a2 United States Patent

Wyman et al.

US010055883B2

US 10,055,883 B2
Aug. 21, 2018

(10) Patent No.:
45) Date of Patent:

(54) FRUSTUM TESTS FOR SUB-PIXEL

(58) Field of Classification Search

SHADOWS None
See application file for complete search history.
71) Applicant: NVIDIA C tion, Santa Clara, CA
(71) Applican) orporation, Santa Clara, (56) References Cited
U.S. PATENT DOCUMENTS
(72) Inventors: Christopher Ryan Wyman, Redmond,
WA (US); Aaron Eliot Lefohn, 2003/0112237 Al* 6/2003 Corbetta GO6T 15/60
Kirkland, WA (US); Anjul Patney, 345/426
Kirkland, WA (US) 2004/0169651 Al* 9/2004 Everittcccceeee. GO6T 15/60
345/426
(73) Assignee: NVIDIA CORPORATION, Santa 2011/0249011 Al* 10/2011 Lalondecc.c....... GO6T 1/20
Clara, CA (US) 2015/0310660 AL* 10/2015 Mogi T
ogilefsky GO6T 13/40
. 345/422
(*) Notice: Subject. to any dlsclalmer,. the term of this 2016/0005213 Al* 1/2016 Lecocqococovrvnnnt GO6T 15/60
patent is extended or adjusted under 35 345/419
U.S.C. 154(b) by 240 days. 2016/0125642 Al* 52016 Zhucccoovvevveenee. GO6T 15/60
345/421
(21) Appl. No.: 14/989,585
OTHER PUBLICATIONS
(22) Filed: Jan. 6, 2016
AilaT. etal., “Alias-Free Shadow Maps,” Eurographics Symposium
(65) Prior Publication Data on Rendering, Jun. 2004, pp. 1-6.
US 2016/0203635 A1 Jul. 14, 2016 (Continued)
Primary Examiner — James A Thompson
Related U.S. Application Data (74) Attorney, Agent, or Firm — Zilka-Kotab, P.C.
.. Lo 57 ABSTRACT
(60) Provisional application No. 62/101,324, filed on Jan. 7 .
3. 2015. A method, computer readable medium, and system are
’ disclosed for rendering shadows. A frustum projected from
(51) Int.CL a grid cell corresponding to a light source in light-space is
GO6T 15/60 (2006.01) defined and a graphics primitive is determined to intersect
GO6T 15/50 (2011.01) the frustum. A light-space visibility buffer is accessed to
GO6T 15/80 (2011.01) obtain a set of pixel fragment footprints corresponding to the
(52) US. CL frustum and it is identified whether each pixel fragment
CPC GO6T 15/60 (2013.01); GO6T 15/503 footprint of the pixel fragment footprints is shadowed by the

(2013.01); GO6T 15/506 (2013.01); GogT ~ &raphics primitive.

15/80 (2013.01) 20 Claims, 15 Drawing Sheets

PPU 200

/0 Unit |,
205

.| Host Interface Unit
210
T

Front End Unit
215
Scheduler Unit
220

1
Work Distribution Unit

. SystemBusg02

.
‘ Hub ‘

225
KR

1 3.

TIT

4.

GPC
250(X)

XBar 270
rYYy

]

[\
Memory h E\
204U) |1} Memary Partition Unit 280(U) [;
i
il

US 10,055,883 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Pan, M. et al., “Fast, Sub-pixel Antialiased Shadow Maps,” Com-
puter Graphics Forum, vol. 28, No. 7, Oct. 2009, pp. 1927-1934.
Sintorn, E. et al., “Sample Based Visibility for Soft Shadows using
Alias-free Shadow Maps,” Eurographics 2008, vol. 27, No. 4, 2008,
pp. 1-8.

Arvo, J., “Alias-Free Shadow Maps using Graphics Hardware,”
Journal of Graphics Tools, 2007, vol. 12, No. 1, pp. 47-59.
Johnson, G. et al. “The Irregular Z-Buffer: Hardware Acceleration
for Irregular Data Structures,” ACM Transactions on Graphics, Oct.
2005, vol. 24, No. 4, pp. 1462-1482.

* cited by examiner

U.S. Patent Aug. 21,2018 Sheet 1 of 15 US 10,055,883 B2

E 100

Transform a pixel fragment
from screen space to light-
space to generate a pixel
fragment footprint
110

l

Determine a location within a
light-space grid corresponding to
a light source that maps to the
pixel fragment footprint
120

l

Store an identifier of the pixel
fragment footprint in a light-
space visibility buffer
associated with the location
130

U.S. Patent Aug. 21,2018 Sheet 2 of 15 US 10,055,883 B2

e 140

Define a frustum projected
from a grid cell corresponding
to a light source in light-space

150

l

Determine a graphics
primitive intersects the
frustum
160

|

Access a light-space visibility buffer
to obtain a set of screen-space
pixels corresponding to the frustum
170

l

Determine if each of the screen-
space pixels is shadowed by the
graphics primitive
180

U.S. Patent Aug. 21,2018 Sheet 3 of 15 US 10,055,883 B2

PN PPU 200

17O Unit . Host Interface Unit
205 210
'
y
Front End Unit
215
4
Y
Scheduler Unit
220

Fy i

Y Y
Work Distribution Unit Hub
225 230

i A

Y v

4
Y

- — — —

System Bus 202

V;%
XBar 270
YY)
v

* Memory Partition Unit 280(U) g

U.S. Patent Aug. 21,2018 Sheet 4 of 15 US 10,055,883 B2

To/From XBar

270
&
GPC 250 i
77777 . Pipeline Manager .« . PROP .
310 315
A A
| v h
' .. MPC ,§ !
330 ||
A ¥
Primitive ! |
Engine |
|
335 - § A'(\g .| Raster Engine
T ; r 325
||
Yy, . il
Texture | b
TPC 320(V) -
LL—.__._—_Z—_.—_.'?.‘__.—__.T__.‘_.—._—._—__‘J A
\ :
WDX
MMU 390 na
A
\ A\
To/From XBar To/From XBar
270 270

Fig. 34

U.S. Patent Aug. 21,2018 Sheet 5 of 15 US 10,055,883 B2

From XBar 270

Memory Partition Unit 280

ROP 350

¥
ROP Manager
355

CROP ZROP To
352 354 XBar 270

A A

L2 XBar 365

L2 360

:

Memory Interface
370

To
XBar 270

1 4

A 4

To Memory 204

Fig. 3B

U.S. Patent Aug. 21,2018 Sheet 6 of 15

US 10,055,883 B2

SM 340

Instruction Cache 405

A
A4

Scheduler Unit 410(K) ¥

Dispatch 415 Dispatch 415 | |/}

Register File 420

k4 h 4

LL"“"""" . U — [N I R |
Y

A

X X A

Y \d A4
Core {| SFU [H LSU lﬁ
450(L-1) |y | 452(M-1) |1 | 454(N-1) |y
piaseiaell | L™/ % — 3 R T T T

Interconnect Network 480

h
Y

Shared Memory/L1 Cache 470

A

Fig. 4

U.S. Patent

Aug. 21,2018 Sheet 7 of 15 US 10,055,883 B2
Light Source 500
505 =

Pixel Grid
520

Light-Space Grid
510

Light Sample
503

Fig. 54

U.S. Patent Aug. 21,2018 Sheet 8 of 15 US 10,055,883 B2

Light Source 500

505 -~

Light-Space Grid

Light Sample

Pixel Grid 503

520

U.S. Patent Aug. 21,2018 Sheet 9 of 15 US 10,055,883 B2

Light Source
505

Light-Space Grid
510

Grid Cell

511

Light Grid Cell
List
501

|

’ |

] ; ' |

I TN -5 W B it T ' | Light Grid Cell
i W viuviuivihiuiiaiiuiriih | List
1 EAS. RE— . 502
; ll/ p’i i,#‘“’* §5 f”‘@ pﬁ \y

! g r

! S J— I

1 \ P? W@ g@ f“@ Pgﬂg“‘fjg S

| A L |

1 \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rd

| Light-Space Visibility Buffer }

| 525 |

Fig. 5C

U.S. Patent Aug. 21,2018 Sheet 10 of 15 US 10,055,883 B2

Grid Cell

J 532

b—

Light-Space Grid
510

/_.Ji Light Grid Cell

List

Light Grid Cell
List
522

IR VISR N I P RpU)- WPV U S

G10 V10
Eye-space G-buffer Shadow Mask Buffer
240 243

Fig. 5D

U.S. Patent Aug. 21,2018 Sheet 11 of 15 US 10,055,883 B2

S 600

Generate a z-buffer
610

l

Generate a light-space visibility
buffer for a light source
620

l

Generate a shadow mask buffer
based on the light-space
visibility buffer
630

l

Shade the pixels based on the
shadow mask buffer
640

'

End

.

Fig. 6

U.S. Patent Aug. 21,2018 Sheet 12 of 15 US 10,055,883 B2

Light Source
0

9 700

Eye
715

Cell Frustum
710

Fig. 74

Primitive
730

rid Cell Frustum
710

Projected Primitive Ed
740 |

uQuad
725

U.S. Patent Aug. 21,2018 Sheet 13 of 15 US 10,055,883 B2

Light Source
705

uQuad
725

. Fig, 7C
Light Source

705

Sample uQuad
721

2 Sample uQuad

Fig. 7D

U.S. Patent Aug. 21,2018 Sheet 14 of 15 US 10,055,883 B2

CE 750

Generate a z-buffer
610

'

Bound the visible regions of the
scene
712

l

Generate a light-space visibility
buffer for a light source
620

'

Cull objects in light-space
122

l

Generate a shadow mask buffer based
on the light-space visibility buffer
630

!

Shade the pixels based on the
shadow mask buffer
640

US 10,055,883 B2

Sheet 15 of 15

Aug. 21, 2018

U.S. Patent

800

RO
EPNT LR OEENLEEE N

CENTRAL
PROCESSOR

R

A A]

B A A A0

801

MAIN MEMORY
804

R RRRR AR AR RN
R KR KKK

R R AR AR AN AR R

O OR N AR KRR K

5

SECONDARY
STORAGE
810

GRAPHICS
PROCESSOR
806

DISPLAY
808

£]
o o
>
o)

US 10,055,883 B2

1
FRUSTUM TESTS FOR SUB-PIXEL
SHADOWS

CLAIM OF PRIORITY

This application claims the benefit of U.S. Provisional
Application No. 62/101,324 titled “Fustrum Tests For Sub-
Pixel Shadows,” filed Jan. 8, 2015, the entire contents of
which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to three-dimensional graph-
ics, and more particularly to rendering shadows.

BACKGROUND

The ability to efficiently render anti-aliased shadows is
important to produce realistic and high-quality images.
Rendering anti-aliased hard shadows is complex and often
presents a heavy computational workload to a graphics
processor. Conventional shadow volume techniques gener-
ate pixel-accurate shadows by constructing and testing the
boundary of shadowed regions. Rendering the invisible
shadow volumes consumes significant computing resources.
Conventional shadow map techniques present a lower work-
load, but the regular sampling of visibility causes spatial and
temporal aliasing. Thus, there is a need for addressing these
issues and/or other issues associated with the prior art.

SUMMARY

A method, computer readable medium, and system are
disclosed for rendering shadows. A frustum projected from
a grid cell corresponding to a light source in light-space is
defined and a graphics primitive is determined to intersect
the frustum. A light-space visibility buffer is accessed to
obtain a set of pixel fragment footprints corresponding to the
frustum and it is identified whether each pixel fragment
footprint of the pixel fragment footprints is shadowed by the
graphics primitive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates a flowchart of a method for generating
a light-space visibility buffer, in accordance with one
embodiment;

FIG. 1B illustrates a flowchart of a method for using a
light-space visibility buffer to render shadows, in accor-
dance with one embodiment;

FIG. 2 illustrates a parallel processing unit, in accordance
with one embodiment;

FIG. 3A illustrates a general processing cluster of the
parallel processing unit of FIG. 2, in accordance with one
embodiment;

FIG. 3B illustrates a partition unit of the parallel process-
ing unit of FIG. 2, in accordance with one embodiment;

FIG. 4 illustrates the streaming multi-processor of FIG.
3A, in accordance with one embodiment;

FIG. 5A illustrates a mapping of pixels to a light-space
grid, in accordance with one embodiment;

FIG. 5B illustrates a first object that occludes a second
object in light-space, in accordance with one embodiment;

FIG. 5C illustrates the light-space grid and a light-space
visibility buffer encoded as an IZB, in accordance with one
embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5D illustrates the light-space visibility buffer data
structure and a corresponding eye-space G-buffer, in accor-
dance with one embodiment;

FIG. 6 illustrates a flowchart of a method for rendering
sub-pixel shadows, in accordance with one embodiment;

FIG. 7A is a conceptual diagram of grid cell frustum
corresponding to a light source to a pixel pQuad, in accor-
dance with one embodiment;

FIG. 7B is a conceptual diagram of a primitive intersect-
ing the grid cell frustum of FIG. 7A, in accordance with one
embodiment;

FIG. 7C is a conceptual diagram of grid cell frustum
corresponding to a light source projected to a pixel pQuad as
a tangent plane of a pixel fragment changes, in accordance
with one embodiment;

FIG. 7D is a conceptual diagram of sample locations
within the pixel pQuad of FIG. 7C as the tangent plane of the
pixel fragment changes, in accordance with one embodi-
ment;

FIG. 7E illustrates another flowchart of a method for
rendering sub-pixel shadows, in accordance with one
embodiment; and

FIG. 8 illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented.

DETAILED DESCRIPTION

Anti-aliased hard shadows may be rendered in a real-time
using irregular z-buffers (IZBs). In one embodiment, 32
samples per pixel are used for sub-pixel accuracy, at roughly
twice the computational cost of using a single sample. The
irregular z-buffer shadow rendering technique imposes no
constraints on light, camera or geometry, allowing fully
dynamic scenes without precomputation. Unlike conven-
tional shadow map techniques, no spatial or temporal alias-
ing is introduced, and sub-pixel shadows from grass or wires
may be smoothly animated. Shadow mapping uses a light-
space z-buffer; 1ZBs instead use a light-space buffer, with
each texel in the light-space buffer storing references all
pixels potentially occluded by geometry in the particular
texel. In one embodiment, each texel stores a linked list of
the pixels.

FIG. 1A illustrates a flowchart of a method 100 for
generating a light-space visibility buffer, in accordance with
one embodiment. A light-space visibility buffer is associated
with a two-dimensional light-space grid corresponding to a
light source in a scene. For each grid cell in the light-space
grid, the light-space visibility buffer stores a set of rendered
pixel fragments that cover the grid cell when projected from
screen-space into light-space. 3D graphics primitives in the
scene are rendered to produce a 2D image in screen-space.
A pixel fragment is an intersection of a graphics primitive
and the screen-space pixel (i.e., the portion of the screen-
space pixel that is covered by the graphics primitive). In one
embodiment, the identifier is a position of the screen-space
pixel or a pointer to the screen-space pixel. In the context of
the following description, the pixel fragment is an intersec-
tion of a graphics primitive and the screen-space pixel (i.e.,
the portion of the screen-space pixel that is covered by the
graphics primitive). In the context of the following descrip-
tion, rendered pixel fragments are pixels having at least one
sample location within the pixel that is covered by a graphics
primitive.

At step 110, a pixel fragment is transformed from screen-
space to light-space to generate a pixel fragment footprint.
In one embodiment, the pixel fragment that is transformed

US 10,055,883 B2

3

is the entire pixel including all of the samples within the
pixel. At step 120, a location within a grid cell within a
light-space grid corresponding to a light source is deter-
mined that maps to the pixel fragment footprint. In one
embodiment, a light ray is projected from the pixel fragment
footprint to the grid cell within the light-space grid. The
point in the light-space grid that is intersected by the light
ray is a light sample. In one embodiment, a three-dimen-
sional frustum is defined by the grid cell and a base of the
frustum is formed by the pixel fragment footprint.

At step 130, an identifier of the pixel fragment footprint
is stored in a light-space visibility buffer associated with the
location. One or more pixel fragment footprint identifiers
may be stored in a location of the light-space visibility buffer
that is associated with one grid cell. In one embodiment, the
identifier is a position of the screen-space pixel or a pointer
to the screen-space pixel that was transformed to generate
the pixel fragment footprint. In one embodiment, the light-
space grid represents a visibility map and a grid cell stores
an index to a list of pixel fragment footprint identifiers. In
one embodiment, a set of screen-space pixels corresponding
to the frustum is specified by one or more identifiers of the
pixel fragment footprints that are stored in the location. In
one embodiment, the light-space visibility buffer is an IZB
that stores a set of identifiers for each grid cell, where the set
of identifiers indicates pixels that are at least partially
covered by a primitive that is potentially in shadow. A pixel
fragment is in shadow when a graphics primitive is located
between the grid cell and the pixel fragment footprint,
thereby preventing the light source from reaching the pixel
fragment.

FIG. 1B illustrates a flowchart of a method 140 for using
a light-space visibility buffer to render shadows, in accor-
dance with one embodiment. At step 150, a frustum pro-
jected from a grid cell corresponding to a light source in
light-space is defined. In one embodiment, the grid cell is
included in a light-space grid. At step 160, a graphics
primitive is determined to intersect the frustum. In one
embodiment, a graphics primitive is associated with primi-
tive attributes as well as a plurality of vertices, each vertex
having one or more vertex attributes (e.g., color, texture
coordinates, normal vector, etc.). A graphics primitive that
intersects the frustum may cast a shadow on one or more
pixel fragments corresponding to the grid cell, where each
potentially shadowed pixel fragment is associated with a
pixel fragment footprint identifier.

At step 170, a light-space visibility buffer is accessed to
obtain a set of pixel fragment footprints corresponding to the
frustum. At step 180, it is determined if each of the pixel
fragment footprints is shadowed by the graphics primitive.
In one embodiment, a shadow mask buffer is updated for
each pixel fragment footprints that is shadowed by the
graphics primitive. The shadow mask buffer may indicate
whether each sample within a screen-space pixel from which
the pixel fragment footprint is generated is shadowed when
multiple samples are included within each pixel.

In one embodiment, N sample locations are defined per
pixel. For each graphics primitive being rendered, N color
values are produced for each pixel that is fully covered by
the primitive. The N color values correspond to the N sample
locations. In some embodiments, each color value may also
be associated with a transparency value, shadow value,
and/or a depth value. The values associated with a given
sample location may be written to a corresponding frame
buffer at a location corresponding to the pixel. Each frame
buffer may include a plurality of values included in a 2D
array sized based on a resolution of a display screen (or at

10

15

20

25

30

40

45

50

55

60

65

4

least a portion of the display screen). In one embodiment, a
resolution of the shadow mask buffer equals a resolution of
the frame buffer.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which
the foregoing framework may or may not be implemented,
per the desires of the user. It should be strongly noted that
the following information is set forth for illustrative pur-
poses and should not be construed as limiting in any manner.
Any of the following features may be optionally incorpo-
rated with or without the exclusion of other features
described.

Parallel Processing Architecture

FIG. 2 illustrates a parallel processing unit (PPU) 200, in
accordance with one embodiment. In one embodiment, the
PPU 200 is a multi-threaded processor that is implemented
on one or more integrated circuit devices. The PPU 200 is a
latency hiding architecture designed to process a large
number of threads in parallel. A thread (i.e., a thread of
execution) is an instantiation of a set of instructions config-
ured to be executed by the PPU 200. In one embodiment, the
PPU 200 is a graphics processing unit (GPU) configured to
implement a graphics rendering pipeline for processing
three-dimensional (3D) graphics data in order to generate
two-dimensional (2D) image data for display on a display
device such as a liquid crystal display (LCD) device. In
other embodiments, the PPU 200 may be utilized for per-
forming general-purpose computations. While one exem-
plary parallel processor is provided herein for illustrative
purposes, it should be strongly noted that such processor is
set forth for illustrative purposes only, and that any proces-
sor may be employed to supplement and/or substitute for the
same.

As shown in FIG. 2, the PPU 200 includes an Input/
Output (I/0) unit 205, a host interface unit 210, a front end
unit 215, a scheduler unit 220, a work distribution unit 225,
a hub 230, a crossbar (Xbar) 270, one or more general
processing clusters (GPCs) 250, and one or more partition
units 280. The PPU 200 may be connected to a host
processor or other peripheral devices via a system bus 202.
The PPU 200 may also be connected to a local memory
comprising a number of memory devices 204. In one
embodiment, the local memory may comprise a number of
dynamic random access memory (DRAM) devices.

The 1/O unit 205 is configured to transmit and receive
communications (i.e., commands, data, etc.) from a host
processor (not shown) over the system bus 202. The /O unit
205 may communicate with the host processor directly via
the system bus 202 or through one or more intermediate
devices such as a memory bridge. In one embodiment, the
1/O unit 205 implements a Peripheral Component Intercon-
nect Express (PCle) interface for communications over a
PCle bus. In alternative embodiments, the I/O unit 205 may
implement other types of well-known interfaces for com-
municating with external devices.

The I/O unit 205 is coupled to a host interface unit 210
that decodes packets received via the system bus 202. In one
embodiment, the packets represent commands configured to
cause the PPU 200 to perform various operations. The host
interface unit 210 transmits the decoded commands to
various other units of the PPU 200 as the commands may
specify. For example, some commands may be transmitted
to the front end unit 215. Other commands may be trans-
mitted to the hub 230 or other units of the PPU 200 such as
one or more copy engines, a video encoder, a video decoder,

US 10,055,883 B2

5

a power management unit, etc. (not explicitly shown). In
other words, the host interface unit 210 is configured to route
communications between and among the various logical
units of the PPU 200.

In one embodiment, a program executed by the host
processor encodes a command stream in a buffer that pro-
vides workloads to the PPU 200 for processing. A workload
may comprise a number of instructions and data to be
processed by those instructions. The buffer is a region in a
memory that is accessible (i.e., read/write) by both the host
processor and the PPU 200. For example, the host interface
unit 210 may be configured to access the buffer in a system
memory connected to the system bus 202 via memory
requests transmitted over the system bus 202 by the I/O unit
205. In one embodiment, the host processor writes the
command stream to the buffer and then transmits a pointer
to the start of the command stream to the PPU 200. The host
interface unit 210 provides the front end unit 215 with
pointers to one or more command streams. The front end
unit 215 manages the one or more streams, reading com-
mands from the streams and forwarding commands to the
various units of the PPU 200.

The front end unit 215 is coupled to a scheduler unit 220
that configures the various GPCs 250 to process tasks
defined by the one or more streams. The scheduler unit 220
is configured to track state information related to the various
tasks managed by the scheduler unit 220. The state may
indicate which GPC 250 a task is assigned to, whether the
task is active or inactive, a priority level associated with the
task, and so forth. The scheduler unit 220 manages the
execution of a plurality of tasks on the one or more GPCs
250.

The scheduler unit 220 is coupled to a work distribution
unit 225 that is configured to dispatch tasks for execution on
the GPCs 250. The work distribution unit 225 may track a
number of scheduled tasks received from the scheduler unit
220. In one embodiment, the work distribution unit 225
manages a pending task pool and an active task pool for each
of the GPCs 250. The pending task pool may comprise a
number of slots (e.g., 16 slots) that contain tasks assigned to
be processed by a particular GPC 250. The active task pool
may comprise a number of slots (e.g., 4 slots) for tasks that
are actively being processed by the GPCs 250. As a GPC 250
finishes the execution of a task, that task is evicted from the
active task pool for the GPC 250 and one of the other tasks
from the pending task pool is selected and scheduled for
execution on the GPC 250. If an active task has been idle on
the GPC 250, such as while waiting for a data dependency
to be resolved, then the active task may be evicted from the
GPC 250 and returned to the pending task pool while
another task in the pending task pool is selected and sched-
uled for execution on the GPC 250.

The work distribution unit 225 communicates with the
one or more GPCs 250 via a XBar 270. The XBar 270 is an
interconnect network that couples many of the units of the
PPU 200 to other units of the PPU 200. For example, the
XBar 270 may be configured to couple the work distribution
unit 225 to a particular GPC 250. Although not shown
explicitly, one or more other units of the PPU 200 are
coupled to the host unit 210. The other units may also be
connected to the XBar 270 via a hub 230.

The tasks are managed by the scheduler unit 220 and
dispatched to a GPC 250 by the work distribution unit 225.
The GPC 250 is configured to process the task and generate
results. The results may be consumed by other tasks within
the GPC 250, routed to a different GPC 250 via the XBar
270, or stored in the memory 204. The results can be written

10

15

20

25

30

35

40

45

50

55

60

65

6

to the memory 204 via the partition units 280, which
implement a memory interface for reading and writing data
to/from the memory 204. In one embodiment, the PPU 200
includes a number U of partition units 280 that is equal to the
number of separate and distinct memory devices 204
coupled to the PPU 200. A partition unit 280 will be
described in more detail below in conjunction with FIG. 3B.

In one embodiment, a host processor executes a driver
kernel that implements an application programming inter-
face (API) that enables one or more applications executing
on the host processor to schedule operations for execution
on the PPU 200. An application may generate instructions
(i.e., API calls) that cause the driver kernel to generate one
or more tasks for execution by the PPU 200. The driver
kernel outputs tasks to one or more streams being processed
by the PPU 200. Each task may comprise one or more
groups of related threads, referred to herein as a warp. A
thread block may refer to a plurality of groups of threads
including instructions to perform the task. Threads in the
same group of threads may exchange data through shared
memory. In one embodiment, a group of threads comprises
32 related threads.

FIG. 3A illustrates a GPC 250 of the PPU 200 of FIG. 2,
in accordance with one embodiment. As shown in FIG. 3A,
each GPC 250 includes a number of hardware units for
processing tasks. In one embodiment, each GPC 250
includes a pipeline manager 310, a pre-raster operations unit
(PROP) 315, a raster engine 325, a work distribution cross-
bar (WDX) 380, a memory management unit (MMU) 390,
and one or more Texture Processing Clusters (TPCs) 320. It
will be appreciated that the GPC 250 of FIG. 3A may include
other hardware units in lieu of or in addition to the units
shown in FIG. 3A.

In one embodiment, the operation of the GPC 250 is
controlled by the pipeline manager 310. The pipeline man-
ager 310 manages the configuration of the one or more TPCs
320 for processing tasks allocated to the GPC 250. In one
embodiment, the pipeline manager 310 may configure at
least one of the one or more TPCs 320 to implement at least
a portion of a graphics rendering pipeline. For example, a
TPC 320 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 340. The pipeline manager 310 may also be configured
to route packets received from the work distribution unit 225
to the appropriate logical units within the GPC 250. For
example, some packets may be routed to fixed function
hardware units in the PROP 315 and/or raster engine 325
while other packets may be routed to the TPCs 320 for
processing by the primitive engine 335 or the SM 340.

The PROP unit 315 is configured to route data generated
by the raster engine 325 and the TPCs 320 to a Raster
Operations (ROP) unit in the partition unit 280, described in
more detail below. The PROP unit 315 may also be config-
ured to perform optimizations for color blending, organize
pixel data, perform address translations, and the like.

The raster engine 325 includes a number of fixed function
hardware units configured to perform various raster opera-
tions. In one embodiment, the raster engine 325 includes a
setup engine, a course raster engine, a culling engine, a
clipping engine, a fine raster engine, and a tile coalescing
engine. The setup engine receives transformed vertices and
generates plane equations associated with the graphics
primitive defined by the vertices. The plane equations are
transmitted to the coarse raster engine to generate coverage
information (e.g., an X,y coverage mask for a tile) for the
primitive. The output of the coarse raster engine may
transmitted to the culling engine where fragments associated

US 10,055,883 B2

7

with the primitive that fail a z-test are culled, and transmitted
to a clipping engine where fragments lying outside a view-
ing frustum are clipped. Those fragments that survive clip-
ping and culling may be passed to a fine raster engine to
generate attributes for the pixel fragments based on the plane
equations generated by the setup engine. The output of the
raster engine 380 comprises fragments to be processed, for
example, by a fragment shader implemented within a TPC
320.

Each TPC 320 included in the GPC 250 includes an
M-Pipe Controller (MPC) 330, a primitive engine 335, an
SM 340, and one or more texture units 345. The MPC 330
controls the operation of the TPC 320, routing packets
received from the pipeline manager 310 to the appropriate
units in the TPC 320. For example, packets associated with
a vertex may be routed to the primitive engine 335, which
is configured to fetch vertex attributes associated with the
vertex from the memory 204. In contrast, packets associated
with a shader program may be transmitted to the SM 340.

In one embodiment, the texture units 345 are configured
to load texture maps (e.g., a 2D array of texels) from the
memory 204 and sample the texture maps to produce
sampled texture values for use in shader programs executed
by the SM 340. The texture units 345 implement texture
operations such as filtering operations using mip-maps (i.e.,
texture maps of varying levels of detail). In one embodi-
ment, each TPC 320 includes four (4) texture units 345.

The SM 340 comprises a programmable streaming pro-
cessor that is configured to process tasks represented by a
number of threads. Each SM 340 is multi-threaded and
configured to execute a plurality of threads (e.g., 32 threads)
from a particular group of threads concurrently. In one
embodiment, the SM 340 implements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
in a group of threads (i.e., a warp) is configured to process
a different set of data based on the same set of instructions.
All threads in the group of threads execute the same instruc-
tions. In another embodiment, the SM 340 implements a
SIMT (Single-Instruction, Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions, but where individual threads in the group of
threads are allowed to diverge during execution. In other
words, when an instruction for the group of threads is
dispatched for execution, some threads in the group of
threads may be active, thereby executing the instruction,
while other threads in the group of threads may be inactive,
thereby performing a no-operation (NOP) instead of execut-
ing the instruction. The SM 340 may be described in more
detail below in conjunction with FIG. 4.

The MMU 390 provides an interface between the GPC
250 and the partition unit 280. The MMU 390 may provide
translation of virtual addresses into physical addresses,
memory protection, and arbitration of memory requests. In
one embodiment, the MMU 390 provides one or more
translation lookaside buffers (TLBs) for improving transla-
tion of virtual addresses into physical addresses in the
memory 204.

FIG. 3B illustrates a partition unit 280 of the PPU 200 of
FIG. 2, in accordance with one embodiment. As shown in
FIG. 3B, the partition unit 280 includes a Raster Operations
(ROP) unit 350, a level two (L.2) cache 360, a memory
interface 370, and an L2 crossbar (XBar) 365. The memory
interface 370 is coupled to the memory 204. Memory
interface 370 may implement 16, 32, 64, 128-bit data buses,
or the like, for high-speed data transfer. In one embodiment,
the PPU 200 comprises U memory interfaces 370, one

20

30

40

45

50

55

8

memory interface 370 per partition unit 280, where each
partition unit 280 is connected to a corresponding memory
device 204. For example, PPU 200 may be connected to up
to U memory devices 204, such as graphics double-data-
rate, version 5, synchronous dynamic random access
memory (GDDRS SDRAM). In one embodiment, the
memory interface 370 implements a DRAM interface and U
is equal to 6.

In one embodiment, the PPU 200 implements a multi-
level memory hierarchy. The memory 204 is located off-chip
in SDRAM coupled to the PPU 200. Data from the memory
204 may be fetched and stored in the L2 cache 360, which
is located on-chip and is shared between the various GPCs
250. As shown, each partition unit 280 includes a portion of
the L.2 cache 360 associated with a corresponding memory
device 204. Lower level caches may then be implemented in
various units within the GPCs 250. For example, each of the
SMs 340 may implement a level one (L.1) cache. The L1
cache is private memory that is dedicated to a particular SM
340. Data from the [.2 cache 360 may be fetched and stored
in each of the L1 caches for processing in the functional
units of the SMs 340. The .2 cache 360 is coupled to the
memory interface 370 and the XBar 270.

The ROP unit 350 includes a ROP Manager 355, a Color
ROP (CROP) unit 352, and a Z ROP (ZROP) unit 354. The
CROP unit 352 performs raster operations related to pixel
color, such as color compression, pixel blending, and the
like. The ZROP unit 354 implements depth testing in con-
junction with the raster engine 325. The ZROP unit 354
receives a depth for a sample location associated with a pixel
fragment from the culling engine of the raster engine 325.
The ZROP unit 354 tests the depth against a corresponding
depth in a depth buffer for a sample location associated with
the fragment. If the fragment passes the depth test for the
sample location, then the ZROP unit 354 updates the depth
buffer and transmits a result of the depth test to the raster
engine 325. The ROP Manager 355 controls the operation of
the ROP unit 350. It will be appreciated that the number of
partition units 280 may be different than the number of
GPCs 250 and, therefore, each ROP unit 350 may be
coupled to each of the GPCs 250. Therefore, the ROP
Manager 355 tracks packets received from the different
GPCs 250 and determines which GPC 250 that a result
generated by the ROP unit 350 is routed to. The CROP unit
352 and the ZROP unit 354 are coupled to the L2 cache 360
via an L.2 XBar 365.

FIG. 4 illustrates the streaming multi-processor 340 of
FIG. 3A, in accordance with one embodiment. As shown in
FIG. 4, the SM 340 includes an instruction cache 405, one
or more scheduler units 410, a register file 420, one or more
processing cores 450, one or more special function units
(SFUs) 452, one or more load/store units (LSUs) 454, an
interconnect network 480, and a shared memory/L.1 cache
470.

As described above, the work distribution unit 225 dis-
patches tasks for execution on the GPCs 250 of the PPU 200.
The tasks are allocated to a particular TPC 320 within a GPC
250 and, if the task is associated with a shader program, the
task may be allocated to an SM 340. The scheduler unit 410
receives the tasks from the work distribution unit 225 and
manages instruction scheduling for one or more groups of
threads (i.e., warps) assigned to the SM 340. The scheduler
unit 410 schedules threads for execution in groups of
parallel threads, where each group is called a warp. In one
embodiment, each warp includes 32 threads. The scheduler
unit 410 may manage a plurality of different warps, sched-
uling the warps for execution and then dispatching instruc-

US 10,055,883 B2

9

tions from the plurality of different warps to the various
functional units (i.e., cores 350, SFUs 352, and LSUs 354)
during each clock cycle.

In one embodiment, each scheduler unit 410 includes one
or more instruction dispatch units 415. Each dispatch unit
415 is configured to transmit instructions to one or more of
the functional units. In the embodiment shown in FIG. 4, the
scheduler unit 410 includes two dispatch units 415 that
enable two different instructions from the same warp to be
dispatched during each clock cycle. In alternative embodi-
ments, each scheduler unit 410 may include a single dispatch
unit 415 or additional dispatch units 415.

Each SM 340 includes a register file 420 that provides a
set of registers for the functional units of the SM 340. In one
embodiment, the register file 420 is divided between each of
the functional units such that each functional unit is allo-
cated a dedicated portion of the register file 420. In another
embodiment, the register file 420 is divided between the
different warps being executed by the SM 340. The register
file 420 provides temporary storage for operands connected
to the data paths of the functional units.

Each SM 340 comprises L processing cores 450. In one
embodiment, the SM 340 includes a large number (e.g., 192,
etc.) of distinct processing cores 450. Each core 450 may
include a fully-pipelined, single-precision processing unit
that includes a floating point arithmetic logic unit and an
integer arithmetic logic unit. The core 450 may also include
a double-precision processing unit including a floating point
arithmetic logic unit. In one embodiment, the floating point
arithmetic logic units implement the IEEE 754-2008 stan-
dard for floating point arithmetic. Each SM 340 also com-
prises M SFUs 452 that perform special functions (e.g., pixel
blending operations, and the like), and N LSUs 454 that
implement load and store operations between the shared
memory/[.1 cache 470 and the register file 420. In one
embodiment, the SM 340 includes 192 cores 450, 32 SFUs
452, and 32 LSUs 454.

Each SM 340 includes an interconnect network 480 that
connects each of the functional units to the register file 420
and the shared memory/L.1 cache 470. In one embodiment,
the interconnect network 480 is a crossbar that can be
configured to connect any of the functional units to any of
the registers in the register file 420 or the memory locations
in shared memory/L.1 cache 470.

The shared memory/L.1 cache 470 is an array of on-chip
memory that, in one embodiment, may be configured as
either shared memory or an L1 cache, or a combination of
both, as the application demands. For example, the shared
memory/[.1 cache 470 may comprise 64 kB of storage
capacity. The shared memory/I.1 cache 470 may be config-
ured as 64 kB of either shared memory or .1 cache, or a
combination of the two such as 16 kB of L1 cache and 48
kB of shared memory.

The PPU 200 described above may be configured to
perform highly parallel computations much faster than con-
ventional CPUs. Parallel computing has advantages in
graphics processing, data compression, biometrics, stream
processing algorithms, and the like.

In one embodiment, the PPU 200 comprises a graphics
processing unit (GPU). The PPU 200 is configured to
receive commands that specify shader programs for process-
ing graphics data. Graphics data may be defined as a set of
primitives such as points, lines, triangles, quads, triangle
strips, and the like. Typically, a primitive includes data that
specifies a number of vertices for the primitive (e.g., in a
model-space coordinate system) as well as attributes asso-
ciated with each vertex of the primitive. The PPU 200 can

5

10

20

25

30

35

40

45

50

55

60

65

10

be configured to process the graphics primitives to generate
a frame buffer (i.e., pixel data for each of the pixels of the
display).

An application writes model data for a scene (ie., a
collection of vertices and attributes) to a memory such as a
system memory or memory 204. The model data defines
each of the objects that may be visible on a display. The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed. The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data. The commands may reference different shader
programs to be implemented on the SMs 340 of the PPU 200
including one or more of a vertex shader, hull shader,
domain shader, geometry shader, and a pixel shader. For
example, one or more of the SMs 340 may be configured to
execute a vertex shader program that processes a number of
vertices defined by the model data. In one embodiment, the
different SMs 340 may be configured to execute different
shader programs concurrently. For example, a first subset of
SMs 340 may be configured to execute a vertex shader
program while a second subset of SMs 340 may be config-
ured to execute a pixel shader program. The first subset of
SMs 340 processes vertex data to produce processed vertex
data and writes the processed vertex data to the L2 cache 360
and/or the memory 204. After the processed vertex data is
rasterized (i.e., transformed from three-dimensional data
into two-dimensional data in screen-space) to produce frag-
ment data, the second subset of SMs 340 executes a pixel
shader to produce processed fragment data, which is then
blended with other processed fragment data and written to
the frame buffer in memory 204. The vertex shader program
and pixel shader program may execute concurrently, pro-
cessing different data from the same scene in a pipelined
fashion until all of the model data for the scene has been
rendered to the frame buffer. Then, the contents of the frame
buffer are transmitted to a display controller for display on
a display device.

The PPU 200 may be included in a desktop computer, a
laptop computer, a tablet computer, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant
(PDA), a digital camera, a hand-held electronic device, and
the like. In one embodiment, the PPU 200 is embodied on a
single semiconductor substrate. In another embodiment, the
PPU 200 is included in a system-on-a-chip (SoC) along with
one or more other logic units such as a reduced instruction
set computer (RISC) CPU, a memory management unit
(MMU), a digital-to-analog converter (DAC), and the like.

In one embodiment, the PPU 200 may be included on a
graphics card that includes one or more memory devices 204
such as GDDRS SDRAM. The graphics card may be con-
figured to interface with a PCle slot on a motherboard of a
desktop computer that includes, e.g., a northbridge chipset
and a southbridge chipset. In yet another embodiment, the
PPU 200 may be an integrated graphics processing unit
(iGPU) included in the chipset (i.e., Northbridge) of the
motherboard.

Irregular Z-Buffer Shadow Rendering

Rendering shadows using IZBs does not produce the same
artifacts as when conventional shadow mapping is used,
specifically aliasing artifacts resulting from mismatches
between eye-space and light-space sampling locations are
reduced or eliminated. Conventional shadow maps use a
regular grid of samples in both eye-space and light-space,
and finding a robust bijection between samples in the

US 10,055,883 B2

11

eye-space and light-space remains unsolved. By allowing
light-space samples to occur irregularly, an 1ZB enables
pairing of samples in eye-space and light-space and may
eliminate or reduce aliasing.

FIG. 5A illustrates a mapping 500 of pixels to a light-
space grid 510, in accordance with one embodiment. By
construction, an IZB bijectively maps each pixel in a pixel
grid 520 to one sample in light-space, thereby discretizing

light-space. A pixel 513 represents pixel ray VZ. from an eye

515 and intersecting a graphics primitive at sample point T’)i.
A corresponding light sample 503 in a light-space grid 510

represents light ray fi from f’)i to the light source 505.

Queries along the light ray fi return the nearest neighbor
sample on the light-space grid 510 rather than the true

visibility along light ray fi, which causes aliasing in shadow
mapping where the grid stores explicit visibility.

Irregular z-buffers may be configured to store the light
samples of the light-space grid 510 as an 1ZB representing
a light-space visibility buffer. Importantly, all sample points

F)Z. that are within a grid cell of the light-space grid 510 may
be stored in the light-space visibility buffer, thereby enabling
computation of exact shadows. The light-space visibility
buffer may be used during rendering to generate a unique
visibility for each pixel in the pixel grid 520.

In theory, constructing an irregular z-buffer shadow mask
is accomplished by “rasterizing” occluding geometry over

the irregular set of light rays fi, finding the closest geometry
along each light ray fi. If the depth of the closest geometry

lies between the light and the sample point ?i, the pixel 513
corresponding to the pixel ray that that intersects the sample

point F)Z. is shadowed. In the context of the following
description, shadowed means that a sample point is not
directly illuminated by a light source and the sample point
is only indirectly illuminated (i.e., by a reflected light ray) if
the sample point is illuminated at all.

FIG. 5B illustrates a first object that occludes a second
object in light-space, in accordance with one embodiment. A
first object 523 casts a shadow onto a second object 524. The
pixel 513 represents a first pixel ray from the eye 515 that
intersects a first graphics primitive of the first object 523 at

sample point f’)l on the first graphics primitive. The corre-
sponding light sample 503 in the light-space grid 510

represents a light ray T | from f’)l to the light source 505 that
intersects the light-space grid 510 at light sample 503. A
second pixel 514 represents a second pixel ray from the eye
515 that intersects a second graphics primitive of the second

object 524 at sample point f’)z on the second graphics
primitive. The same light sample 503 in the light-space grid

510 represents a light ray fz from ?2 to the light source
505. Sample points P, and P, are both stored in the light-
space visibility buffer and are associated with the grid cell
that includes the light sample 503. The shadow mask queries

along the light ray fz indicate that the graphics primitives
of the object 523 are closer to the light-space grid 510 than
the sample point P,. Therefore, the sample point P, is in
shadow. Similarly, the shadow mask queries along the light

ray fl indicate that the sample point P, is closer to the
light-space grid 510 than graphics primitives of the object
523. Therefore, the sample point P, is not in shadow.

FIG. 5C illustrates the light-space grid 510 and a light-
space visibility buffer 525 that is encoded as an irregular

10

15

20

25

30

35

40

45

55

60

65

12

Z-buffer (IZB), in accordance with one embodiment. Since
modern GPUs rasterize only over regular, consistently sized
screen-space samples, the irregular sets of pixel fragment
footprints are stored separately from the pixel data (e.g.,
per-pixel attribute data such as color, depth, texture coordi-
nates, etc.). In one embodiment, the irregular pixel fragment
footprints are stored in a grid-of-lists structure. The light-
space grid 510 is a grid of cells. Each grid cell may
correspond to a light-space head pointer which points to a
light grid cell list representing pixel fragment footprints
falling within the grid cell. In contrast, with a conventional
shadow map that stores depth values, a grid cell of a
light-space grid 510 stores a pointer to a list of pixel
fragment footprints associated with screen-space pixels. In
one embodiment, the light grid cell list is a linked-list.

Since pixel fragment footprints can lie anywhere within a
grid cell, conservative rasterization should be used to render
graphics primitives in a 3D scene in light-space at step 160
and generate the shadow mask buffer using the light-space
visibility buffer 525. The graphics primitives should test
pixel fragment footprints for occlusion if the graphics primi-
tive intersects or covers any portion of a grid cell (not just
the center, as in traditional rasterization).

A grid cell 511 is associated with an index or light-space
head pointer which points to a light grid cell list 501. In one
embodiment, a light grid cell list includes a list of nodes and
a pointer to the next node in the list. Each node represents
a pixel fragment footprint. In one embodiment, when each
pixel includes N sample locations, a node represents a single
sample point. In another embodiment, when each pixel
includes N sample locations, a node represents a single pixel
with N sample points. In either case, the index, or light-
space head pointer, points to the first node in the light grid
cell list 501. The light grid cell list 501 includes three nodes
storing sample points (or pixels) P, P,, and P,. A grid cell
512 corresponds to a light-space head pointer which points
to a light grid cell list 502. The light grid cell list 502
includes six nodes that store sample points (or pixels) P,, Ps,
Pg, P, Pg, and P,

FIG. 5D illustrates the light-space visibility buffer data
structure and a corresponding eye-space G-buffer 540, in
accordance with one embodiment. The light-space visibility
buffer data structure includes light grid cell lists and a
shadow mask buffer 545. A light grid cell list 521 is
associated with a particular grid cell in the light-space grid
510, grid cell 531. A light grid cell list 522 is associated with
the grid cell 532. The grid cell 531 stores an index to a first
node corresponding to sample point P, in the light grid cell
list 521. The grid cell 532 stores an index to a first node
corresponding to sample point P, in the light grid cell list
522. The node data (e.g., visibility data) is stored in a
shadow mask buffer 545. In one embodiment, each node in
a light grid cell list is two integers, including a next index
that points to the next sample point in the light grid cell list
and an index to the corresponding eye-space G-buffer pixel
sample location in the eye-space G-buffer 540. In another
embodiment, each node address is the same as the G-buffer
index for the pixel (i.e., the node addresses are directly
mapped to the pixels), so each node stores only the next
index that points to the next node in the light grid cell list.

In one embodiment, the shadow mask buffer 545 is the
same resolution as the display image (e.g., screen resolution)
and each location in the shadow mask buffer 545 corre-
sponds to a location in an eye-space G-buffer 540. In other
words, an index to a corresponding eye-space G-buffer pixel
sample location corresponds directly to a visibility sample
stored for the same pixel sample location in the shadow

US 10,055,883 B2

13

mask buffer 545. In one embodiment, each location in the
shadow mask buffer 545 stores a visibility sample, i.e., a
binary shadow visibility value for a fragment that covers an
eye-space G-buffer pixel sample location. The nodes asso-
ciated with sample points P, P, and P, in the light grid cell
list 521 point to the visibility values V,, Vg, and V,,
respectively, in the shadow mask buffer 545. The visibility
values V,, Vg, and V, correspond to the pixel sample
locations G,, Gg, and G,, respectively, in the eye-space
G-buffer 540. Similarly, the nodes associated with sample
points P,, P;, Py, and P, in the light grid cell list 522 point
to the visibility values V,, V5, Vg, and V,, respectively, in
the shadow mask buffer 545. The visibility values V,, V;,
Vg, and V, correspond to the pixel sample locations G,, G,
Gy, and G, respectively, in the eye-space G-buffer 540.
Note that nodes in different light grid cell lists may point to
the same visibility sample in the shadow mask buffer 545,
such as nodes Pg in light grid cell lists 521 and 522. When
two different objects map to the same pixel in eye-space,
nodes in two different light grid cell lists point to the same
visibility sample. Two grid cells can also share the same
visibility sample when a pixel fragment footprint has mul-
tiple samples that project into separate light grid cells.

An eye-space G-buffer 540 is the same resolution as the
display image (e.g., screen resolution). In one embodiment,
each location in the eye-space G-buffer 540 stores a frag-
ment position in a coordinate space (e.g., eye-space), surface
normal vector, and other information needed to reconstruct
a pixel-sized quadrilateral or pixel fragment footprint on the

fragment’s tangent plane at the sample point f’)l.. In one
embodiment, the pixel fragment footprint is centered on the

light ray fi that intersects one or multiple grid cell(s) in the
light-space grid 510.

The light-space visibility buffer 525 may be used to
generate the shadow mask buffer 545 during rasterization of
the scene in light-space. Rasterizing over irregular pixel
fragment footprints requires knowing where the pixel frag-
ment footprints occur in screen-space. In one embodiment,
a rasterization pre-pass (in eye-space) is used to identify the
locations of visible pixel fragments requiring shadow que-
ries. A z-buffer portion of the eye-space G-buffer 540 is
generated during the rasterization pre-pass to determine a
nearest depth value for each visible pixel fragment in the
pixel grid 520. The visible pixel fragments correspond to
light samples in the light-space grid 510. The locations of the
light samples in the light-space grid 510 are identified by
executing a compute pass over the z-buffer, transforming
pixel fragments into light-space (via a shadow map trans-
formation) to generate the pixel fragment footprints. The
pixel fragment footprints are then inserted into correspond-
ing light-space grid cell lists. In one embodiment, identifiers
corresponding with the pixel fragment footprints are inserted
into the corresponding light-space grid cell lists. Pseudocode
describing the process of a rasterization pre-pass, generation
of an IZB that encodes a light-space visibility buffer 525,
and generation of shadow map data is shown in Table 1,
where the IsTexel object is a grid cell in the light-space grid
510.

TABLE 1

High Level Pseudocode for generating a shadow mask buffer using an IZB

// Step 1: Identify locations we need to shadow
G(x, y) < RenderGBufferFromEye()
// Step 2: Add these pixels into the light-space data structure (IZB)

10

15

20

30

35

40

45

50

55

60

65

14
TABLE 1-continued

High Level Pseudocode for generating a shadow mask buffer using an IZB

for pixel p € G(x, y) do
IsTexel,, <= ShadowMapTransform[GetEyeSpacePos(p)]
izbNode,, < CreateIZBNode[p]
AddNodeToLightSpaceList[IsTexel,, izbNode,,]
end for
// Step 3: Determine shadows:
// test each graphics primitive for pixels in covered grid cell list(s)
for primitive t € ScenePrimitives do
for fragment f € ConservativelyRasterizeInLightSpace(t) do
IsTexel, < FragmentLocationInRasterGrid []
TraversePixelListFromStep2TestingIfPrimitiveShadows([IsTexel,]
end for
end for

As with ray tracing, the key unit of work is ray-primitive
intersections. The ray-primitive intersections are spawned as
a graphics primitive fragment traverses a list of potentially
occluded pixels (i.e., shown as step 3 in Table 1). In contrast
with a pixel fragment that covers a pixel, a primitive
fragment covers a grid cell. A pixel fragment is generated by
rasterizing a graphics primitive in screen-space and a primi-
tive fragment is generated by rasterizing the graphics primi-
tive in light-space. Each light sample represents a ray (from

P, along T,) that is tested for intersection with the rasterized
graphics primitive to produce a primitive fragment. A ras-
terization pre-pass (i.e., shown as step 1 in Table 1) may be
used to reduce shading operations.

Simplistically, the algorithmic complexity is O(N) for N
ray-primitive visibility tests. But the value of N depends on
the primitive count and the screen resolution. Pixel fragment
footprints create nodes, and primitives generate light-space
primitive fragments that traverse light grid cell lists of pixel
fragment footprints. The screen resolution determines the
number of pixel fragment footprints. So N=t1, , where t,is
the number of light-space primitive fragments and (1,.,) is
the average light grid cell list length traversed by each
primitive fragment.

Therefore, processing performance depends on total ray-
primitive tests, number of light-space primitive fragments,
and the average length of the light grid cell lists. Addition-
ally, traversing light grid cell lists may cause GPU under-
utilization if lengths of the light grid cell lists vary signifi-
cantly between threads. Therefore, reducing variance of 1,_,
may improve performance for GPU implementations.
Increasing light-space grid resolution reduces the average
light grid cell list length by distributing pixel fragment
footprints over larger numbers of grid cells but also
increases the number of light-space primitive fragments
generated by rasterization.

FIG. 6 illustrates a flowchart of a method 600 for render-
ing shadows, in accordance with one embodiment. At step
610, a rasterization pre-pass is performed to generate a
z-buffer in eye-space. Compared with the two-dimensional
screen-space, eye-space is a three-dimensional space as
viewed from the eye. In one embodiment, step 610 is
performed using the pseudocode of step 1 shown in Table 1.

When single sample shadows are used, the z-buffer may
store only pixel fragment depths. To produce anti-aliased
shadows, intersections with grid cell frustums are deter-
mined, as described in more detail in conjunction with FIGS.
7A and 7B, and additional data is needed in the z-buffer. In
one embodiment, three additional values are stored in the
eye-space G-buffer 540 to define the pixel fragment foot-
print in light-space. The three additional values may be
represented in a floating point format. In another embodi-

US 10,055,883 B2

15

ment, the three additional values are not stored in the
z-buffer and are instead computed from the normal vector of
the pixel fragment.

At step 620, a light-space visibility buffer 525 is generated
for a light source 505. In one embodiment, step 620 is
performed using the pseudocode of step 2 shown in Table 1.
At step 630, a shadow mask buffer 545 is generated based
on the light-space visibility buffer 525. In one embodiment,
step 630 is performed using the pseudocode of step 3 shown
in Table 1.

At step 640, the pixels are shaded based on the shadow
mask buffer 545. In one embodiment, pixel data stored in the
eye-space G-buffer 540 is processed based on the shadow
mask buffer 545 to produce a frame buffer for display. The
shadow mask buffer 545 indicates whether each pixel (or
sample within a pixel) is in shadow or not. The shadow mask
buffer 545 may be used to modulate the color of the pixel.

Frustum Tests for Sub-Pixel Shadows

The light-space visibility buffer 525 can be used to
provide pixel accurate shadows when one sample is used for
each pixel. Naive extensions may achieve sub-pixel accu-
racy by increasing the number of samples per pixel and
increasing the amount of storage consumed for each buffer
because the amount of storage scales linearly with the
sample count. To render sub-pixel shadows for anti-aliased
or soft shadows, a frustum is traced from the point light
source back to a primitive in light-space. Intersections
between the frustum and other primitive fragments are
directly computed in light-space rather than projecting a
sample point on an object in light-space back to a pixel grid
520 in eye-space.

FIG. 7A is a conceptual diagram 700 of grid cell frustum
710 corresponding to a light source to a pixel fragment
footprint shown as a pixel pQuad 725, in accordance with
one embodiment. A pixel boundary is projected to a frag-
ment tangent plane on an object to define the uQuad 725.
The pQuad 725 is a pixel footprint at the tangent plane of a
primitive that forms a base of the grid cell frustum 710.

FIG. 7B is a conceptual diagram of a primitive 730
intersecting the grid cell frustum 710 of FIG. 7A, in accor-
dance with one embodiment. The edges (e.g., primitive edge
735) of each potentially occluding primitive, such as primi-
tive 730, are projected to the tangent plane to perform an
intersection test. Each projected primitive edge corresponds
to a half-plane defining at least a portion of the pQuad 725
that is in shadow. The intersection of the projected primitive
edge 740 with the pQuad 725 is then used to determine
visibility of each sample within the pQuad 725. The inter-
section of the projected primitive edges with the pQuad 725
define the primitive fragment.

Each projected primitive edge 740 and the grid cell
frustum 710 projected from the light source 705 defines a
shadow quad for a triangle primitive 730. The three shadow
quads corresponding to the three projected edges and the
triangle primitive 730 bound a shadow volume within the
grid cell frustum 710. The half-plane results for each edge
are combined using a binary AND operation to generate a
sample visibility bitmask representing the pQuad 725
samples (and the sub-pixel samples) that are occluded by the
primitive 730. The sample visibility bit mask indicates the
coverage of the primitive fragment. In one embodiment, the
projected primitive edge 740 is used as an index to a lookup
table that stores visibility sample values. The locations of the
visibility samples may be fixed or programmable. In one
embodiment, 64 visibility sample locations are defined

10

20

25

30

40

45

55

16
within each pixel and within each pQuad 725. The results for
each potentially occluding primitive are accumulated for the
nQuad 725 to produce the final sample visibility bitmask
that is stored in the shadow mask buffer 545 for a pixel.

Using multiple visibility samples per pixel may also
require multiple nodes per pixel fragment footprint, up to
one node per visibility sample and multiple samples per
pixel complicates generation of the light-space visibility
buffer 525. Each pixel fragment footprint includes multiple
samples that project to a variable number of light-space grid
cells, and the pixel fragment footprint should be included in
the light grid cell list for the grid cell. In one embodiment,
nQuads (i.e., pixel fragment footprints) are rasterized in
light-space during step 620. In another embodiment, the size
of the light-space visibility buffer 525 is increased to store
multiple samples in each pQuad. For example, when a
nQuad includes 32 samples, each grid cell is associated with
the 32 samples within a single pQuad. In another embodi-
ment, each grid cell is associated with a number of samples
that is less than all of the samples in a single pQuad, as
described further herein.

FIG. 7C is a conceptual diagram of grid cell frustum
corresponding to a light source 705 projecting to a pixel
nQuad as a tangent plane of a primitive changes, in accor-
dance with one embodiment. As the tangent plane changes
orientation, pQuad 725 elongates along only one axis in

eye-space as N-V—0 (the other axes depend on screen
resolution). Therefore, the uQuad 725 may be sampled one
dimensionally. In one embodiment, from one to eight
samples are used for each pQuad, depending on the orien-
tation of the particular pQuad. Using a variable sampling
rate creates an approximate irregular light-space visibility
buffer 525. As pQuads enlarge, some nodes may not be
inserted into the light grid cell lists, thereby introducing light
leaks for small distant occluding primitives that fall between
samples (i.e., that fail to spawn needed frustum-primitive
tests). To reduce the number of missed intersection tests that
may contribute to light leaks, primitives can be over-con-
servatively rasterized. In one embodiment, light-space
primitives are rasterized with a grid cell dilation equal to one
grid cell (rather than a half grid cell in typical conservative
rasterization), ensuring primitives touch more sample loca-
tions.

FIG. 7D is a conceptual diagram of sample locations
within the pixel pQuad 725 of FIG. 7C as the tangent plane
of the pixel fragment changes, in accordance with one
embodiment. Depending on the tangent plane, the nQuad
725 may be sampled as pQuads 721, 722, 724, or 728,
sampling one, two, four, or eight samples, respectively.

Reducing the number of nodes in the light-space visibility
buffer 525 directly decreases average list length (1,,,) of each
light grid cell list. While enlarging conservative raster
dilation increases a primitive fragment count t.by a smaller
amount. By using the tangent-based sampling to approxi-
mate the coverage of pixel fragments, on average two nodes
are inserted per pixel compared to eight with an exact
approach. Therefore, a four times reduction in (1,,,) is
achieved. Increasing primitive fragment dilation from 0.5 to
1.0 pixels only increases t,6-40%. Overall, a net improve-
ment is accomplished when tangent-based sampling is used
in combination with conservative rasterization.

As in shadow maps, selecting an appropriate light-space
resolution is important. Unlike shadow maps, resolution
does not impact quality but it may affect performance.
Because the complexity of the light-space visibility buffer
525 is O(t(l,,,)), halving resolution grows the average list

US 10,055,883 B2

17

length four times while lowering the number of primitive
fragments four times. Therefore, resolution seems to mini-
mally impact performance. However, conservative raster-
ization also generates more primitive fragments, and the
effect grows for small primitives and low resolutions. Larger
resolutions increase memory consumption of the light grid
cell list structure, though the number of nodes is largely
invariant with light-space resolution. Overall, closely
matching light-space and image resolutions does not
increase 1., while also avoiding having many primitive
fragments testing empty light grid cell lists.

As described in conjunction with FIG. 6, the three distinct
phases for rendering sub-pixel shadows are generating the
light-space visibility buffer 525 data structure, spawning
primitive occlusion tests via light-space rasterization, and
rendering a final shadowed image. In one embodiment, six
passes are performed to render the final shadowed image.
Tangent-based sampling may be used during generation of
the light-space visibility buffer 525 to reduce the average
light grid cell list length. Conservative rasterization may be
used for performing the primitive occlusion tests to reduce
light leaks.

FIG. 7E illustrates another flowchart of a method 750 for
rendering sub-pixel shadows, in accordance with one
embodiment. The method 750 includes previously described
steps 610, 620, 630, and 640 shown in FIG. 6. The method
750 includes additional steps 712 and 722.

When single sample shadows are used, the z-buffer gen-
erated at step 610 may store only pixel fragment depths. To
produce anti-aliased shadows, additional data is needed in
the z-buffer to determine intersections of primitives with the
grid cell frustums at step 630. In one embodiment, three
additional values are stored in the eye-space G-bufter 540 to
define the pixel fragment footprint in light-space. The three
additional values may be represented in a floating-point
format. In another embodiment, the three additional values
are not stored in the z-buffer and are instead computed from
the normal vector of the pixel fragment.

At step 712, the scene’s visible regions are bounded. As
with shadow maps, a priori knowing the correct settings for
the grid cell frustum 710 is challenging. To avoid poorly
bounding the scene, in one embodiment the projection
matrix for the light source 705 is computed for each frame
to tightly bound geometry that is visible according to the
z-buffer. A single thread may be allocated to perform step
712 by executing a shader program over the z-buffer.

During step 620, the light-space visibility buffer 525 is
generated and, in one embodiment, nodes corresponding to
pixel fragment footprints that are trivially shadowed are not
added to a light grid cell list. Pixel fragment footprints

having N-V=0 may be considered trivially shadowed when
standard lighting models are used. The shadow mask value
for the trivially shadowed pixel fragment footprints may be
left fully lit because those pixels will be shadowed based on
the normal and view ray. Shadowing pixels based on the
normal and view rays may avoid a common problem along
light silhouettes where geometric and shading normal vec-
tors provide different shadow terms.

At step 722, light-space culling is performed to cull
primitive fragments that intersect a grid cell that has an
empty light grid cell list. Additionally, primitive fragments
that fall behind the furthest node in the light grid cell list may
be culled. The early-z circuitry can accelerate the light-space
culling process. To use early-z circuitry, a light-space z-buf-
fer is generated. In one embodiment, a stencil is created by
setting depth to zero in grid cells with empty light grid cell

10

15

20

25

30

35

40

45

50

55

60

65

18

lists and setting the distance to the furthest node in light grid
cell lists that are not empty. Using light-space culling may
provide a substantial speedup of 30-50%.

During step 630 when visibility tests are performed, a
pixel often becomes fully occluded. Primitives rasterized
later in the frame can have no additional impact, so spawn-
ing additional frustum-primitive tests is wasteful. In one
embodiment, occluded pixels are removed from the light
grid cell lists by removing the nodes corresponding to the
occluded pixels. Importantly, node removal requires no
atomic operations. Race conditions can occur, but at worst
the race conditions cause extra visibility tests on already-
occluded pixels (after which node removal is reattempted).
Node removal may provide a 10-15% performance improve-
ment despite additional logic and memory operations.

Software pipelining may be used to overlap the loading of
node data with visibility testing. When traversing a list of
nodes in a light grid cell list, the next node is loaded and
G-buffer coordinates are computed while the current node is
tested. Overlapping the operations hides latency and may
improve speed 5-15%.

Spawning and performing visibility tests during step 630
may consume significant processing resources. Objects par-
tially covering a grid cell may occlude an arbitrary subset of
the light grid cell list associated with the grid cell. Each
primitive fragment traverses the light grid cell list. During
traversal, each node in the light grid cell list is read, a
visibility test is performed, and the result is atomically ORed
into a visibility mask stored in the shadow mask buffer 545.
A key bottleneck stems from thread divergence during the
list traversal. Because the different light grid cell lists
typically have different lengths, some threads that have
shorter light grid cell lists wait on adjacent threads that have
longer light grid cell lists. In some cases, the variation in
length may be as great as 1:1000.

A cascade technique based on sample distribution shadow
maps (SDSMs) may be used to better balance the thread
workloads by partitioning portions of the light-space grid
510 into different regions. The number of grid cells in each
region typically varies, so that the grid cells in each region
have light grid cell lists of similar length. The entire scene
may be split into multiple cascades with logarithmic parti-
tioning that individually bounds each cascade. A separate
light-space visibility buffer 525 may be generated for each
cascade. Creation of cascaded light-space visibility buffers
525 for single sample shadows easily occurs in parallel
(because cascades contain unique pixels). Cascades for
multi-sample shadows should overlap slightly to avoid light
leaks along boundaries. Light-space rasterization needs to
occur over each light-space visibility buffer 525 to accumu-
late full visibility. Culling primitives separately for each grid
cell frustum or using a single render pass to route primitives
to the appropriate cascade may improve performance.
Except for complex models that naturally fit in one grid cell
frustum, cascades’ significant reduction in thread divergence
often makes up for the overhead of rasterizing primitives
multiple times.

Finally, during step 630, updates to the shadow mask
buffer 545 are a synchronization point when multiple threads
may be testing visibility for different primitive fragments at
the same pixel fragment footprint. The shadow mask buffer
545 should be updated atomically to combine results and
avoid races. To reduce contention, in one embodiment,
updates to the shadow mask buffer 545 should only occur if
a primitive fragment changes the existing visibility. The
previous shadow mask value should be read beforehand to

US 10,055,883 B2

19

determine if the updated shadow mask value is different, and
the avoided contention may provide up to a 14% speed
boost.

FIG. 8 illustrates an exemplary system 800 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a
system 800 is provided including at least one central pro-
cessor 801 that is connected to a communication bus 802.
The communication bus 802 may be implemented using any
suitable protocol, such as PCI (Peripheral Component Inter-
connect), PCI-Express, AGP (Accelerated Graphics Port),
HyperTransport, or any other bus or point-to-point commu-
nication protocol(s). The system 800 also includes a main
memory 804. Control logic (software) and data are stored in
the main memory 804 which may take the form of random
access memory (RAM).

The system 800 also includes input devices 812, a graph-
ics processor 806, and a display 808, i.e. a conventional CRT
(cathode ray tube), LCD (liquid crystal display), LED (light
emitting diode), plasma display or the like. User input may
be received from the input devices 812, e.g., keyboard,
mouse, touchpad, microphone, and the like. In one embodi-
ment, the graphics processor 806 may include a plurality of
shader modules, a rasterization module, etc. Each of the
foregoing modules may even be situated on a single semi-
conductor platform to form a graphics processing unit
(GPU).

In the present description, a single semiconductor plat-
form may refer to a sole unitary semiconductor-based inte-
grated circuit or chip. It should be noted that the term single
semiconductor platform may also refer to multi-chip mod-
ules with increased connectivity which simulate on-chip
operation, and make substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple-
mentation. Of course, the various modules may also be
situated separately or in various combinations of semicon-
ductor platforms per the desires of the user.

The system 800 may also include a secondary storage
810. The secondary storage 810 includes, for example, a
hard disk drive and/or a removable storage drive, represent-
ing a floppy disk drive, a magnetic tape drive, a compact
disk drive, digital versatile disk (DVD) drive, recording
device, universal serial bus (USB) flash memory. The
removable storage drive reads from and/or writes to a
removable storage unit in a well-known manner.

Computer programs, or computer control logic algo-
rithms, may be stored in the main memory 804 and/or the
secondary storage 810. Such computer programs, when
executed, enable the system 800 to perform various func-
tions. The memory 804, the storage 810, and/or any other
storage are possible examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the central processor 801, the graphics processor
806, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the central proces-
sor 801 and the graphics processor 806, a chipset (i.e., a
group of integrated circuits designed to work and sold as a
unit for performing related functions, etc.), and/or any other
integrated circuit for that matter.

Still yet, the architecture and/or functionality of the vari-
ous previous figures may be implemented in the context of
a general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired sys-
tem. For example, the system 800 may take the form of a
desktop computer, laptop computer, server, workstation,

10

15

20

25

30

35

40

45

50

55

60

65

20

game consoles, embedded system, and/or any other type of
logic. Still yet, the system 800 may take the form of various
other devices including, but not limited to a personal digital
assistant (PDA) device, a mobile phone device, a television,
etc.

Further, while not shown, the system 800 may be coupled
to a network (e.g., a telecommunications network, local area
network (LAN), wireless network, wide area network
(WAN) such as the Internet, peer-to-peer network, cable
network, or the like) for communication purposes.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.

What is claimed is:

1. A method, comprising:

defining a frustum projected from a grid cell correspond-

ing to a light source in light-space;

determining that a graphics primitive intersects the frus-

tum;

accessing a light-space visibility buffer to obtain a set of

pixel fragment footprints corresponding to the frustum,
wherein a first pixel fragment footprint of the pixel
fragment footprints forms a base of the frustum and a
number of samples within the first pixel fragment
footprint is based on an orientation of a tangent plane
of a second graphics primitive;

identifying whether each pixel fragment footprint of the

pixel fragment footprints is shadowed by the graphics
primitive; and

rendering, by a parallel processing unit, a final shadowed

image including the set of pixel fragment footprints for
display on a display device.

2. The method of claim 1, further comprising updating a
shadow mask buffer for each of the pixel fragment footprints
that is shadowed by the graphics primitive.

3. The method of claim 1, wherein the number of samples
increases as the pixel fragment footprint becomes longer in
light-space.

4. The method of claim 1, further comprising:

generating a z-buffer for a scene including the graphics

primitive and the light source;

bounding visible regions of the scene based on the z-buf-

fer; and

culling graphics primitives that out outside of the visible

regions.

5. The method of claim 1, wherein the set of pixel
fragment footprints comprises pixels covered by graphics
primitives that map to the grid cell in light-space.

6. The method of claim 1, wherein the set of pixel
fragment footprints is stored as a linked list.

7. The method of claim 1, wherein the light-space vis-
ibility buffer is generated by:

transforming pixel fragments from screen-space to light-

space to generate the pixel fragment footprints;
determining a location within the grid cell that maps to the
pixel fragment footprints; and

storing identifiers of the pixel fragment footprints in the

location of the light-space visibility buffer.

8. The method of claim 1, further comprising:

identifying a furthest pixel fragment footprint in the set of

pixel fragment footprints; and

culling primitive fragments that fall behind the furthest

pixel fragment footprint.

US 10,055,883 B2

21

9. The method of claim 1, wherein the light-space vis-
ibility buffer corresponds to a first portion of a light-space
grid that includes the grid cell and a second light-space
visibility buffer corresponds to a second portion of the
light-space grid.

10. The method of claim 9, wherein the first portion of the
light-space grid is smaller than the second portion of the
light-space grid.

11. A method, comprising:

defining a frustum projected from a grid cell correspond-

ing to a light source in light-space;

determining that a graphics primitive intersects the frus-

tum;
accessing a light-space visibility buffer to obtain a set of
pixel fragment footprints corresponding to the frustum;

identifying whether each pixel fragment footprint of the
pixel fragment footprints is shadowed by the graphics
primitive;

determining a second grid cell corresponds to a second set

of pixel fragment footprints that is empty;

culling primitive fragments that intersect a second frus-

tum associated with the second grid cell in light-space;
and

rendering, by a parallel processing unit, a final shadowed

image including the set of pixel fragment footprints for
display on a display device.

12. A method, comprising:

defining a frustum projected from a grid cell correspond-

ing to a light source in light-space;

determining that a graphics primitive intersects the frus-

tum;
accessing a light-space visibility buffer to obtain a set of
pixel fragment footprints corresponding to the frustum;

identifying whether each pixel fragment footprint of the
pixel fragment footprints is shadowed by the graphics
primitive, wherein a pixel fragment footprint is shad-
owed by the graphics primitive when a combination of
half-plane intersections produced by projected edges of
the graphics primitive indicate at least one sample
within the pixel fragment footprint is covered; and

rendering, by a parallel processing unit, a final shadowed
image including the set of pixel fragment footprints for
display on a display device.

13. The method of claim 12, wherein the identifying
comprises:

testing only one sample for a first pixel fragment footprint

in the set of pixel fragment footprints for being shad-
owed by the graphics primitive; and

test more than one sample for a second fragment footprint

in the set of pixel fragment footprints for being shad-
owed by the graphics primitive.

14. A non-transitory computer-readable storage medium
storing instructions that, when executed by a processor,
cause the processor to perform steps comprising:

defining a frustum projected from a grid cell correspond-

ing to a light source in light-space;

determining that a graphics primitive intersects the frus-

tum;

accessing a light-space visibility buffer to obtain a set of

pixel fragment footprints corresponding to the frustum;
identifying whether each pixel fragment footprint of the
pixel fragment footprints is shadowed by the graphics
primitive, wherein a pixel fragment footprint is shad-
owed by the graphics primitive when a combination of
half-plane intersections produced by projected edges of
the graphics primitive indicate at least one sample
within the pixel fragment footprint is covered; and

20

25

30

35

40

45

55

22

rendering, by a parallel processing unit, a final shadowed
image including the set of pixel fragment footprints for
display on a display device.

15. The non-transitory computer-readable storage
medium of claim 14, further comprising updating a shadow
mask buffer for each of the pixel fragment footprints that is
shadowed by the graphics primitive.

16. The non-transitory computer-readable storage
medium of claim 14, wherein a first pixel fragment footprint
of the pixel fragment footprints forms a base of the frustum.

17. The non-transitory computer-readable storage
medium of claim 14, wherein the identifying comprises:

testing only one sample for a first pixel fragment footprint

in the set of pixel fragment footprints for being shad-
owed by the graphics primitive; and

test more than one sample for a second fragment footprint

in the set of pixel fragment footprints for being shad-
owed by the graphics primitive.

18. A system, comprising:

a memory configured to store a light-space visibility

buffer; and

a parallel processing unit configured to:

define a frustum projected from a grid cell corresponding

to a light source in light-space;

determine that a graphics primitive intersects the frustum;

access the light-space visibility buffer stored in the

memory to obtain a set of pixel fragment footprints
corresponding to the frustum; and

identify whether each pixel fragment footprint each of the

pixel fragment footprints is shadowed by the graphics
primitive, wherein a pixel fragment footprint is shad-
owed by the graphics primitive when a combination of
half-plane intersections produced by projected edges of
the graphics primitive indicate at least one sample
within the pixel fragment footprint is covered; and
render a final shadowed image including the set of pixel
fragment footprints for display on a display device.

19. The system of claim 18, wherein the identifying
comprises:

testing only one sample for a first pixel fragment footprint

in the set of pixel fragment footprints for being shad-
owed by the graphics primitive; and

test more than one sample for a second fragment footprint

in the set of pixel fragment footprints for being shad-
owed by the graphics primitive.

20. A system, comprising:

a memory configured to store a light-space visibility

buffer; and

a parallel processing unit configured to:

define a frustum projected from a grid cell correspond-
ing to a light source in light-space;

determine that a graphics primitive intersects the frus-
tum;

access the light-space visibility buffer stored in the
memory to obtain a set of pixel fragment footprints
corresponding to the frustum;

identify whether each pixel fragment footprint each of
the pixel fragment footprints is shadowed by the
graphics primitive wherein a first pixel fragment
footprint of the pixel fragment footprints forms a
base of the frustum and a number of samples within
the first pixel fragment footprint is based on an
orientation of a tangent plane of a second graphics
primitive; and

render a final shadowed image including the set of pixel
fragment footprints for display on a display device.

#* #* #* #* #*

