for certain
geometric objects in a scene. By adjusting the alpha-test
threshold for fragment transparency of a given object, visual
artifacts associated with the object can be generally reduced.
However, this approach generally requires manual threshold
assignment.



US 10,417,813 B2

3

Applying a randomly-selected alpha threshold for every
pixel generally eliminates artifacts associated with disap-
pearing geometry, but introduces temporal noise. Hashed
alpha testing provides the same benefit but uses a temporally
stable (hashed) noise function that remains consistent
between rendered frames, even under motion. In such set-
tings, the hash function should provide the following three
properties: (1) determinism, (2) a defined output range, and
(3) uniformity over the output range. The determinism
property specifies that the hash function will produce the
same output for identical input value(s). The defined range
bounds the value of hash function outputs. For example, a
given hash function may have a range of [0 . . . 1), which is
inclusive of zero and exclusive of one. Other ranges may be
implemented according to a particular implementation. Hash
function uniformity generally means hash function output
values are evenly and randomly (but deterministically) dis-
tributed over the output range. Certain embodiments
described herein implement a hash function that provides
these three properties. Alternative embodiments may imple-
ment a hash function that substantially meets the three
properties.

In certain embodiments, hash input values are discretized
and anchored in three-dimensional (3D) space to scene
geometry undergoing alpha testing. A given discretized hash
input value comprises a discretized position that remains
constant within a threshold distance of a 3D position accord-
ing to the localized scale. For example, a localized scale may
be calculated based on a pixel-sized region in screen space
projected onto the scene geometry. Movement of the scene
geometry and/or camera position within the threshold dis-
tance provides a constant discretized position as an input to
the hash function. Furthermore, as an instance of scene
geometry moves laterally a distance of multiple pixels, the
discretized position may remain constant (anchored to the
scene geometry), providing stable hash values at different
3D locations on the scene geometry for performing alpha
testing. By providing stable hash values, a rendering system
may avoid disappearing, flickering, or swimming appear-
ance as objects move or camera positions change over time.

To anchor the hash input values to a geometric object, an
appropriate 3D coordinate frame (e.g., texture space coor-
dinates including a level of detail value, world space coor-
dinates, or object-space coordinates) may be selected. For
example, 3D object-space coordinates remain anchored and
invariant with respect to a region on an object regardless of
object or camera motion. When used as hash input values,
coordinates from a 3D object-space produce hash output
values (e.g., alpha threshold values) that remain consistent
for each image in a sequence (i.e., frame) and anchored to
a region on the object. Applying alpha testing to these values
produces stable, motion invariant results. In one embodi-
ment, 3D object-space coordinates are used as hash input
values. In another embodiment, coordinates in a texture
coordinate space are used for the hash input values. In yet
another embodiment, coordinates in a global coordinate
space are used for the hash input values.

The hash function provides a stable random noise func-
tion that is tied to object geometry with object-space coor-
dinates serving as hash input values. The object-space
coordinates can be scaled according to screen-space deriva-
tives (with respect to object-space coordinates) to provide
various levels-of-detail and clamped for use as hash inputs,
causing all values within a pixel-scale region to generate the
same hashed value.

Two related embodiments are disclosed herein. In a first
embodiment, isotropic hashed alpha values are used. In a
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second embodiment, anisotropic hashed alpha are used.
Additionally, a transition from conventional alpha threshold
testing to hashed alpha threshold testing may be performed
as a distance from the camera to the 3D position increases.
Any hash function that substantially satisfies the three
properties (determinism, a defined output range, and unifor-
mity over the output range) for a hash function stated herein
may be implemented to generate hashed alpha threshold
values.

While the present disclosure primarily describes hashed
alpha testing, techniques disclosed herein for discretized
hashing can be applied more generally to any technically
appropriate stochastic sampling application. A hashed value
can be, without limitation, an alpha threshold, a transpar-
ency, a direction, or highlight color, such as a specular
highlight color (glint). In various embodiments, the method
or methods disclosed herein can be executed by a GPU,
CPU, or any processor capable of generating hashed values
based on a position in a 3D space.

FIG. 1A illustrates a flowchart of a method 100 for hash
sampling using discretized inputs, in accordance with one
embodiment. Although the method 100 is described in
conjunction with the systems of FIGS. 2-5, any processing
system that implements method 100 is within the scope and
spirit of embodiments of the present disclosure. In various
embodiments, method 100 is implemented in the context of
a graphics system, configured to render graphics data from
scene information comprising graphics primitives. One or
more operations of the method 100 may be performed by
task-specific circuitry or by a combination of task-specific
circuitry and general-purpose processing units. In one
embodiment, method 100 is implemented by a processing
system, which may include a general purpose central pro-
cessing unit (CPU), a parallel (PPU), such as PPU 200 of
FIG. 2, or any combination thereof.

At step 102, the processing system identifies a three-
dimensional (3D) position for a primitive fragment in a 3D
coordinate space. In one embodiment, the 3D position may
be identified by mapping a screen space position to an
object-space 3D position. The object-space 3D position is
located on geometry representing an object, where the
object-space 3D position is associated with a primitive
fragment. In alternative embodiments, the 3D position may
be identified by mapping the screen space position to a 3D
world space position or mapping to a texture space position.

At step 103, the processing system calculates an appro-
priate, localized scale for discretization of the 3D position.
In one embodiment, the localized scale is calculated using
gradients associated with the primitive fragment at the 3D
position. In one embodiment, the gradients are calculated as
partial derivatives of a function F (e.g., depth) with respect
to a screen space vertical axis (y-axis) and a screen space
horizontal axis (x-axis). In this context, a partial derivative
of the function F with respect to the screen space x-axis is
represented as dFdx and is calculated using local differenc-
ing of the function F along the screen space x-axis. Simi-
larly, a partial derivative of the function F with respect to the
screen space y-axis is represented as dFdy and is calculated
using local differencing of the function F along the screen
space y-axis. The local differencing may be calculated with
respect to immediate neighboring samples of the function F.
The localized scale may cause a discretized position to be
constant within a threshold distance of the 3D position. The
localized scale defines the threshold distance. For example,
the center of a screen space pixel may be mapped to the
primitive fragment at the 3D position, and the threshold
distance can be defined as the object-space distance to the
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pixel edge at the 3D position. In one embodiment, an
appropriate scale maps a screen space region of at least one
pixel to the threshold distance around the 3D position.

At step 104, the processing system calculates a discretized
position based on the 3D position and the localized scale. In
one embodiment, the discretized position is a 3D position,
with each dimension scaled according to an associated scale
value for the dimension and discretized by truncating frac-
tional results after being scaled. This causes the discretized
position to be constant within the threshold distance asso-
ciated with the localized scale. If, for example, the localized
scale is calculated to correspond to a screen space pixel size,
then any change to 3D position within the threshold distance
will produce a constant discretized position.

At step 105, the processing system provides the dis-
cretized position as an input to a hash function to produce a
random value. The hash function may receive a vector
corresponding to coordinates of the discretized position and
return a scalar corresponding to the random value.

At step 106, the processing system samples an attribute
associated with the primitive fragment to produce an attri-
bute sample within an associated pixel location for the
primitive fragment. In one embodiment, the attribute sample
is a transparency (e.g., alpha) value for the primitive frag-
ment, provided by sampling an associated texture map.

At step 107, the processing system calculates a result
based on mathematical operations involving the attribute
sample and the random value. In one embodiment, the
attribute sample is a sampled alpha value and the random
value is used as an alpha test threshold for performing alpha
testing, such as geometric alpha testing. If the alpha test
indicates the primitive fragment is opaque, then the primi-
tive fragment is processed further. If the alpha test indicates
the primitive fragment is transparent, then the primitive
fragment may be discarded.

Using the random value as an alpha test threshold can
mitigate the impact of reductions in alpha variance from
filtering, which can lead to disappearing geometry. Further-
more, the use of a discretized hash input value that is
anchored to a 3D position for the primitive fragment can
reduce or eliminate flickering and/or crawling artifacts oth-
erwise associated with relative motion between a camera
view and an object associated with the primitive fragment.

At step 108, the processing system calculates graphics
data based on the result. In one embodiment, the graphics
data includes a primitive fragment that has passed alpha
testing. In another embodiment, the graphics data comprises
a pixel value for the fragment being written to an output
image.

In another embodiment, the attribute sample is a material
property, the random value is a selected direction, and the
graphics data (result of method 100) is lighting sampled
according to the selected direction. In yet another embodi-
ment, the attribute sampled is an opacity value, the random
value is a stochastic transparency threshold, and the graphics
data (result) is a transparency value assigned to the primitive
fragment and/or a result pixel generated from the primitive
fragment. In still yet another embodiment, the attribute
sampled is a surface roughness, the random value represents
a set of discrete surface facets, and the graphics data (result)
is a specular highlight color value (glint).

More detail will not be set forth regarding different
embodiments associated with method 100. In particular,
isotropic and anisotropic techniques are disclosed, along
with techniques for reducing artifacts associated with alpha
testing in these contexts. Additional applications beyond
alpha testing are also disclosed.
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FIG. 1B illustrates programming instructions 120 for
calculating an alpha threshold (at) for hashed alpha testing,
in accordance with one embodiment. As shown, program-
ming instructions 120 include code blocks 121 through 123.
In one embodiment, code blocks 121 through 123 may be
used to implement steps 103 to 105 of method 100.

In step 102 of method 100, a 3D position is identified for
the primitive fragment in a 3D coordinate space. The 3D
position corresponds to a vec3 variable named objectCo-
ordxyz in the programming instructions 120. In one
embodiment, the 3D position is an object-space coordinate
assigned to the primitive fragment when the primitive frag-
ment is generated (e.g., during rasterization of a geometric
primitive). In another embodiment, the 3D position is iden-
tified using a standard graphics language function un
Project( ) or gluUnProject( ) to map a screen space location
(e.g. a pixel center location) to the 3D position (objectCo-
ordxyz) in the 3D coordinate space (object space). In
alternative embodiments, the 3D position is assigned a
global-space or texture-space 3D coordinate for the primi-
tive fragment.

For stable pixel-scale noise, object-space coordinates are
normalized (appropriately scaled with respect to localized
scale) and subsequently discretized according to screen-
space derivatives. To this end, code block 121 calculates two
gradients using the standard graphics language functions
dFdx()) and dFdy( ) with a pixel scale derivative (pixDeriv)
calculated from the two gradients and used for scaling. A call
to the standard graphics language function length( ) provides
a scalar length value for each of the two gradients, and the
function max( ) is used to pick a maximum (larger) gradient
scalar value of the two gradient lengths. In code block 122,
the maximum gradient scalar defines a pixel scale derivative
(pixDeriv) that is used to calculate a scale factor (pixScale)
for normalizing and discretizing objectCoord.xyz. A scaling
parameter g HashScale controls the target noise scale, mea-
sured in pixel size. When g_HashScale is equal to 1.0, the
resulting noise scale is one pixel, meaning hash values are
constant within a half-pixel threshold distance from a pixel
center. Larger values for g HashScale can be used to pro-
duce a thicker, more pixilated appearance. In one embodi-
ment, code block 122 is used to implement step 103 of
method 100.

In code block 123, a scaled 3D position is calculated by
multiplying component values of the 3D position (object-
Coord.xyz) by a scale factor (pixScale). A call to standard
graphics language function floor( ) is used to calculate a
discretized position of the scaled 3D position. In one
embodiment, these operations are used to implement step
104 of method 100. The discretized position is then used as
input parameters to call a three-dimensional hash function,
hash3D( ), which produces a random value. In this context,
the random value is assigned to be an alpha test threshold
value (at). In one embodiment, step 105 of method 100 is
implemented as a call to hash3D( ) using the discretized
position (a vec3 value) as input.

In one embodiment, programming instructions 120 are
used to implement steps 103-105 of method 100. Other
embodiments are described in FIGS. 1D and 1E.

FIG. 1C illustrates programming instructions 130 for
calculating an exemplary three-dimensional hash function
(hash3D), in accordance with one embodiment. As shown, a
code block 131 implements a hash( ) function operable on
two input variables to produce an output (return) hash value.
Furthermore, code block 132 illustrates an exemplary
hash3D( ) function being constructed using two calls to the
hash( ) function of code block 131. In this example, the a
output of a first call to hash( )) serves as one input to a
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second call to hash( ). While the technique illustrated in
programming instructions 130 meets the three properties for
a hash function in the present context, any other technique
may be implemented instead.

FIG. 1D illustrates programming instructions 140 for
calculating an alpha threshold (at) for isotropic hashed alpha
testing, in accordance with one embodiment. As shown,
programming instructions 140 include code blocks 141
through 148. In one embodiment, code blocks 141 through
148 may be used to implement steps 103 to 105 of method
100.

Programming instructions 140 build on programming
instructions 120 to reduce artifacts associated with object
translations and/or motion in depth (z). In particular, pro-
gramming instructions 140 calculate an alpha threshold by
interpolating between two discrete hash values associated
with two nearest noise scale factors. In one embodiment, the
two nearest noise scale factors are calculated at a pixel
center. As a given fragment is translated in depth, an
associated hash value is interpolated from a first (lower,
from floor function) discrete hash value and a second
(higher, from ceiling function) discrete hash value, with the
first discrete hash value calculated at a first discrete scale
factor and the second discrete hash value calculated at a
second discrete scale factor.

Programming instructions 140 calculate the alpha thresh-
old based on the 3D position and the scaling parameter
g_HashScale. In one embodiment, the 3D position, indicated
as objectCoord.xyz in code block 141, may be identified
using a standard graphics language function such as unProj-
ect( ) or gluUnProject( ). In alternative embodiments, the 3D
position is assigned a global-space or texture-space 3D
coordinate for the primitive fragment.

As shown, code block 141 calculates a pixel scale deriva-
tive (pixDeriv) from two gradients provided by calls to
dFdx( ) and dFdy( ). Code block 142 uses the pixel scale
derivative to calculate a first discrete scale factor using a
floor( ) function, and a second discrete scale factor using a
ceiling function ceil( ). The first and second discrete scale
factors are stored in a vec2 variable pixScales, as pixS-
cales.x and pixScales.y, respectively.

Code block 143 calculates a first hash value according to
the first discrete scale and a second hash value according to
the second discrete scale. In this context, the first hash value
is used as a first alpha threshold and the second hash value
is used as a second alpha threshold. The first and second
alpha thresholds are stored in a vec2 variable named alpha
(as alpha.x, alpha.y). Code block 144 calculates an interpo-
lation factor (lerpFactor) using a fractional component of a
base two logarithm of scale factor pixScale (not discretized).
The fractional component can be calculated by a call to the
standard graphics language function fract( ). The interpola-
tion factor is used to interpolate between the first alpha
threshold and the second alpha threshold. This is illustrated
in code block 145, which calculates an intermediate alpha
threshold value by interpolating between the first alpha
threshold (alpha.x) and the second alpha threshold (alpha.y),
based on the interpolation factor lerpFactor.

Interpolating between two uniformly distributed values
(e.g., the hash values described herein) does not necessarily
yield a new uniformly distributed value. In the context of
calculating an alpha threshold for hashed alpha testing, such
a lack of uniformity can introduce a “strobing” artifact as an
object undergoes translation in depth (z) because the vari-
ance of hashed noise can change during motion. However,
this issue can be solved by transforming the interpolated
output (intermediate alpha threshold) back into a uniform
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distribution using a cumulative distribution function (CDF)
of the two interpolated uniform random values. Equation 1
describes a suitable cumulative distribution function for this

purpose:

x* ®

m: O<x<a
—-a/2
cdf(x) = xl_ai: a<x<l-a
(-7
—m. l-a=<x<1

Code blocks 146 and 147 calculate a CDF-adjusted alpha
threshold. More specifically, code block 146 calculates three
possible case values of the CDF function defined in Equa-
tion 1 for the three specified cases, and code block 147
selects one of the three possible cases according to which
one of the three specified cases is true. Code block 148
clamps the alpha threshold to avoid an output alpha thresh-
old of zero. Additional clamp conditions may also be imple-
mented (not shown).

Alpha testing using alpha thresholds calculated according
to isotropic techniques of programming instructions 140
provides a uniform noise scale irrespective of surface ori-
entation. However, this approach creates anisotropy if a
surface is viewed obliquely, as projected noise scales differ
along screen-space x and y dimensions. Anisotropy arises
when voxels of constant hash value project into screen space
with different extents in the x and y dimensions. Uniform
discretization as described herein generates pixel-scale noise
only along one axis. Noise along the other axis will either be
sub-pixel in scale or too large, thereby reintroducing tem-
poral flicker or generating elongated regions having constant
hash values. Techniques for mitigating anisotropy are dis-
closed in FIG. 1E, where three discretization scales (one for
each of three object-space axes) are used rather than one
scale as described in FIGS. 1B and 1D.

FIG. 1E illustrates programming instructions 150 for
calculating an alpha threshold (at) for anisotropic hashed
alpha testing, in accordance with one embodiment. As
shown, programming instructions 150 include code blocks
151 through 158. In one embodiment, code blocks 151
through 158 may be used to implement steps 103 to 105 of
method 100.

Programming instructions 150 build on programming
instructions 140 to reduce artifacts associated with anisot-
ropy. In particular, programming instructions 150 calculate
different scales for discretization along each of three axes for
the 3D position (e.g., object-space axes). Anisotropy is
reduced by scaling and discretization according to the inde-
pendent scale factors for each axis. As shown, code block
151 calculates a maximum gradient vector (anisoDeriv) at
the 3D position (objCoord.xyz) by selecting maximum
gradient components from each of two gradient inputs at the
3D position. A scale vector (anisoScales) is calculated to
include anisotropic scale factors. Code block 152 calculates
a floor scale vector (scaleFlr) and a ceiling scale vector
(scaleCeil) based on the scale vector (anisoScales). In one
embodiment, these operations are used to implement step
103 of method 100.

Code block 153 calculates a first scaled 3D position by
multiplying each component of the 3D position (objectCo-
ord.xyz) with a corresponding component of the floor scale
vector. Furthermore, code block 153 calculates a second
scaled 3D position by multiplying each component of the 3D
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position with a corresponding component of the ceiling scale
vector. In one embodiment, these operations are used to
implement step 104 of method 100.

The first scaled 3D position comprises a first discretized
position used for a first hash function call and the second
scaled 3D position comprises a second discretized position
used for a second hash function call. In this context, the
output of the first hash function call and the output of the
second hash function call comprise a first alpha threshold
(alpha.x) and a second alpha threshold (alpha.y), respec-
tively.

Code block 154 calculates an interpolation factor (lerp-
Factor) using a fractional component of a base two loga-
rithm of the scale vector (anisoScales) components (pre-
discretization). The interpolation factor is used to interpolate
between the first alpha threshold and the second alpha
threshold. This is illustrated in code block 155, which
calculates an intermediate alpha threshold value by interpo-
lating between the first alpha threshold (alpha.x) and the
second alpha threshold (alpha.y), based on the interpolation
factor lerpFactor. Code blocks 156 and 157 together restore
uniform distribution using a CDF function, such as the CDF
function of Equation 1. Code block 158 clamps the alpha
threshold to avoid an output alpha threshold of zero. Addi-
tional clamp conditions may also be implemented (not
shown). In one embodiment step 105 of method 100
includes the hash function calls of code block 153, and
certain operations of code blocks 154 through 158.

In one embodiment, logic circuits are configured to
directly implement one or more code blocks of the program-
ming instructions 120, 130, 140, and 150. The logic circuits
may include arithmetic circuits and/or control circuit for
performing one or more operations specified in the one or
more code blocks. In certain embodiments, the logic circuits
may be implemented as function units within parallel pro-
cessing unit 200 of FIG. 2. The logic circuits may perform
specified operations in connection with operation of a graph-
ics processing pipeline, such as graphics processing pipeline
600 described in FIG. 6. For example, hashed alpha testing
may be implemented in the context of graphics processing
pipeline 600, with the logic circuits configured to generate
hash values used for alpha testing thresholds within frag-
ment shading stage 670 or raster operations stage 680 of
graphics processing pipeline 600. In one embodiment, the
one or more code blocks are implemented as logic circuits
within a fixed-function fragment shader, a programmable
fragment shader, a fixed-function raster operations unit, a
programmable raster operations unit, or a combination
thereof.

FIG. 1F illustrates visual differences between an exem-
plary ground truth image and related images rendered using
conventional alpha testing and hashed alpha testing, in
accordance with one embodiment. As shown, conventional
alpha-testing can cause certain regions that should be cov-
ered to disappear relative to the ground truth image. Con-
ventional alpha-testing can cause certain tree geometry to
disappear, creating a much sparser overall appearance than
the ground truth image of the tree. Hashed alpha testing
improves coverage, creating a more accurate overall appear-
ance than the conventional alpha-testing image of the tree.
Hashed alpha testing techniques advantageously reduce arti-
facts associated with relative motion between a scene object,
such as the tree, and a camera position.

In various embodiments, multiple attribute samples may
be taken for a given primitive fragment or pixel. For
example, multiple alpha testing samples may be taken for a
fragment and combined to produce a final value. The mul-
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tiple attribute samples may be taken at different locations or
accumulated over multiple frames. Furthermore, multiple
corresponding thresholds may be generated for the multiple
samples. In one embodiment multi-sample anti-aliasing
(MSAA) is implemented to generate pixel outputs from two
or more samples each.

FIG. 1G illustrates rendering artifacts associated with
different forms of alpha testing, in accordance with one
embodiment. The rendering artifacts illustrate anisotropy as
well as improvements obtained by using multiple samples
per primitive fragment or per pixel. A planar checker-board
texture is shown containing half opaque and half transparent
texels. In this example, alpha testing does not cause geom-
etry to necessarily disappear with distance but does cause
aliasing. Hashed alpha testing replaces aliasing with noise,
and using MSAA-based alpha-to-coverage converges to a
desired uniform gray in the distance.

Beyond use for distant for low-resolution alpha-mapped
geometry, other embodiments implement hashed alpha test-
ing for head-mounted displays for virtual reality, where
rendering at full resolution in a user’s periphery is wasteful.
In foveated rendering, a lower resolution is rendered in the
periphery of a user’s vision. In one embodiment a foveated
rendering system implements hashed alpha testing to pro-
vide pre-filtering.

In certain embodiments, light transport algorithms imple-
ment Monte-Carlo sampling to approximate a rendering
equation. Real-time constraints can prevent the use of an
increased ray count needed to avoid temporal noise. A
common approach defines per-pixel, fixed pseudo-random
seeds, but this can cause screen-door effects that are visible
as geometry moves relative to the screen. Using variations
of'the techniques disclosed herein, samples can be generated
using a stable, pixel-sized grid. This produces largely stable
noise that stays fixed to geometry, even when the geometry
moves. A stable hash may be used to generate a stable
ambient occlusion image using one or more samples per
pixel. In one embodiment, a hash result is used to seed a
unique pseudo-random number generator per pixel. In
another embodiment, multiple samples may be used (e.g.,
similar to the MSAA-sampling discussed herein) to each
generate a random ray direction for sampling incoming
lighting at a given primitive fragment.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which
the foregoing framework may or may not be implemented,
per the desires of the user. It should be strongly noted that
the following information is set forth for illustrative pur-
poses and should not be construed as limiting in any manner.
Any of the following features may be optionally incorpo-
rated with or without the exclusion of other features
described.

Parallel Processing Architecture

FIG. 2 illustrates a parallel processing unit (PPU) 200, in
accordance with one embodiment. In one embodiment, the
PPU 200 is a multi-threaded processor that is implemented
on one or more integrated circuit devices. The PPU 200 is a
latency hiding architecture designed to process a large
number of threads in parallel. A thread (i.e., a thread of
execution) is an instantiation of a set of instructions config-
ured to be executed by the PPU 200. In one embodiment, the
PPU 200 is a graphics processing unit (GPU) configured to
implement a graphics rendering pipeline for processing
three-dimensional (3D) graphics data in order to generate
two-dimensional (2D) image data for display on a display
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device such as a liquid crystal display (LCD) device. In
other embodiments, the PPU 200 may be utilized for per-
forming general-purpose computations. While one exem-
plary parallel processor is provided herein for illustrative
purposes, it should be strongly noted that such processor is
set forth for illustrative purposes only, and that any proces-
sor may be employed to supplement and/or substitute for the
same.

As shown in FIG. 2, the PPU 200 includes an Input/
Output (I/0) unit 205, a host interface unit 210, a front end
unit 215, a compute scheduler unit (CSU) 220, a compute
work distribution unit (CWDU) 225, a graphics primitive
distribution unit (GPDU) 230, a hub 235, a crossbar (Xbar)
270, one or more general processing clusters (GPCs) 250,
and one or more memory partition units 280. The PPU 200
may be connected to a host processor or other peripheral
devices via a system bus 202. The PPU 200 may also be
connected to a local memory comprising a number of
memory devices 204. In one embodiment, the local memory
may comprise a number of dynamic random access memory
(DRAM) devices.

The 1/O unit 205 is configured to transmit and receive
communications (i.e., commands, data, etc.) from a host
processor (not shown) over the system bus 202. The /O unit
205 may communicate with the host processor directly via
the system bus 202 or through one or more intermediate
devices such as a memory bridge. In one embodiment, the
1/0O unit 205 implements a Peripheral Component Intercon-
nect Express (PCle) interface for communications over a
PCle bus. In alternative embodiments, the 1/O unit 205 may
implement other types of well-known interfaces for com-
municating with external devices.

The I/O unit 205 is coupled to a host interface unit 210
that decodes packets received via the system bus 202. In one
embodiment, the packets represent commands configured to
cause the PPU 200 to perform various operations. The host
interface unit 210 transmits the decoded commands to
various other units of the PPU 200 as the commands may
specify. For example, some commands may be transmitted
to the front end unit 215. Other commands may be trans-
mitted to the hub 235 or other units of the PPU 200 such as
one or more copy engines, a video encoder, a video decoder,
a power management unit, etc. (not explicitly shown). In
other words, the host interface unit 210 is configured to route
communications between and among the various logical
units of the PPU 200.

In one embodiment, a program executed by the host
processor encodes a command stream in a buffer that pro-
vides workloads to the PPU 200 for processing. A workload
may comprise a number of instructions and pointers to data
to be processed by those instructions. The buffer is a region
in a memory that is accessible (i.e., read/write) by both the
host processor and the PPU 200. For example, the host
interface unit 210 may be configured to access the buffer in
a system memory connected to the system bus 202 via
memory requests transmitted over the system bus 202 by the
1/0O unit 205. In one embodiment, the host processor writes
the command stream to the buffer and then transmits a
pointer to the start of the command stream to the PPU 200.
The host interface unit 210 manages the scheduling of
instructions from one or more command streams written by
the host processor (i.e., channels) on the various sub-units of
the PPU 200.

The front end unit 215 receives instructions from the host
interface unit 210 from one or more command streams and
forwards those instructions to the correct sub-unit of the
PPU 200. Instructions associated with a compute pipeline
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may be received by the front end unit 215. These compute
instructions are then forwarded to a compute scheduler unit
220. The compute scheduler unit 220 is configured to track
state information related to the various tasks managed by the
compute scheduler unit 220. The state may indicate which
GPC 250 a task is assigned to, whether the task is active or
inactive, a priority level associated with the task, and so
forth. The compute scheduler unit 220 manages the execu-
tion of a plurality of tasks on the one or more GPCs 250.

The compute scheduler unit 220 is coupled to a compute
work distribution unit 225 that is configured to dispatch
tasks for execution on the GPCs 250. The compute work
distribution unit 225 may track a number of scheduled tasks
received from the compute scheduler unit 220. In one
embodiment, the compute work distribution unit 225 man-
ages a pending task pool and an active task pool for each of
the GPCs 250. The pending task pool may comprise a
number of slots (e.g., 16 slots) that contain tasks assigned to
be processed by a particular GPC 250. The active task pool
may comprise a number of slots (e.g., 4 slots) for tasks that
are actively being processed by the GPCs 250. As a GPC 250
finishes the execution of a task, that task is evicted from the
active task pool for the GPC 250 and one of the other tasks
from the pending task pool is selected and scheduled for
execution on the GPC 250. If an active task has been idle on
the GPC 250, such as while waiting for a data dependency
to be resolved, then the active task may be evicted from the
GPC 250 and returned to the pending task pool while
another task in the pending task pool is selected and sched-
uled for execution on the GPC 250.

Returning to the front end unit 215, instructions associ-
ated with a graphics pipeline may be received by the front
end unit 215. These graphics instructions are then forwarded
to a graphics primitive distribution unit 230. The graphics
primitive distribution unit 230 fetches vertex data from the
memory 204 or the system memory via the system bus 202
for various graphics primitives. Graphics primitives may
include points, lines, triangles, quads, triangle strips, and the
like. The graphics primitive distribution unit 230 groups the
vertices into batches of primitives and dispatches tasks to the
GPCs 250 for processing the batches of primitives. Process-
ing may involve executing a shader (i.e., a Vertex Shader,
Tesselation Shader, Geometry Shader, etc.) on a program-
mable processing unit as well as performing fixed function
operations on the vertices such as clipping, culling, and
viewport transformation using a fixed function unit.

The compute work distribution unit 225 and the graphics
primitive distribution unit 230 communicate with the one or
more GPCs 250 via a XBar 270. The XBar 270 is an
interconnect network that couples many of the units of the
PPU 200 to other units of the PPU 200. For example, the
XBar 270 may be configured to couple the compute work
distribution unit 225 to a particular GPC 250. Although not
shown explicitly, one or more other units of the PPU 200 are
coupled to the host unit 210. The other units may also be
connected to the XBar 270 via a hub 235.

The tasks associated with the compute pipeline are man-
aged by the compute scheduler unit 220 and dispatched to a
GPC 250 by the compute work distribution unit 225. The
tasks associated with the graphics pipeline are managed and
distributed to a GPC 250 by the graphics primitive distri-
bution unit 230. The GPC 250 is configured to process the
tasks and generate results. The results may be consumed by
other tasks within the GPC 250, routed to a different GPC
250 via the XBar 270, or stored in the memory 204. The
results can be written to the memory 204 via the memory
partition units 280, which implement a memory interface for
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reading and writing data to/from the memory 204. In one
embodiment, the PPU 200 includes a number U of memory
partition units 280 that is equal to the number of separate and
distinct memory devices 204 coupled to the PPU 200. A
memory partition unit 280 will be described in more detail
below in conjunction with FIG. 3B.

In one embodiment, a host processor executes a driver
kernel that implements an application programming inter-
face (API) that enables one or more applications executing
on the host processor to schedule operations for execution
on the PPU 200. An application may generate instructions
(i.e., API calls) that cause the driver kernel to generate one
or more tasks for execution by the PPU 200. The driver
kernel outputs tasks to one or more streams being processed
by the PPU 200. Each task may comprise one or more
groups of related threads, referred to herein as a warp. A
thread block may refer to a plurality of groups of threads
including instructions to perform the task. Threads in the
same group of threads may exchange data through shared
memory. In one embodiment, a group of threads comprises
32 related threads.

FIG. 3A illustrates a GPC 250 of the PPU 200 of FIG. 2,
in accordance with one embodiment. As shown in FIG. 3A,
each GPC 250 includes a number of hardware units for
processing tasks. In one embodiment, each GPC 250
includes a pipeline manager 310, a pre-raster operations unit
(PROP) 315, a raster engine 325, a work distribution cross-
bar (WDX) 380, a memory management unit (MMU) 390,
and one or more Texture Processing Clusters (TPCs) 320. It
will be appreciated that the GPC 250 of FIG. 3A may include
other hardware units in lieu of or in addition to the units
shown in FIG. 3A.

In one embodiment, the operation of the GPC 250 is
controlled by the pipeline manager 310. The pipeline man-
ager 310 manages the configuration of the one or more TPCs
320 for processing tasks allocated to the GPC 250. In one
embodiment, the pipeline manager 310 may configure at
least one of the one or more TPCs 320 to implement at least
a portion of a graphics rendering pipeline. For example, a
TPC 320 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 340. The pipeline manager 310 may also be configured
to route packets received from the Xbar 270 to the appro-
priate logical units within the GPC 250. For example, some
packets may be routed to fixed function hardware units in the
PROP 315 and/or raster engine 325 while other packets may
be routed to the TPCs 320 for processing by the primitive
engine 335 or the SM 340.

The PROP unit 315 is configured to route data generated
by the raster engine 325 and the TPCs 320 to a Raster
Operations (ROP) unit in the memory partition unit 280,
described in more detail below. The PROP unit 315 may also
be configured to perform optimizations for color blending,
organize pixel data, perform address translations, and the
like.

The raster engine 325 includes a number of fixed function
hardware units configured to perform various raster opera-
tions. In one embodiment, the raster engine 325 includes a
setup engine, a course raster engine, a culling engine, a
clipping engine, a fine raster engine, and a tile coalescing
engine. The setup engine receives transformed vertices and
generates plane equations associated with the geometric
primitive defined by the vertices. The plane equations are
transmitted to the coarse raster engine to generate coverage
information (e.g., an X,y coverage mask for a tile) for the
primitive. The output of the coarse raster engine may be
transmitted to the culling engine where fragments associated
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with the primitive that fail a z-test are culled, and transmitted
to a clipping engine where fragments lying outside a view-
ing frustum are clipped. Those fragments that survive clip-
ping and culling may be passed to a fine raster engine to
generate attributes for the pixel fragments based on the plane
equations generated by the setup engine. The output of the
raster engine 380 comprises fragments to be processed, for
example, by a fragment shader implemented within a TPC
320.

Each TPC 320 included in the GPC 250 includes an
M-Pipe Controller (MPC) 330, a primitive engine 335, an
SM 340, and one or more texture units 345. The MPC 330
controls the operation of the TPC 320, routing packets
received from the pipeline manager 310 to the appropriate
units in the TPC 320. For example, packets associated with
a vertex may be routed to the primitive engine 335, which
is configured to fetch vertex attributes associated with the
vertex from the memory 204. In contrast, packets associated
with a shader program may be transmitted to the SM 340.

In one embodiment, the texture units 345 are configured
to load texture maps (e.g., a 2D array of texels) from the
memory 204 and sample the texture maps to produce
sampled texture values for use in shader programs executed
by the SM 340. The texture units 345 implement texture
operations such as filtering operations using mip-maps (i.e.,
texture maps of varying levels of detail). In one embodi-
ment, each TPC 320 includes two (2) texture units 345.

The SM 340 comprises a programmable streaming pro-
cessor that is configured to process tasks represented by a
number of threads. Each SM 340 is multi-threaded and
configured to execute a plurality of threads (e.g., 32 threads)
from a particular group of threads concurrently. In one
embodiment, the SM 340 implements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
in a group of threads (i.e., a warp) is configured to process
a different set of data based on the same set of instructions.
All threads in the group of threads execute the same instruc-
tions. In another embodiment, the SM 340 implements a
SIMT (Single-Instruction, Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions, but where individual threads in the group of
threads are allowed to diverge during execution. In other
words, when an instruction for the group of threads is
dispatched for execution, some threads in the group of
threads may be active, thereby executing the instruction,
while other threads in the group of threads may be inactive,
thereby performing a no-operation (NOP) instead of execut-
ing the instruction. The SM 340 may be described in more
detail below in conjunction with FIG. 4.

The MMU 390 provides an interface between the GPC
250 and the memory partition unit 280. The MMU 390 may
provide ftranslation of virtual addresses into physical
addresses, memory protection, and arbitration of memory
requests. In one embodiment, the MMU 390 provides one or
more translation lookaside buffers (TLBs) for improving
translation of virtual addresses into physical addresses in the
memory 204.

FIG. 3B illustrates a memory partition unit 280 of the
PPU 200 of FIG. 2, in accordance with one embodiment. As
shown in FIG. 3B, the memory partition unit 280 includes a
Raster Operations (ROP) unit 350, a level two (L2) cache
360, a memory interface 370, and an L2 crossbar (XBar)
365. The memory interface 370 is coupled to the memory
204. Memory interface 370 may implement 16, 32, 64,
128-bit data buses, or the like, for high-speed data transfer.
In one embodiment, the PPU 200 comprises U memory
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interfaces 370, one memory interface 370 per memory
partition unit 280, where each memory partition unit 280 is
connected to a corresponding memory device 204. For
example, PPU 200 may be connected to up to U memory
devices 204, such as graphics double-data-rate, version 5,
synchronous dynamic random access memory (GDDRS
SDRAM). In one embodiment, the memory interface 370
implements a DRAM interface and U is equal to 6.

In one embodiment, the PPU 200 implements a multi-
level memory hierarchy. The memory 204 is located off-chip
in SDRAM coupled to the PPU 200. Data from the memory
204 may be fetched and stored in the [.2 cache 360, which
is located on-chip and is shared between the various GPCs
250. As shown, each memory partition unit 280 includes a
portion of the .2 cache 360 associated with a corresponding
memory device 204. Lower level caches may then be
implemented in various units within the GPCs 250. For
example, each of the SMs 340 may implement a level one
(L1) cache. The L1 cache is private memory that is dedicated
to a particular SM 340. Data from the .2 cache 360 may be
fetched and stored in each of the L1 caches for processing
in the functional units of the SMs 340. The L2 cache 360 is
coupled to the memory interface 370 and the XBar 270.

The ROP unit 350 includes a ROP Manager 355, a Color
ROP (CROP) unit 352, and a Z ROP (ZROP) unit 354. The
CROP unit 352 performs raster operations related to pixel
color, such as color compression, pixel blending, and the
like. The ZROP unit 354 implements depth testing in con-
junction with the raster engine 325. The ZROP unit 354
receives a depth for a sample location associated with a pixel
fragment from the culling engine of the raster engine 325.
The ZROP unit 354 tests the depth against a corresponding
depth in a depth buffer for a sample location associated with
the fragment. If the fragment passes the depth test for the
sample location, then the ZROP unit 354 updates the depth
buffer and transmits a result of the depth test to the raster
engine 325. The ROP Manager 355 controls the operation of
the ROP unit 350. It will be appreciated that the number of
memory partition units 280 may be different than the number
of GPCs 250 and, therefore, each ROP unit 350 may be
coupled to each of the GPCs 250. Therefore, the ROP
Manager 355 tracks packets received from the different
GPCs 250 and determines which GPC 250 that a result
generated by the ROP unit 350 is routed to. The CROP unit
352 and the ZROP unit 354 are coupled to the 1.2 cache 360
via an L.2 XBar 365.

FIG. 4 illustrates the streaming multi-processor 340 of
FIG. 3A, in accordance with one embodiment. As shown in
FIG. 4, the SM 340 includes an instruction cache 405, one
or more scheduler units 410, a register file 420, one or more
processing cores 450, one or more special function units
(SFUs) 452, one or more load/store units (LSUs) 454, an
interconnect network 480, and a shared memory/L.1 cache
470.

As described above, the compute work distribution unit
225 and the graphics primitive distribution unit 230 dispatch
tasks for execution on the GPCs 250 of the PPU 200. The
tasks are allocated to a particular TPC 320 within a GPC 250
and, if the task is associated with a shader program, the task
may be allocated to an SM 340. A scheduler unit 410
receives the tasks from the compute work distribution unit
225 and the graphics primitive distribution unit 230 and
manages instruction scheduling for one or more groups of
threads (i.e., warps) assigned to the SM 340. Each SM 340
may include K scheduler units 410 (i.e., 410(0) . . . 410(K-
1)). The scheduler unit 410 schedules threads for execution
in groups of parallel threads, where each group is called a
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warp. In one embodiment, each warp includes 32 threads.
The scheduler unit 410 may manage a plurality of different
warps, scheduling the warps for execution and then dis-
patching instructions from the plurality of different warps to
the various functional units (i.e., cores 350, SFUs 352, and
LSUs 354) during each clock cycle.

In one embodiment, each scheduler unit 410 includes one
or more instruction dispatch units 415. Each dispatch unit
415 is configured to transmit instructions to one or more of
the functional units. In the embodiment shown in FIG. 4, the
scheduler unit 410 includes two dispatch units 415 that
enable two different instructions from the same warp to be
dispatched during each clock cycle. In alternative embodi-
ments, each scheduler unit 410 may include a single dispatch
unit 415 or additional dispatch units 415.

Each SM 340 includes a register file 420 that provides a
set of registers for the functional units of the SM 340. In one
embodiment, the register file 420 is divided between each of
the functional units such that each functional unit is allo-
cated a dedicated portion of the register file 420. In another
embodiment, the register file 420 is divided between the
different warps being executed by the SM 340. The register
file 420 provides temporary storage for operands connected
to the data paths of the functional units.

Each SM 340 comprises L processing cores 450 (i.e.,
450(0) . . . 450(L-1)). In one embodiment, the SM 340
includes a large number (e.g., 192, etc.) of distinct process-
ing cores 450. Each core 450 may include a fully-pipelined,
single-precision processing unit that includes a floating point
arithmetic logic unit and an integer arithmetic logic unit. The
core 450 may also include a double-precision processing
unit including a floating point arithmetic logic unit. In one
embodiment, the floating point arithmetic logic units imple-
ment the IEEE 754-2008 standard for floating point arith-
metic. Each SM 340 also comprises M SFUs 452 (i.e.,
452(0) . . . 452(M-1)) that perform special functions (e.g.,
pixel blending operations, and the like), and N LSUs 454
(i.e., 454(0) . . . 454(N-1)) that implement load and store
operations between the shared memory/I.1 cache 470 and
the register file 420. In one embodiment, the SM 340
includes 192 cores 450, 32 SFUs 452, and 32 LSUs 454.

Each SM 340 includes an interconnect network 480 that
connects each of the functional units to the register file 420
and the shared memory/L.1 cache 470. In one embodiment,
the interconnect network 480 is a crossbar that can be
configured to connect any of the functional units to any of
the registers in the register file 420 or the memory locations
in shared memory/L.1 cache 470.

The shared memory/L.1 cache 470 is an array of on-chip
memory that, in one embodiment, may be configured as
either shared memory or an L1 cache, or a combination of
both, as the application demands. For example, the shared
memory/[.1 cache 470 may comprise 64 kB of storage
capacity. The shared memory/I.1 cache 470 may be config-
ured as 64 kB of either shared memory or .1 cache, or a
combination of the two such as 16 kB of L1 cache and 48
kB of shared memory.

The PPU 200 described above may be configured to
perform highly parallel computations much faster than con-
ventional CPUs. Parallel computing has advantages in
graphics processing, data compression, biometrics, stream
processing algorithms, and the like.

In one embodiment, the PPU 200 comprises a graphics
processing unit (GPU). The PPU 200 is configured to
receive commands that specify shader programs for process-
ing graphics data. Graphics data may be defined as a set of
primitives such as points, lines, triangles, quads, triangle
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strips, and the like. Typically, a primitive includes data that
specifies a number of vertices for the primitive (e.g., in a
model-space coordinate system) as well as attributes asso-
ciated with each vertex of the primitive. The PPU 200 can
be configured to process the graphics primitives to generate
a frame buffer (i.e., pixel data for each of the pixels of the
display).

An application writes model data for a scene (ie., a
collection of vertices and attributes) to a memory such as a
system memory or memory 204. The model data defines
each of the objects that may be visible on a display. The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed. The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data. The commands may reference different shader
programs to be implemented on the SMs 340 of the PPU 200
including one or more of a vertex shader, hull shader,
domain shader, geometry shader, and a pixel shader. For
example, one or more of the SMs 340 may be configured to
execute a vertex shader program that processes a number of
vertices defined by the model data. In one embodiment, the
different SMs 340 may be configured to execute different
shader programs concurrently. For example, a first subset of
SMs 340 may be configured to execute a vertex shader
program while a second subset of SMs 340 may be config-
ured to execute a pixel shader program. The first subset of
SMs 340 processes vertex data to produce processed vertex
data and writes the processed vertex data to the .2 cache 360
and/or the memory 204. After the processed vertex data is
rasterized (i.e., transformed from three-dimensional data
into two-dimensional data in screen space) to produce
fragment data, the second subset of SMs 340 executes a
pixel shader to produce processed fragment data, which is
then blended with other processed fragment data and written
to the frame buffer in memory 204. The vertex shader
program and pixel shader program may execute concur-
rently, processing different data from the same scene in a
pipelined fashion until all of the model data for the scene has
been rendered to the frame buffer. Then, the contents of the
frame buffer are transmitted to a display controller for
display on a display device.

The PPU 200 may be included in a desktop computer, a
laptop computer, a tablet computer, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant
(PDA), a digital camera, a hand-held electronic device, and
the like. In one embodiment, the PPU 200 is embodied on a
single semiconductor substrate. In another embodiment, the
PPU 200 is included in a system-on-a-chip (SoC) along with
one or more other logic units such as a reduced instruction
set computer (RISC) CPU, a memory management unit
(MMU), a digital-to-analog converter (DAC), and the like.

In one embodiment, the PPU 200 may be included on a
graphics card that includes one or more memory devices 204
such as GDDRS SDRAM. The graphics card may be con-
figured to interface with a PCle slot on a motherboard of a
desktop computer that includes, e.g., a northbridge chipset
and a southbridge chipset. In yet another embodiment, the
PPU 200 may be an integrated graphics processing unit
(1GPU) included in the chipset (i.e., Northbridge) of the
motherboard.

FIG. 5 illustrates an exemplary system 500 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a
system 500 is provided including at least one central pro-
cessor 501 that is connected to a communication bus 502.
The communication bus 502 may be implemented using any
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suitable protocol, such as PCI (Peripheral Component Inter-
connect), PCI-Express, AGP (Accelerated Graphics Port),
HyperTransport, or any other bus or point-to-point commu-
nication protocol(s). The system 500 also includes a main
memory 504. Control logic (software) and data are stored in
the main memory 504 which may take the form of random
access memory (RAM).

The system 500 also includes input devices 512, a graph-
ics processor 506, and a display 508, i.e. a conventional CRT
(cathode ray tube), LCD (liquid crystal display), LED (light
emitting diode), plasma display or the like. User input may
be received from the input devices 512, e.g., keyboard,
mouse, touchpad, microphone, and the like. In one embodi-
ment, the graphics processor 506 may include a plurality of
shader modules, a rasterization module, etc. Each of the
foregoing modules may even be situated on a single semi-
conductor platform to form a graphics processing unit
(GPU).

In the present description, a single semiconductor plat-
form may refer to a sole unitary semiconductor-based inte-
grated circuit or chip. It should be noted that the term single
semiconductor platform may also refer to multi-chip mod-
ules with increased connectivity which simulate on-chip
operation, and make substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple-
mentation. Of course, the various modules may also be
situated separately or in various combinations of semicon-
ductor platforms per the desires of the user.

The system 500 may also include a secondary storage
510. The secondary storage 510 includes, for example, a
hard disk drive and/or a removable storage drive, represent-
ing a floppy disk drive, a magnetic tape drive, a compact
disk drive, digital versatile disk (DVD) drive, recording
device, universal serial bus (USB) flash memory. The
removable storage drive reads from and/or writes to a
removable storage unit in a well-known manner.

Computer programs, or computer control logic algo-
rithms, may be stored in the main memory 504 and/or the
secondary storage 510. Such computer programs, when
executed, enable the system 500 to perform various func-
tions. The memory 504, the storage 510, and/or any other
storage are possible examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the central processor 501, the graphics processor
506, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the central proces-
sor 501 and the graphics processor 506, a chipset (i.e., a
group of integrated circuits designed to work and sold as a
unit for performing related functions, etc.), and/or any other
integrated circuit for that matter.

Still yet, the architecture and/or functionality of the vari-
ous previous figures may be implemented in the context of
a general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired sys-
tem. For example, the system 500 may take the form of a
desktop computer, laptop computer, server, workstation,
game consoles, embedded system, and/or any other type of
logic. Still yet, the system 500 may take the form of various
other devices including, but not limited to a personal digital
assistant (PDA) device, a mobile phone device, a television,
etc.

Further, while not shown, the system 500 may be coupled
to a network (e.g., a telecommunications network, local area
network (LAN), wireless network, wide area network
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(WAN) such as the Internet, peer-to-peer network, cable
network, or the like) for communication purposes.

FIG. 6 is a conceptual diagram of a graphics processing
pipeline 600 implemented by the PPU 200 of FIG. 2, in
accordance with one embodiment. The graphics processing
pipeline 600 is an abstract flow diagram of the processing
steps implemented to generate 2D computer-generated
images from 3D geometry data. As is well-known, pipeline
architectures may perform long latency operations more
efficiently by splitting up the operation into a plurality of
stages, where the output of each stage is coupled to the input
of the next successive stage. Thus, the graphics processing
pipeline 600 receives input data 601 that is transmitted from
one stage to the next stage of the graphics processing
pipeline 600 to generate output data 602. In one embodi-
ment, the graphics processing pipeline 600 may represent a
graphics processing pipeline defined by the OpenGL® API.
As an option, the graphics processing pipeline 600 may be
implemented in the context of the functionality and archi-
tecture of the previous Figures and/or any subsequent
Figure(s).

As shown in FIG. 6, the graphics processing pipeline 600
comprises a pipeline architecture that includes a number of
stages. The stages include, but are not limited to, a data
assembly stage 610, a vertex shading stage 620, a primitive
assembly stage 630, a geometry shading stage 640, a view-
port scale, cull, and clip (VSCC) stage 650, a rasterization
stage 660, a fragment shading stage 670, and a raster
operations stage 680. In one embodiment, the input data 601
comprises commands that configure the processing units to
implement the stages of the graphics processing pipeline 600
and geometric primitives (e.g., points, lines, triangles,
quads, triangle strips or fans, etc.) to be processed by the
stages. The output data 602 may comprise pixel data (i.e.,
color data) that is copied into a frame buffer or other type of
surface data structure in a memory.

The data assembly stage 610 receives the input data 601
that specifies vertex data for high-order surfaces, primitives,
or the like. The data assembly stage 610 collects the vertex
data in a temporary storage or queue, such as by receiving
a command from the host processor that includes a pointer
to a buffer in memory and reading the vertex data from the
buffer. The vertex data is then transmitted to the vertex
shading stage 620 for processing.

The vertex shading stage 620 processes vertex data by
performing a set of operations (i.e., a vertex shader or a
program) once for each of the vertices. Vertices may be, e.g.,
specified as a 4-coordinate vector (i.e., <X, y, Z, W>) asso-
ciated with one or more vertex attributes (e.g., color, texture
coordinates, surface normal, etc.). The vertex shading stage
620 may manipulate individual vertex attributes such as
position, color, texture coordinates, and the like. In other
words, the vertex shading stage 620 performs operations on
the vertex coordinates or other vertex attributes associated
with a vertex. Such operations commonly including lighting
operations (i.e., modifying color attributes for a vertex) and
transformation operations (i.e., modifying the coordinate
space for a vertex). For example, vertices may be specified
using coordinates in an object-coordinate space, which are
transformed by multiplying the coordinates by a matrix that
translates the coordinates from the object-coordinate space
into a world space or a normalized-device-coordinate (NCD)
space. The vertex shading stage 620 generates transformed
vertex data that is transmitted to the primitive assembly
stage 630.

The primitive assembly stage 630 collects vertices output
by the vertex shading stage 620 and groups the vertices into
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geometric primitives for processing by the geometry shading
stage 640. For example, the primitive assembly stage 630
may be configured to group every three consecutive vertices
as a geometric primitive (i.e., a triangle) for transmission to
the geometry shading stage 640. In some embodiments,
specific vertices may be reused for consecutive geometric
primitives (e.g., two consecutive triangles in a triangle strip
may share two vertices). The primitive assembly stage 630
transmits geometric primitives (i.e., a collection of associ-
ated vertices) to the geometry shading stage 640.

The geometry shading stage 640 processes geometric
primitives by performing a set of operations (i.e., a geometry
shader or program) on the geometric primitives. Tessellation
operations may generate one or more geometric primitives
from each geometric primitive. In other words, the geometry
shading stage 640 may subdivide each geometric primitive
into a finer mesh of two or more geometric primitives for
processing by the rest of the graphics processing pipeline
600. The geometry shading stage 640 transmits geometric
primitives to the viewport SCC stage 650.

In one embodiment, the graphics processing pipeline 600
may operate within a streaming multiprocessor and the
vertex shading stage 620, the primitive assembly stage 630,
the geometry shading stage 640, the fragment shading stage
670, and/or hardware/software associated therewith, may
sequentially perform processing operations. Once the
sequential processing operations are complete, in one
embodiment, the viewport SCC stage 650 may utilize the
data. In one embodiment, primitive data processed by one or
more of the stages in the graphics processing pipeline 600
may be written to a cache (e.g. L1 cache, a vertex cache,
etc.). In this case, in one embodiment, the viewport SCC
stage 650 may access the data in the cache. In one embodi-
ment, the viewport SCC stage 650 and the rasterization stage
660 arc implemented as fixed function circuitry.

The viewport SCC stage 650 performs viewport scaling,
culling, and clipping of the geometric primitives. Each
surface being rendered to is associated with an abstract
camera position. The camera position represents a location
of a viewer looking at the scene and defines a viewing
frustum that encloses the objects of the scene. The viewing
frustum may include a viewing plane, a rear plane, and four
clipping planes. Any geometric primitive entirely outside of
the viewing frustum may be culled (i.e., discarded) because
the geometric primitive will not contribute to the final
rendered scene. Any geometric primitive that is partially
inside the viewing frustum and partially outside the viewing
frustum may be clipped (i.e., transformed into a new geo-
metric primitive that is enclosed within the viewing frustum.
Furthermore, geometric primitives may each be scaled based
on a depth of the viewing frustum. All potentially visible
geometric primitives are then transmitted to the rasterization
stage 660.

The rasterization stage 660 converts the 3D geometric
primitives into 2D fragments (e.g. capable of being utilized
for display, etc.). The rasterization stage 660 may be con-
figured to utilize the vertices of the geometric primitives to
setup a set of plane equations from which various attributes
can be interpolated. The rasterization stage 660 may also
compute a coverage mask for a plurality of pixels that
indicates whether one or more sample locations for the pixel
intercept the geometric primitive. In one embodiment,
z-testing may also be performed to determine if the geo-
metric primitive is occluded by other geometric primitives
that have already been rasterized. The rasterization stage 660
generates fragment data (i.e., interpolated vertex attributes
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associated with a particular sample location for each covered
pixel) that are transmitted to the fragment shading stage 670.

The fragment shading stage 670 processes fragment data
by performing a set of operations (i.e., a fragment shader or
a program) on each of the fragments. The fragment shading
stage 670 may generate pixel data (i.e., color values) for the
fragment such as by performing lighting operations or
sampling texture maps using interpolated texture coordi-
nates for the fragment. The fragment shading stage 670
generates pixel data that is transmitted to the raster opera-
tions stage 680.

The raster operations stage 680 may perform various
operations on the pixel data such as performing alpha tests,
stencil tests, and blending the pixel data with other pixel data
corresponding to other fragments associated with the pixel.
When the raster operations stage 680 has finished processing
the pixel data (i.e., the output data 602), the pixel data may
be written to a render target such as a frame buffer, a color
buffer, or the like.

It will be appreciated that one or more additional stages
may be included in the graphics processing pipeline 600 in
addition to or in lieu of one or more of the stages described
above. Various implementations of the abstract graphics
processing pipeline may implement different stages. Fur-
thermore, one or more of the stages described above may be
excluded from the graphics processing pipeline in some
embodiments (such as the geometry shading stage 640).
Other types of graphics processing pipelines are contem-
plated as being within the scope of the present disclosure.
Furthermore, any of the stages of the graphics processing
pipeline 600 may be implemented by one or more dedicated
hardware units within a graphics processor such as PPU 200.
Other stages of the graphics processing pipeline 600 may be
implemented by programmable hardware units such as the
SM 340 of the PPU 200.

The graphics processing pipeline 600 may be imple-
mented via an application executed by a host processor, such
as a CPU 501. In one embodiment, a device driver may
implement an application programming interface (API) that
defines various functions that can be utilized by an appli-
cation in order to generate graphical data for display. The
device driver is a software program that includes a plurality
of instructions that control the operation of the PPU 200. The
API provides an abstraction for a programmer that lets a
programmer utilize specialized graphics hardware, such as
the PPU 200, to generate the graphical data without requir-
ing the programmer to utilize the specific instruction set for
the PPU 200. The application may include an API call that
is routed to the device driver for the PPU 200. The device
driver interprets the API call and performs various opera-
tions to respond to the API call. In some instances, the
device driver may perform operations by executing instruc-
tions on the CPU 501. In other instances, the device driver
may perform operations, at least in part, by launching
operations on the PPU 200 utilizing an input/output interface
between the CPU 501 and the PPU 200. In one embodiment,
the device driver is configured to implement the graphics
processing pipeline 600 utilizing the hardware of the PPU
200.

Various programs may be executed within the PPU 200 in
order to implement the various stages of the graphics
processing pipeline 600. For example, the device driver may
launch a kernel on the PPU 200 to perform the vertex
shading stage 620 on one SM 340 (or multiple SMs 340).
The device driver (or the initial kernel executed by the PPU
200) may also launch other kernels on the PPU 200 to
perform other stages of the graphics processing pipeline
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600, such as the geometry shading stage 640 and the
fragment shading stage 670. In addition, some of the stages
of'the graphics processing pipeline 600 may be implemented
on fixed unit hardware such as a rasterizer or a data
assembler implemented within the PPU 200. It will be
appreciated that results from one kernel may be processed
by one or more intervening fixed function hardware units
before being processed by a subsequent kernel on an SM
340.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of the present application should not be limited by
any of the above-described exemplary embodiments, but
should be defined only in accordance with the following and
later-submitted claims and their equivalents.

What is claimed is:

1. A method, comprising:

identifying a three-dimensional (3D) position for a primi-

tive fragment in a 3D coordinate space;
calculating a localized scale for discretization of the 3D
position based on gradients at the 3D position;

calculating a discretized position based on the 3D position
and the localized scale, wherein the discretized position
is constant within a region of the 3D coordinate space
proximate the 3D position, the region having a size in
accordance with the localized scale;

providing the discretized position as an input to a hash

function to produce a hash value;

sampling, by a graphics processing unit (GPU), an attri-

bute associated with the primitive fragment to produce
an alpha value; and

generating, by the GPU, graphics data for a pixel asso-

ciated with the primitive fragment based on an alpha
test that compares the alpha value to the hash value as
an alpha threshold.

2. The method of claim 1, wherein the 3D coordinate
space is object space.

3. The method of claim 1, wherein the 3D coordinate
space is world space.

4. The method of claim 1, wherein the 3D coordinate
space is texture space.

5. The method of claim 1, wherein calculating the local-
ized scale comprises:

determining a maximum gradient scalar of the gradients at

the 3D position; and

calculating the localized scale based on the maximum

gradient scalar and a hash scale value.

6. The method of claim 5, wherein calculating the dis-
cretized position comprises:

multiplying component values of the 3D position by the

localized scale.

7. The method of claim 1, wherein calculating the local-
ized scale comprises:

calculating a maximum gradient vector of the gradients at

the 3D position; and

calculating the localized scale based on the maximum

gradient vector and a hash scale value.

8. The method of claim 7, wherein calculating the dis-
cretized position comprises:

multiplying component values of the 3D position by

corresponding components of the localized scale.

9. A system, comprising:

a processor coupled to a memory, the processor config-

ured to:
identify a three-dimensional (3D) position for a primi-
tive fragment in a 3D coordinate space;
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calculate a localized scale for discretization of the 3D
position based on gradients at the 3D position;

calculate a discretized position based on the 3D posi-
tion and the localized scale, wherein the discretized
position is constant within a region of the 3D coor-
dinate space proximate the 3D position, the region
having a size in accordance with the localized scale;

provide the discretized position as an input to a hash
function to produce a hash value;

sample an attribute associated with the primitive frag-
ment to produce an alpha value; and

generate graphics data for a pixel associated with the
primitive fragment based on an alpha test that com-
pares the alpha value to the hash value as an alpha
threshold.

10. The system of claim 9, wherein the 3D coordinate
space is one of: an object space, a world space, a texture
space.

11. The system of claim 9, wherein to calculate the
localized scale, the processor is further configured to:

determine a maximum gradient scalar of the gradients at
the 3D position; and

calculate the localized scale based on the maximum
gradient scalar and a hash scale value.

12. The system of claim 11, wherein to calculate the
discretized position, the processor is further configured to:

multiply each component value of the 3D position by the
localized scale.
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13. A non-transitory, computer-readable storage medium
storing instructions that, when executed by a processor,
cause the processor to:

identify a three-dimensional (3D) position for a primitive

fragment in a 3D coordinate space;
calculate a localized scale for discretization of the 3D
position based on gradients at the 3D position;

calculate a discretized position based on the 3D position
and the localized scale, wherein the discretized position
is constant within a region of the 3D coordinate space
proximate the 3D position, the region having a size in
accordance with the localized scale;

provide the discretized position as an input to a hash

function to produce a hash value;

sample an attribute associated with the primitive fragment

to produce an alpha value; and

generate graphics data for a pixel associated with the

primitive fragment based on an alpha test that compares
the alpha value to the hash value as an alpha threshold.

14. The non-transitory, computer-readable storage
medium of claim 13, wherein to calculate the localized
scale, the instructions cause the processor to:

determine a maximum gradient scalar of the gradients at

the 3D position; and

calculate the localized scale based on the maximum

gradient scalar and a hash scale value.

15. The non-transitory, computer-readable storage
medium of claim 14, wherein to calculate the discretized
position, the instructions cause the processor to:

multiply each component value of the 3D position by the

localized scale.



