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Fig. 1. A single sample per pixel (spp) comparison of indirect illumination rendered using ReSTIR Path Tracing (PT) [Lin et al. 2022] with and without our
sample mutations. By performing even a single mutation per sample, our approach can suppress correlation artifacts that may arise within ReSTIR samplers
due to spatiotemporal reuse. Mutations improve visual fidelity of both rendered and denoised results (with the OptiX denoiser [NVIDIA 2017]) while leaving
mean squared error unchanged.

Monte Carlo rendering algorithms often utilize correlations between pixels

to improve efficiency and enhance image quality. For real-time applications

in particular, repeated reservoir resampling offers a powerful framework to

reuse samples both spatially in an image and temporally across multiple

frames. While such techniques achieve equal-error up to 100× faster for real-
time direct lighting [Bitterli et al. 2020] and global illumination [Ouyang

et al. 2021; Lin et al. 2021], they are still far from optimal. For instance,

spatiotemporal resampling often introduces noticeable correlation artifacts,

while reservoirs holding more than one sample suffer from impoverishment

in the form of duplicate samples. We demonstrate how interleaving Markov
Chain Monte Carlo (MCMC) mutations with reservoir resampling helps

alleviate these issues, especially in scenes with glossy materials and difficult-

to-sample lighting. Moreover, our approach does not introduce any bias, and

in practice we find considerable improvement in image quality with just a

single mutation per reservoir sample in each frame.
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1 INTRODUCTION
The efficiency of rendering algorithms often hinges on their ability

to effectively evaluate similar integrals by reusing samples across

pixels [Ward et al. 1988; Jensen 1996; Veach and Guibas 1997; Keller

1997]. In real-time path tracing, sample reuse becomes more critical

since tracing rays is computationally intensive even on high-end

consumer GPUs [Kilgariff et al. 2018]. Moreover, while existing

denoisers drastically improve image quality even at low sample

counts [Chaitanya et al. 2017; Schied et al. 2017, 2018; Kozlowski

and Cheblokov 2021; NVIDIA 2022], they are unable to reconstruct

features missing from their input samples. Thus, sample reuse across

pixels is often the only means to improve sampling quality given

limited computational budgets. Compared to methods that generate

independent samples, reuse is also at times the only practical ap-

proach to render challenging scenes with caustics and tricky lighting

[Hachisuka and Jensen 2009; Veach and Guibas 1997].
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Fig. 2. Glossy scenes with difficult-to-sample lighting rendered using Re-
STIR PT often contain correlation artifacts irrespective of the selected
shift mapping strategy (reviewed in Section 4.3 and Lin et al. [2022, Sec-
tion 7]). Artifacts result from suboptimal importance sampling and over-
enthusiastically sharing a few high-contribution samples between pixels.

Recent sampling algorithms for real-time ray tracing achieve mas-

sive speedups in scenes with complex illumination by sharing sam-

ples spatially within an image and temporally across frames [Bitterli

et al. 2020; Ouyang et al. 2021; Lin et al. 2021, 2022]. These so-called

ReSTIR1 based techniques select 𝑁 high-contribution samples from

a larger streamed candidate pool of size𝑀 . They do so by reformu-

lating resampled importance sampling (RIS) [Talbot et al. 2005] in
terms of weighted reservoir sampling (WRS) [Chao 1982]. While RIS

effectively produces samples in proportion to an arbitrary target

function (e.g., the integrand of the rendering equation), WRS makes

resampling efficient by reducing storage costs from 𝑂 (𝑀) to 𝑂 (𝑁 ).
Repeated resampling across pixels then helps distribute important

samples over several frames for estimation.

Though ReSTIR derives impressive efficiency gains from corre-

lated sampling, the benefits of repeated resampling are not indefinite.

When only a few high-contribution samples have been identified,

iterative spatial reuse creates blotchy artifacts as several pixels reuse

the same sample (Figure 12, top row). Such undersampling artifacts

eventually fade away with temporal reuse over several frames, using

a user-specified parameter to balance pixel error with correlations

from sample reuse (Figure 4). Unfortunately, simply emphasizing

error reduction via greater reuse adds lag under camera movement

with dynamically changing lighting and geometry (Section 2.4), and

introduces distracting low-frequency artifacts (Figures 2 and 3) akin

to those in photon mapping [Hachisuka and Jensen 2009], Metrop-

olis Light Transport (MLT) [Veach and Guibas 1997] and Virtual

Point Light (VPL) methods [Dachsbacher et al. 2014].

As spatiotemporal correlations are difficult to quantify, resolving

artifacts is challenging. For instance, popular denoisers that com-

pute first- and second-order moments (e.g., Schied et al. [2017]) are

1
acronym for Reservoir-based Spatio-Temporal Importance Resampling

sample impoverishment 
0

357

Fig. 3. Reservoir resampling suffers from sample impoverishment as it be-
comes more difficult to sample light-carrying paths. Top row, left to right: The
Veach Ajar scene rendered using ReSTIR PT (random replay shift) at 1 spp
with the door’s angle decreasing. Bottom row: Heat maps visualize duplicate
samples in 20 × 20 pixel neighborhoods. Black represents no duplicates,
while white indicates the number of identical samples in a neighborhood.

less effective given imprecise variance estimates with correlated

samples. For ReSTIR, trying to reduce such artifacts by increasing

the reservoir size 𝑁 is also ineffective, as resampling with replace-
ment [Chao 1982] produces duplicate samples in the presence of

strong correlations (see Wyman and Panteleev [2021, Figure 19]).

Inspired by work on Sequential Monte Carlo (SMC) [Doucet et al.
2001] and Population Monte Carlo (PMC) [Cappé et al. 2004], we

demonstrate that interleaving MCMC mutations with reservoir re-

sampling (Section 3) helps alleviate correlations and impoverish-

ment, especially in scenes with glossy materials and difficult light-

ing. Unlike MLT where mutations drive information sharing across

pixels, our mutations instead primarily mitigate artifacts caused
by spatiotemporal reuse, with little-to-no visual impact in scenes

where artifacts do not arise (Figure 13). Our approach highlights the

complementary strengths of resampling and mutations for real-time

rendering: resampling identifies samples with large contributions

proportional to a pixel’s target distribution, while mutations di-

versify the resampled population by locally perturbing samples in

proportion to the same target distribution. Furthermore, like Veach

and Guibas [1997]’s bias elimination strategy for MLT, we show

that resampling eliminates the need for any burn-in period with

Metropolis–Hastings (MH) mutations [Metropolis et al. 1953; Hast-

ings 1970] (Section 2.5, Appendix A). This drives considerable image

quality improvements from even a single mutation per frame for

each reservoir sample (Figures 1, 7, 9 and 11).

From an implementation perspective, our approach requires only

simple additions to existing ReSTIR algorithms (see Algorithm 3)—

we mutate reservoir samples using Metropolis–Hastings and an

appropriate target function every frame after temporal reuse. This

is immediately followed by an adjustment to each mutated sample’s

contribution weight to maintain detailed balance and ensure unbiased
estimation. Overall, our contributions include:

• Demonstrating how to incorporate MCMC mutations within

ReSTIR samplers to lessen correlation artifacts from spa-

tiotemporal resampling.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: October 2023.



Decorrelating ReSTIR Samplers via MCMC Mutations • 3

• Showing how to adjust the RIS contribution weight of mu-

tated samples in an unbiased fashion for further resampling.

• Situating ReSTIR in the broader family of techniques that

jointly apply resampling andmutations to sampling problems,

such as MLT, SMC and PMC (see Table 2).

Though mutations can help produce images with better visual

fidelity, we observe that, similar to blue-noise sampling [Mitchell

1987; Georgiev and Fajardo 2016; Heitz and Belcour 2019], they do

not necessarily reduce error (Figure 9). This is true both in scenes

with difficult-to-sample lighting (Figure 12, top row), as well as in
scenes with ample lighting and diffuse materials where resampling

easily finds important samples (Figure 13). Moreover, despite the

effectiveness of mutations in scenes with strong correlations, we

show in the supplemental document that with our current approach,

even infinite mutations cannot eliminate correlations entirely.

We start with the key building blocks of our approach in the next

section, and postpone discussion about related work to Section 6

for better context when comparing with our method.

2 BACKGROUND
The rendering equation [Kajiya 1986] gives the outgoing radiance

𝐿out leaving a point 𝑦 in the direction 𝜔 . Expressed as an integral

over directions, it is

𝐿out (𝑦,𝜔) = 𝐿e (𝑦,𝜔) +
∫
𝑆2

𝐿in (𝑦,𝜔𝑖 ) 𝜌 (𝑦,𝜔,𝜔𝑖 ) |cos 𝜃𝑖 | d𝜔𝑖 . (1)

Here 𝐿e is the emitted radiance, 𝐿in (𝑦,𝜔𝑖 ) is the incoming radiance

from the direction 𝜔𝑖 , 𝜌 (𝑦,𝜔,𝜔𝑖 ) is the BSDF and 𝜃𝑖 is the angle

between 𝜔𝑖 and the surface normal at 𝑦. Absent participating me-

dia, the incident radiance 𝐿in is defined recursively as 𝐿in (𝑦,𝜔𝑖 ) =
𝐿out (𝑡 (𝑦,𝜔𝑖 ),−𝜔𝑖 ); the function 𝑡 (𝑦,𝜔𝑖 ) returns the point on the

closest surface from 𝑦 in direction 𝜔𝑖 . Integrating over the sphere

of directions 𝑆2
then gives the total radiance scattered towards 𝜔 ;

the rendering equation can be estimated with Monte Carlo as

𝐿out (𝑦,𝜔) ≈ 𝐿e (𝑦,𝜔) +
1

𝑁

𝑁∑︁
𝑖=1

𝐿in (𝑦,𝜔𝑖 ) 𝜌 (𝑦,𝜔,𝜔𝑖 ) |cos 𝜃𝑖 |
𝑝 (𝜔𝑖 )

, (2)

where 𝑝 (𝜔𝑖 ) is the probability density function (PDF) with respect

to solid angle used to sample incident directions 𝜔𝑖 .

As in Kajiya’s formulation, sometimes it is more convenient to re-

formulate Equation 1 over surfaces. To keep the discussion indepen-

dent of the choice of formulation, we use

∫
Ω 𝑓 (𝑥) d𝑥 to generically

represent the integral we want to evaluate with Ω as its domain.

This integral can likewise be estimated using

𝐼̂MC ≔
1

𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖 )
𝑝 (𝑥𝑖 )

, (3)

where 𝑥𝑖 are independent random samples drawn from any source
PDF 𝑝 that is non-zero on the support of 𝑓 . In rendering, one often

draws samples proportional to individual terms of the rendering

equation to reduce variance (e.g., the BSDF 𝜌). To perform even bet-

ter importance sampling, ReSTIR instead uses RIS to draw samples

approximately proportional to the product of multiple terms in the

integrand (e.g., 𝐿in · 𝜌 · |cos 𝜃 |).

We review RIS and generalized RIS next (Sections 2.1 and 2.2); Sec-

tion 2.3 discusses a streaming RIS implementation via reservoir sam-

pling. Section 2.4 then describes how correlations arise within Re-

STIR due to resampling. Section 2.5 reviews theMetropolis–Hastings

algorithm we use in Section 3 to resolve correlation artifacts.

2.1 Resampled Importance Sampling (RIS)
RIS [Talbot et al. 2005; Lin et al. 2022] enables unbiased estimation

and sample generation from a non-negative target function 𝑝 with

an unknown normalization factor

∫
Ω 𝑝 (𝑦) d𝑦. It does so by rewriting

the standard Monte Carlo estimator from Equation 3 as

1

𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖 )
𝑝 (𝑥𝑖 )

(∫
Ω
𝑝 (𝑦) d𝑦

)
. (4)

The normalization factor is estimated by generating𝑀 ≥ 1 candi-

date samples y = {𝑦1, . . . , 𝑦𝑀 } from a source PDF 𝑞 that may be

suboptimal but easy to sample from (e.g., 𝑞 ∝ 𝜌), yielding

1

𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖 )
𝑝 (𝑥𝑖 )

©­« 1

𝑀

𝑀∑︁
𝑗=1

𝑝 (𝑦 𝑗 )
𝑞(𝑦 𝑗 )

ª®¬ . (5)

The samples x = {𝑥1, . . . , 𝑥𝑁 } in turn are selected by randomly

choosing an index 𝑗 ∈ {1, . . . , 𝑀}, 𝑁 times, from the candidate pool

y with discrete probabilities:

P( 𝑗 | y) =
𝑤 (𝑦 𝑗 )∑𝑀
𝑘=1

𝑤 (𝑦𝑘 )
. (6)

Here the resampling weight 𝑤 for each candidate 𝑦 𝑗 is given by

𝑤 (𝑦 𝑗 ) =
1

𝑀
𝑝 (𝑦 𝑗 )𝑊 (𝑦 𝑗 ), (7)

where𝑊 ≔ 1/𝑞(𝑦 𝑗 ) is called the (unbiased) contribution weight for
𝑦 𝑗 . The selected samples 𝑥𝑖 are likewise given contribution weights

𝑊 (𝑥𝑖 ) ≔
1

𝑝 (𝑥𝑖 )
©­«
𝑀∑︁
𝑗=1

𝑤 (𝑦 𝑗 )ª®¬ (8)

that assume the role of a reciprocal PDF, though these weights are

only unbiased estimates for elements of the resampled set x. This is
because the parenthesized term for the normalization factor of 𝑝 is

itself an estimator that has variance. Each 𝑥𝑖 ∈x is also distributed

only approximately in proportion to 𝑝 (i.e., 𝑝 is sampled perfectly

only in the limit as𝑀 →∞). Since we resample with replacement,
the set x can contain duplicate samples, which reflects that samples

are selected in proportion to 𝑝 . With this setup, Talbot [2005] shows

that the RIS estimator

𝐼̂RIS ≔
1

𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖 )𝑊 (𝑥𝑖 ) (9)

is unbiased as long as 𝑝 and 𝑞 are non-zero on the support of 𝑓 , i.e.,

E[𝐼̂RIS] =
∫
Ω
𝑓 (𝑥) d𝑥 . (10)
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Combining with Multiple Importance Sampling (MIS). There are
often several reasonable sampling strategies available in rendering,

e.g., BSDF or light sampling. MIS [Veach and Guibas 1995b] allows

multiple strategies to be combined robustly within RIS [Talbot 2005].

When each candidate𝑦 𝑗 has its own source PDF𝑞 𝑗 , thenMISweights

generalize the parenthesized term in Equation 5 with

𝑀∑︁
𝑗=1

𝑚 𝑗 (𝑦 𝑗 )
𝑝 (𝑦 𝑗 )
𝑞 𝑗 (𝑦 𝑗 )

. (11)

Here, 𝑚 𝑗 ≥ 0 is the MIS weight for the 𝑗th sampling technique.

These weights must form a partition of unity, i.e.,
∑𝑀
𝑗=1

𝑚 𝑗 (𝑦) = 1. A

common choice is the balance heuristic𝑚 𝑗 (𝑦) = 𝑞 𝑗 (𝑦)/
∑𝑀
𝑘=1

𝑞𝑘 (𝑦)
[Veach and Guibas 1995b]. With MIS, the resampling weight in

Equation 7 becomes:

𝑤 (𝑦 𝑗 ) =𝑚 𝑗 (𝑦 𝑗 )𝑝 (𝑦 𝑗 )𝑊 (𝑦 𝑗 ), where 𝑊 (𝑦 𝑗 ) =
1

𝑞 𝑗 (𝑦 𝑗 )
. (12)

Notice we recover𝑚 𝑗 = 1/𝑀 when source PDFs are the same for

each sample 𝑦 𝑗 . MIS weights play an important role in ReSTIR—

beyond reducing noise in the resampling weights, they also remove

bias when the supports of the source and target distributions do not

match integrand 𝑓 ’s support (see Section 4 in Bitterli et al. [2020]

and Section 5 in Lin et al. [2022] for further details).

In practice, using RIS with the balance heuristic is costly, as all

sampling strategies (i.e., the source PDFs) must be evaluated for

each candidate sample 𝑦 𝑗 . Bitterli [2022, Chapter 9.1.3] provides

a similarly robust but more efficient heuristic called Pairwise MIS,
which only requires𝑂 (𝑀) PDF evaluations over the entire candidate
pool. We use pairwise MIS when the number of sampling strategies

𝑀 is greater than 2 (e.g., during spatial resampling in ReSTIR; see

Section 2.4); otherwise we use the balance heuristic.

2.2 Generalized Resampled Importance Sampling (GRIS)
So far we assumed the resampling inputs 𝑦 𝑗 ∼ 𝑞 𝑗 share a common

integration domain Ω with integrand 𝑓 . This assumption may no

longer hold when reusing spatially or temporally across an image

(as in ReSTIR), and depends on the integral formulation used for

the rendering equation. For instance, ReSTIR applied to global il-

lumination [Ouyang et al. 2021; Lin et al. 2022] generates samples

from PDFs with respect to solid angle. Reuse across pixels therefore

requires a change of integration domain, necessitating a correction

term in the resampling weights [Ouyang et al. 2021, Equation 11].

ReSTIR for direct lighting [Bitterli et al. 2020] instead integrates

over the surface of all lights, ensuring Ω is fixed across samples.

Recent work by Lin et al. [2022] generalizes RIS to use candidate

samples 𝑦 𝑗 originating from different domains Ω 𝑗 . It achieves this
via shift mapping, i.e., a bijective transformation of samples from

one pixel to corresponding samples on another pixel [Lehtinen et al.

2013]. In particular, if Ω denotes the domain of integration for 𝑓 , and

𝑆 𝑗 : Ω 𝑗 → Ω are shifts that map 𝑦 𝑗 ∈ Ω 𝑗 to the modified sample

𝑦′
𝑗
∈ Ω, then the resampling weight for 𝑦 𝑗 becomes

𝑤 (𝑦 𝑗 ) =𝑚 𝑗 (𝑦′𝑗 )𝑝 (𝑦
′
𝑗 )𝑊 (𝑦 𝑗 ) ·

����� 𝜕𝑦′𝑗𝜕𝑦 𝑗

����� , (13)

ALGORITHM 1: Weighted reservoir sampling (𝑁 = 1)

1: class Reservoir
2: 𝑥 ← ∅ ⊲output sample
3: 𝑤sum ← 0 ⊲sum of resampling weights
4: 𝑀 ← 0 ⊲number of samples seen so far
5: 𝑊 ← 0 ⊲contribution weight (set in Algorithm 2)
6: function update(𝑦, 𝑤)

7: 𝑤sum ← 𝑤sum + 𝑤
8: 𝑀 ← 𝑀 + 1

9: if rand() < (𝑤/𝑤sum) then
10: 𝑥 ← 𝑦

where the Jacobian determinant |𝜕𝑦′
𝑗
/𝜕𝑦 𝑗 | accounts for the change

of integration domain from Ω 𝑗 to Ω. (Jacobians also appear in MIS

weights𝑚 𝑗 ; see Appendix B). The rest of the RIS procedure in Sec-

tion 2.1 remains unchanged—substituting these resampling weights

to Equation 8 provides the contribution weight for the selected 𝑦′
𝑗
.

Various shift mappings have been proposed to maximize the

similarity between 𝑦′
𝑗
and 𝑦 𝑗 such that |𝜕𝑦′

𝑗
/𝜕𝑦 𝑗 | ≈ 1 [Hua et al.

2019, Section 3]. We describe the shift mappings we use in Section 4.

2.3 Weighted Reservoir Sampling (WRS)
WRS [Chao 1982] facilitates efficient RIS implementations using

a single pass over elements in a stream {𝑦1, . . . , 𝑦𝑀 } to select a

random sample. As in Section 2.1, each stream element has an asso-

ciated resampling weight𝑤 . The basic idea is to process the stream

one element at a time, and to select—from the 𝑚 < 𝑀 elements

processed so far—a sample 𝑦 𝑗 with probability𝑤 (𝑦 𝑗 )/
∑𝑚
𝑘=1

𝑤 (𝑦𝑘 ).
The next stream element 𝑦𝑚+1 then replaces 𝑦 𝑗 with probability

𝑤 (𝑦𝑚+1)/
∑𝑚+1
𝑘=1

𝑤 (𝑦𝑘 ). The stream length 𝑀 need not be known

ahead of time, and WRS can be used to select 𝑁 > 1 samples if

needed [Wyman 2021, Chapter 22.6].

WRS reduces the storage needed for resampling to𝑂 (𝑁 ). A light-

weight data structure called a reservoir is typically used to process

the stream and store the selected samples, the stream length𝑀 and

the weight sum

∑𝑀
𝑗=1

𝑤 (𝑦 𝑗 ); see Algorithm 1.

2.4 Reservoir-based Spatiotemporal Resampling
ReSTIR applies RIS and WRS in a chained fashion within and across

pixels of an image. The first key idea is to approximately importance

samplemultiple terms in the rendering equation’s integrand through

a per-pixel target function 𝑝 . The second is to reuse samples from

neighboring pixels to exploit the similarity between their target

functions. The algorithm performs four steps every frame:

(1) (Initial resampling) Select 𝑁 samples from a candidate pool

of 𝑀 samples at each pixel. Equations 12 and 8 provide the

resampling and contribution weights for the candidate and

selected samples respectively. A reservoir stores the selected

samples and their estimated contribution weights.

(2) (Temporal resampling) Use Algorithm 2 to reuse samples

across two corresponding pixels in consecutive frames 𝑡 and

𝑡 −1. The resampling weight for each sample is computed

using the contribution weight already stored in its reservoir.
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ALGORITHM 2: Combining two reservoirs for temporal reuse (𝑁 = 1)

Input: Reservoirs 𝑟𝑖 and 𝑟 𝑗 for pixels 𝑖 and 𝑗 from frames 𝑡 and 𝑡 − 1

(resp.), and a cap for the sample count in 𝑟 𝑗

Output: A combined reservoir 𝑠 for frame 𝑡

1: function combineTemporalReservoirs(𝑖, 𝑗, 𝑟𝑖 , 𝑟 𝑗 , 𝑀cap)

2: ⊲Cap confidence weight for 𝑟 𝑗
3: 𝑟 𝑗 .𝑀 ← min(𝑟 𝑗 .𝑀, 𝑀cap)
4: ⊲Compute resampling weight for sample in 𝑟𝑖
5: 𝑥𝑖 ← 𝑟𝑖 .𝑥

6: 𝑚𝑖 ← computeMis(𝑥𝑖 , 𝑝𝑖 , 𝑟𝑖 .𝑀, 𝑝 𝑗 , 𝑟 𝑗 .𝑀) ⊲Equation 31
7: 𝑤𝑖 ←𝑚𝑖 · 𝑝𝑖 (𝑥𝑖 ) · 𝑟𝑖 .𝑊 ⊲Equation 12
8: ⊲Shift sample in 𝑟 𝑗 to pixel 𝑖 and compute its resampling weight

9: 𝑥′
𝑗
, |𝜕𝑥′

𝑗
/𝜕𝑥 𝑗 | ← shiftMap(𝑟 𝑗 .𝑥, 𝑗, 𝑖) ⊲Section 4

10: 𝑚 𝑗 ← computeMis(𝑥′
𝑗
, 𝑝 𝑗 , 𝑟 𝑗 .𝑀, 𝑝𝑖 , 𝑟𝑖 .𝑀) ⊲Equation 32

11: 𝑤𝑗 ←𝑚 𝑗 · 𝑝𝑖 (𝑥′𝑗 ) · 𝑟 𝑗 .𝑊 · |𝜕𝑥′𝑗 /𝜕𝑥 𝑗 | ⊲Equation 13
12: ⊲Combine weighted samples into a single reservoir
13: Reservoir 𝑠

14: 𝑠.update(𝑥𝑖 , 𝑤𝑖 )
15: 𝑠.update(𝑥′

𝑗
, 𝑤𝑗 )

16: 𝑠.𝑀 ← 𝑟𝑖 .𝑀 + 𝑟 𝑗 .𝑀
17: 𝑠.𝑊 ← 1

𝑝̂𝑖 (𝑠.𝑥 )
𝑠.𝑤sum ⊲Equation 8

18: return 𝑠

(3) (Spatial resampling) For each pixel, select𝐾 random reservoirs

from a small spatial neighborhood and merge them into the

pixel’s reservoir. This is similar to Algorithm 2 and can be

repeated multiple times; for reference see Bitterli et al. [2020,

Algorithm 4] and Ouyang et al. [2021, Algorithm 2].

(4) (Final shading) Use Equation 9 to compute each pixel’s color.

Spatiotemporal reuse gives each pixel access to a large population

of samples from its local neighborhood. As a result, ReSTIR quickly

finds samples that make large contributions to pixels, using MIS

weights and shift mappings to ensure unbiased estimation within

the pixel where samples are reused. Nonetheless, gains from shar-

ing samples are not indefinite, and correlation artifacts may arise

from undersampling, imperfect shift mappings, and wrongly set

parameters. For instance, performing multiple rounds of spatial re-

sampling with too small a pixel radius can lead to blotchy artifacts.

This happens when RIS identifies too few samples to effectively

importance sample the integrand, e.g., due to difficult-to-sample

lighting. Likewise, inadequately designed shift mappings may intro-

duce geometric singularities into a sample’s resampling weight via

the Jacobian determinant, causing the sample to be widely reused.

During temporal resampling, one must cap the stream length 𝑀

of a temporally reused sample (Algorithm 2, line 3) to guarantee

convergence—not doing so results in convergence to a wrong result

[Lin et al. 2022, Section 6.4]. Unfortunately, the ideal𝑀cap cannot

always be determined in a scene-agnostic way—small caps inade-

quately utilize the temporal history and result in higher variance

(Lin et al. [2022, Figure 9]), while large caps increase correlation. In

particular, increasing𝑀cap decreases the relative weight and hence

selection probability of newly proposed samples, while artificially

inflating a reservoir sample’s importance. As a result, an outlier

reservoir sample’s estimated contribution weight must first decay

to match a pixel’s actual value. Unfortunately, the outlier may be

more noise more correlation artifacts

Mcap = 5 Mcap = 50Mcap = 20

RMSE: 0.1432 RMSE: 0.1185 RMSE: 0.0964

Fig. 4. Parameters for ReSTIR sample reuse can be difficult to set in a scene
agnostic way. For instance, a small𝑀cap inadequately exploits prior samples,
leading to noise (left), while a large𝑀cap value introduces correlations (right).
Our approach offers greater leeway in setting parameter values that trade
noise for correlation (see Figures 11 and 12).

spread between neighboring pixels before it is replaced. This can

lead to visible correlation artifacts and sample impoverishment over

multiple frames (see Figure 4). We use the Metropolis-Hastings

algorithm, described next, to address these issues in ReSTIR.

2.5 Metropolis–Hastings (MH)
Like RIS, the MH [Metropolis et al. 1953; Hastings 1970] algo-

rithm generates a set of samples distributed proportionally to a

non-negative and possibly unnormalized target function 𝑝 . While

RIS uses resampling to achieve this goal, MH instead constructs a

Markov chain that has a stationary distribution proportional to 𝑝 .

In more detail, given an initial sample 𝑥0 ∈ Ω, MH incrementally

constructs a sequence of random samples 𝑥0, 𝑥1, 𝑥2, ... as follows:

(1) For 𝑘 ≥ 0, generate a candidate sample 𝑧𝑘 by applying a

random mutation to the current sample 𝑥𝑘 in the chain, i.e.,
sample 𝑧𝑘 from a proposal density 𝑇 (𝑥𝑘 → 𝑧𝑘 ).

(2) Compute an acceptance probability for the candidate 𝑧𝑘 :

𝑎(𝑥𝑘 → 𝑧𝑘 ) ≔ min

(
1,
𝑝 (𝑧𝑘 ) 𝑇 (𝑧𝑘 → 𝑥𝑘 )
𝑝 (𝑥𝑘 ) 𝑇 (𝑥𝑘 → 𝑧𝑘 )

)
. (14)

(3) Set 𝑥𝑘+1 = 𝑧𝑘 with probability 𝑎; otherwise set 𝑥𝑘+1 = 𝑥𝑘 .

The acceptance probability 𝑎(𝑥𝑘 → 𝑧𝑘 ) ensures that samples

are distributed proportional to the target function 𝑝 . The detailed
balance condition guarantees the existence of the Markov chain’s

stationary distribution by requiring the transition density between

any two sample values to be equal:

𝑝 (𝑥𝑘 )𝑇 (𝑥𝑘 → 𝑧𝑘 )𝑎(𝑥𝑘 → 𝑧𝑘 ) = 𝑝 (𝑧𝑘 )𝑇 (𝑧𝑘 → 𝑥𝑘 )𝑎(𝑧𝑘 → 𝑥𝑘 ) .
(15)

To generate the correct distribution from all inputs, Markov chains

must be ergodic. This can be guaranteed easily with mutations that

always propose candidate samples over the entire support of 𝑝 , i.e.,

𝑇 (𝑥𝑘 → 𝑧𝑘 ) > 0 for all 𝑥𝑘 and 𝑧𝑘 where 𝑝 (𝑥𝑘 ) > 0 and 𝑝 (𝑧𝑘 ) > 0.

Even with this constraint, there is still much freedom in choosing

mutation strategies—Section 4 describes the strategies we use.
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RIS,

pixel i - 1

RIS,

pixel i

RIS,

pixel i + 1

Temporal RIS

Temporal RIS

Temporal RIS

Spatial RIS

over adjacent 


pixels 

Final 

shading

MH mutations

MH mutations

Samples from last frame

MH mutations

Optional block

Fig. 5. Our approach introduces Metropolis-Hastings mutations as an ad-
ditional block into the larger ReSTIR algorithm for spatiotemporal sample
reuse. Samples are mutated within each pixel after temporal resampling
(Algorithm 2) to mitigate correlation artifacts and sample impoverishment.

Unlike RIS, MH does not estimate the value of integrals. It does

however produce valid samples from its target functionwhich can be

used by a secondary estimator such as RIS for estimation (Section 3).

Eliminating start-up bias. MH assumes the initial sample 𝑥0
is

generated with probability density proportional to 𝑝 ; using a sample

not from this distribution results in start-up bias. A typical solution

runs the Markov chain for several iterations until the initial state

is “forgotten”, i.e., discarding several early samples generated by

MH. Sadly, the length of this burn-in period is tricky to determine

as it depends on the initial sample value and its actual distribution.

Veach [1998, Chapter 11.3.1] instead proposed resampling 𝑥0
from

𝑀 candidate samples y = {𝑦1, . . . , 𝑦𝑀 } generated using an easy-to-

sample source PDF (much like Section 2.1). Equations 6 and 7 then

provide the discrete probabilities and resampling weights (resp.)
needed to select a candidate, i.e., 𝑥0 = 𝑦 𝑗 for some 𝑗 ∈ {1, . . . , 𝑀}.
Contributions of mutated samples initialized from 𝑥0

are weighted

by Equation 8 to guarantee unbiasedness. Our mutations likewise

leverage ReSTIR’s built-in resampling to avoid start-up bias.

3 METHOD
Sample selection with RIS from a target distribution improves with

larger populations of candidate samples. ReSTIR provides access

to a sizable candidate pool for resampling through spatiotemporal

reuse, enabling it to quickly identify high-contribution samples via

RIS. However, at times ReSTIR extensively reuses a few samples

over multiple frames due to imperfect importance sampling and

suboptimal parameters, with no mechanism to easily diversify an

existing population of high-contribution samples.

Inspired by Sequential and Population Monte Carlo techniques

(Section 6), we interleave reservoir resampling with MCMC muta-

tions to mitigate correlations and sample impoverishment caused

by spatiotemporal reuse. Our key observation is that mutating reser-

voir samples with the same per-pixel target function as RIS helps

to quickly decorrelate the resampled population, especially when

it contains outliers. In Algorithm 3, we use Metropolis-Hastings to

locally perturb temporal reservoir samples selected by Algorithm 2;

interleaving with resampling then diversifies the samples ReSTIR

shares between pixels. We discuss key aspects of our work next,

starting with how to modify mutated samples’ contribution weights

to guarantee unbiased results.

ALGORITHM 3: Mutate sample via Metropolis-Hastings

Input: Pixel i, reservoir 𝑟𝑖 from Algorithm 2, and iteration count

Output: Reservoir 𝑟𝑖 with its sample mutated in proportion to 𝑝𝑖

1: function mutateSample(𝑖, 𝑟𝑖 , iters)

2: 𝑧 ← metropolisHastings(𝑟𝑖 .𝑥, 𝑝𝑖 , iters) ⊲Section 2.5
3: 𝑟𝑖 .𝑊 ← 𝑝̂𝑖 (𝑟𝑖 .𝑥 )

𝑝̂𝑖 (𝑧)
· 𝑟𝑖 .𝑊 ⊲Equation 16

4: 𝑟𝑖 .𝑥 ← 𝑧

5: return 𝑟𝑖

Modified contribution weights. A contribution weight𝑊 (Equa-

tion 8) estimates the reciprocal value of the target PDF 𝑝/
∫
Ω 𝑝 that

a sample is approximately distributed according to.𝑊 is needed to

compute resampling weights for combining reservoirs (Algorithm 2,

lines 7 and 11) and to estimate per-pixel shading (Equation 9).

Contribution weights are sample dependent. Thus, a sample that

undergoes mutation cannot reuse the weight associated with its

original state, i.e., a mutated sample’s contribution weight should

provide an unbiased estimate for the sample’s reciprocal target

PDF. Our key contribution is to show that the unbiased contribution

weight for anymutated sample 𝑥𝑘 , from aMarkov chain 𝑥0, ..., 𝑥𝑘 , ...,

can be computed via the relation

𝑊 (𝑥𝑘 ) = 𝑝 (𝑥0)
𝑝 (𝑥𝑘 )

𝑊 (𝑥0) . (16)

Equation 16 does not depend on samples between 𝑥0
and 𝑥𝑘 in the

Markov chain and imposes no constraints on computing𝑊 (𝑥0),
which can arise from prior resampling, runs of MH, or a mix of the

two. This provides flexibility in where and when to mutate samples

during ReSTIR (as long as mutations are confined to a given pixel).

One can get an intuitive feel for Equation 16 by substituting in

the expression for𝑊 (𝑥0) from Equation 8:

𝑊 (𝑥𝑘 ) =
HHH𝑝 (𝑥0)
𝑝 (𝑥𝑘 )

· 1

HHH𝑝 (𝑥0)
©­«
𝑀∑︁
𝑗=1

𝑤 (𝑦 𝑗 )
ª®¬ =

1

𝑝 (𝑥𝑘 )
©­«
𝑀∑︁
𝑗=1

𝑤 (𝑦 𝑗 )
ª®¬ . (17)

Notice that the estimated normalization factor for 𝑝 , i.e., the sum
of weights𝑤 , remains unchanged for both the initial and mutated

samples 𝑥0
and 𝑥𝑘 . This normalization factor arises via RIS prior to

performing mutations (e.g., Algorithm 2, lines 14-15). Meanwhile,

MH treats the resampling weights as fixed, simply redistributing a

reservoir’s sample population proportionally to the per-pixel target

function 𝑝 . Equation 16 then encodes any required correction to a

sample’s contribution weight to account for the sample mutation—

unlike temporal and spatial resampling which reuse samples across

different pixels, this equation does not contain any MIS weight or

shift mapping as there is no change of integration domain, with

samples only mutated within 𝑝’s support.

Start-up bias. Algorithm 3 does not require a burn-in period for

mutations, even though the samples used to initialize MH are not dis-

tributed exactly according to 𝑝 . This is because we use the unbiased

contribution weights of mutated samples for subsequent steps in

ReSTIR, including when computing shading and resampling weights

for further reuse. This approach eliminates start-up bias completely
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for any mutated sample 𝑥𝑘 and function 𝑓 by ensuring

E[𝑓 (𝑥𝑘 )𝑊 (𝑥𝑘 )] =
∫
Ω
𝑓 (𝑥) d𝑥 . (18)

Appendix A provides a formal proof. Note that avoiding start-up bias

does not imply samples generated using MH are well-distributed

according to 𝑝 . However, since we initialize MH using reservoir

samples that are already distributed roughly proportional to the

target function from resampling, our method does not rely on MH

to find important samples (see Figure 13)—rather it decorrelates and

diversifies outlier samples by mutating them locally in proportion

to 𝑝 and adjusting their estimated contribution weight accordingly.

When to perform mutations? Temporal reservoirs often contain

stale samples, as ReSTIR assigns higher relative importance to ex-

isting samples. We therefore mutate samples output by Algorithm 2

within each pixel (Figure 5), using the same per-pixel target func-

tion as RIS for the current frame. Mutating samples randomly after

temporal resampling diversifies the inputs to spatial resampling,

protecting against possibly escalating amounts of sample impover-

ishment caused by repeated reuse.

Applying Algorithm 3 within each pixel to mutate samples after

the initial or spatial resampling steps in ReSTIR (Section 2.4) is

possible but not required. Like mutations, initial resampling serves

to rejuvenate the sample population every frame (by introducing

new independent samples into the population). Samples from spatial

resampling are stored for future reuse; mutating them proportional

to the current target function would cause them to lag by one frame.

Finally, Algorithm 3 places no restrictions on MH iteration count.

To improve runtime performance, one could adaptively specify mu-

tation counts per pixel (including no mutations) using, for instance,

local correlation estimates. We leave development of such heuristics

to future work and use a fixed, user-specified number of iterations.

4 IMPLEMENTATION DETAILS
We perform mutations for both direct and indirect illumination in

ReSTIR using Kelemen et al. [2002]’s primary sample space (PSS)
parameterization. This conveniently allows applying mutations di-

rectly to random number sequences used to generate light-carrying

paths, while constraining path vertices to remain on the scene man-

ifold. Moreover, it simplifies use of certain shift mappings in ReSTIR

PT, e.g., the random replay shift [Lin et al. 2022, Section 7.2].

In this section, we represent samples with a path vertex notation

x̄ = [x0, x1, . . . , x𝑘 ] ∈ Ω𝑘 (M), with Ω𝑘 (M) the space of all paths
of length 𝑘 on the scene manifoldM (e.g., 𝑘 = 2 for direct lighting).

Each path x̄ is uniquely determined
2
by a vector of random numbers

ū = [𝑢0, 𝑢1 . . .] ∈ [0, 1]𝑂 (𝑘) . We use 𝑆 to denote a shift mapping

from a base path x̄ in one pixel to an offset path ȳ in another pixel, i.e.,
𝑆 ( [x0, x1, . . . , x𝑘 ]) = [y0

, y
1
, . . . , y𝑘 ]. Mutated paths and random

numbers are represented using z̄ and v̄ (resp.).

2
As in Bitterli et al. [2017], we bijectively map between paths and their random numbers

by padding paths with extra dimensions.

Base path from 
frame   t − 1

Offset path (hybrid  
shift map) for frame      t

Mutated offset  
path for frame  t

Diffuse

Diffuse
x1 x3

x4 = y4

y1

x5

y2

y3

x2

Glossy

z4

Fig. 6. During temporal resampling, the hybrid shift in ReSTIR PT connects
the offset path for frame 𝑡 to the base path from frame 𝑡 − 1 when it
encounters two consecutive diffuse vertices x3, x4; prior to that it reuses
random numbers from the base path to trace rays. Our reconnection vertex
mutation then perturbs the reconnection vertex y

4
in the offset path.

4.1 Primary sample space
The PSS parameterization reformulates the acceptance probability

in Equation 14 in terms of a contribution function 𝐶 as follows:

𝑎(ū→ v̄) ≔ min

(
1,
𝐶 (v̄) 𝑇 (v̄→ ū)
𝐶 (ū) 𝑇 (ū→ v̄)

)
. (19)

For us 𝐶 (ū) ≔ 𝑝 (ȳ(ū))/𝑞(ȳ(ū)), where 𝑝 is the per-pixel target

function (also used for resampling) and 𝑞 is the sampling PDF for

generating ȳ from the random numbers ū 3
(with mutated path z̄

likewise generated from v̄). As suggested by Kelemen et al. [2002],

we compute v̄ by perturbing each element of ū with Gaussian noise.

We use 𝑠 = 𝑠2 exp(− log(𝑠2/𝑠1)𝑈 ) as our perturbation amount with

𝑈 ∼ [0, 1) and 𝑠 ∈ (𝑠1, 𝑠2].

4.2 Direct Lighting
Our ReSTIR DI mutations perturb the directions of reservoir samples

via their random numbers. For direct lighting, path ȳ = [y
0
, y

1
, y

2
]

and its PDF𝑞(ȳ) equals 𝑝𝜌 (𝜔) |cos 𝜃 |/|y2
−y

1
|2, where 𝑝𝜌 is the PDF

for importance sampling the BSDF 𝜌 , 𝜔 is the unit vector from y
1
to

y
2
, and 𝜃 is the angle between𝜔 and the geometric surface normal at

y
2
. The PDF 𝑞(z̄) is defined analogously as 𝑝𝜌 (𝜈) |cos 𝜙 |/|z2 − y1

|2
with direction 𝜈 pointing from y

1
to mutated vertex z2; 𝜙 is the

angle between 𝜈 and the surface normal at z2. Random numbers for

the starting MH sample y
2
are recovered by inverting the sampling

procedure for direction 𝜔 [Bitterli et al. 2017]. Since this mutation

is symmetric, the transition kernels in Equation 19 cancel.

4.3 Indirect Illumination
For ReSTIR PT, our mutation strategies build on shift maps. Unlike

a mutation, a shift mapping deterministically perturbs a base path x̄
through one pixel into an offset path ȳ through another pixel during
resampling (e.g., Algorithm 2, line 9). For instance, a random replay
(RR) shift reuses the random numbers that generate x̄ to trace ȳ.
Since tracing a full path is expensive, a reconnection is often used to

connect the offset path to the base path at a given index 𝑖 , i.e., y𝑗 = x𝑗
for 𝑗 ≥ 𝑖 . Connecting paths immediately with 𝑖 = 2 is called the

3
The starting unmutated path ȳ for MH could have been generated in ReSTIR from one

of many sampling schemes (e.g., light or BSDF sampling), or over multiple rounds of

resampling. Here, we do not require the random numbers ū that originally generated

ȳ; Sections 4.2 and 4.3 discuss the ū we use for mutations.
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reconnection (R) shift. Compared to random replay, reconnections are

often better at producing paths with similar contributions for diffuse

surfaces. But reconnecting y𝑖−2
, y𝑖−1

to x𝑖 on a glossy surface can

introduce paths with near-zero throughput, or introduce geometric

singularities when y𝑖−1
and x𝑖 are too close.

We use Lin et al.’s [2022] hybrid (H) shift strategy (see Figure 6) to
evaluate mutations in ReSTIR PT for all our results except Figure 8

where we use random replay. This shift mapping postpones recon-

nection using random replay until certain connectability conditions

are met (e.g., surface roughness and distance between vertices).

Mutation strategies. As with direct lighting, one way to mutate a

path is to perturb the random numbers used to generate it. Like a

random replay shift, this approach expensively requires tracing a

full path for each proposed mutation (which may be rejected). We

refer to this mutation as a full path (FP) mutation.

A more computationally efficient approach mutates the offset

path with random replay up to the reconnection vertex y𝑖 = x𝑖 , and
then connects to the base path starting at x𝑖+1 instead (the full path

is mutated if a reconnection is not possible). We observe that this

partial path (PP) mutation strategy is not only faster, but also has

higher acceptance (70% vs. 40% on the scene from Figure 1) as it min-

imizes changes to the geometry of high-contribution paths selected

via resampling. Moreover, its paths have similar contributions to

the offset paths it mutates. Note that mutating path vertices with

random replay until the reconnection to x𝑖+1 can cause connectabil-

ity conditions for the hybrid shift to fail. We reject such mutated

samples by defining their transition PDF to be 0.

Taking a step further, our final strategymutates only the reconnec-

tion vertex y𝑖 (Figure 6) while keeping the rest of the offset path un-

changed, i.e., [z0, . . . , z𝑘 ] = [y0
, y

1
, . . . , y𝑖−1

, z𝑖 , x𝑖+1, . . . , x𝑘 ], where
y𝑖−1

connects to z𝑖 with mutated random numbers. We found this

reconnection vertex (RV)mutation only slightly less effective at reduc-

ing correlations. It is, however, significantly faster when performing

multiple mutations, as only rays from y𝑖−1
to z𝑖 and z𝑖 to x𝑖+1 need

to be traced. We use this mutation to generate results in Section 5,

unless noted otherwise. Figure 10 compares the effectiveness of

these mutation strategies.

Finally, note that the transition kernels 𝑇 (v̄→ ū) and 𝑇 (ū→ v̄)
are no longer symmetric when offset paths contain a reconnection

vertex. In Appendix C, we show that their ratio equals:

𝑇 (v̄→ ū)
𝑇 (ū→ v̄) =

|cos 𝜙 |
|cos 𝜃 |

|y𝑖+1 − y𝑖 |2

|y𝑖+1 − z𝑖 |2
𝑝 (𝜈𝑖−1, 𝜈𝑖 )
𝑝 (𝜔𝑖−1, 𝜔𝑖 )

𝑝 (𝜈𝑖 , 𝜔𝑖+1)
𝑝 (𝜔𝑖 , 𝜔𝑖+1)

, (20)

where𝜔𝑖−1, 𝜔𝑖 and𝜔𝑖+1 are unit vectors from y𝑖−1
to y𝑖 , y𝑖 to y𝑖+1 (=

x𝑖+1) and y𝑖+1 to y𝑖+2 (= x𝑖+2) respectively, 𝜈𝑖−1 and 𝜈𝑖 are unit

vectors from y𝑖−1
to z𝑖 and z𝑖 to y𝑖+1, 𝜃 is the angle between 𝜔𝑖

and the surface normal at y𝑖+1, 𝜙 is the angle between 𝜈𝑖 and the

surface normal at y𝑖+1, and 𝑝 is the solid angle PDF used to sample

an outgoing direction. Any mutations applied to random numbers

for the subpath [y
0
, y

1
, . . . , y𝑖−1

] do not factor in the ratio as they

are symmetric.

Reservoir storage. Lin et al. [2022, Section 8.2] note ReSTIR PT

stores additional data in the reservoir from Algorithm 1, specifically

a seed for random replay and the resampled path’s reconnection

vertex. For the full and partial path mutation strategies, we need

0 mutations
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11ms

1 spp 2 spp 1 spp

22ms 12.5ms

30ms 58ms 37ms

12.5ms 24.5ms 14.2ms

7.1ms 13.5ms 7.5ms

Fig. 7. Correlation artifacts often do not disappear simply by using more
samples, justifying the overhead of performing mutations.

the path’s entire random number sequence since PSS mutations

transform this sequence—as a result, the sequence cannot be regen-

erated from its original seed. This increases the reservoir size as

path length grows. Luckily, the reconnection vertex mutation avoids

this overhead, only mutating random numbers that sample z𝑖 from
the fixed offset vertex y𝑖−1

. As in ReSTIR DI, we recover random

numbers for y𝑖 by inverting the sampling of direction y𝑖 −y𝑖−1
. The

only additional information we store is the offset vertex y𝑖+1 (which
connects to mutated vertex z𝑖 ).

5 RESULTS AND DISCUSSION
We prototyped our method in the open-source Falcor rendering

framework [Kallweit et al. 2022]. All results use a GeForce RTX 3090

GPU at 1920 × 1080 resolution. Our direct lighting implementation

uses the same settings as Bitterli et al. [2020], i.e., initial candidate
samples𝑀 = 32, spatial reuse radius of 30 pixels from the current

pixel, and𝑀cap = 20. For indirect illumination, we set𝑀 = 32 and

the spatial reuse radius to 20 similar to Lin et al. [2022], but use a

longer temporal history with 𝑀cap = 50 (unless noted otherwise).

Our supplementary video shows 1 spp results for all our scenes;

Table 1 gives single frame timings.

As we show in Figure 1 and Figures 7–12, short-range correlation

artifacts are noticeably reduced in scenes with glossy materials

and difficult lighting with just 1–5 mutations; further mutations

have diminishing returns in improving image quality (Figures 9 and

10). Mutation cost overhead is generally less than simply increasing

sample count (Figure 7), and recent denoisers [NVIDIA 2017] provide
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Fig. 8. Mutationsmitigate sample impoverishment in ReSTIR by diversifying
the sample population. The bottom row visualizes duplicate samples in 20×20

pixel neighborhoods on the scene from Figure 3. The supplemental video
shows improvements in an animation as the door’s angle is decreased.

considerably better results with our decorrelated samples (Figure 1).

Figure 8 shows mutations greatly reduce sample impoverishment,

with fewer reservoirs sharing the exact same sample realizations.

Compared to standard path tracing, ReSTIR is much faster at

achieving equal-error via correlated sampling for real-time direct

[Bitterli et al. 2020, Figure 8] and global illumination [Lin et al. 2022,

Figure 13]. Mutations however provide only marginal improvements

in mean squared error in ReSTIR samplers (Figures 9 and 13), with-

out ever negatively impacting results. Akin to blue-noise dithering

[Georgiev and Fajardo 2016; Heitz and Belcour 2019], our image

quality improves despite errors having similar magnitudes. The rea-

son is mutating within a pixel leaves the sum of resampling weight

unchanged in Equation 17, and these weights ultimately control RIS

estimator variance (Equation 9). Mutations do slightly reduce vari-

ance, as they indirectly alter resampling weights of future samples

thanks to spatiotemporal reuse of the new, more diverse sample pop-

ulation; the supplementary document has more details. In Figures

11 and 12 we also ablate 𝑀cap values to show the greater leeway

our approach offers for this parameter, allowing use of larger values

to trade noise for correlation.

Since ReSTIR often suffers from correlation artifacts, we quan-

tify improvements in correlation by computing sample covariance

between pixels, which naturally generalizes sample variance. This

metric measures the joint variability of two random variables (e.g.,
whether error in two pixels varies similarly). For pixels 𝑖 and 𝑗 in

image 𝐼 , sample covariance Cov(𝑖, 𝑗) between 𝑖 and 𝑗 is given by

Cov(𝑖, 𝑗) = 1

𝐾 − 1

𝐾∑︁
𝑘=1

(
𝐼𝑘𝑖 − 𝐼𝑖

) (
𝐼𝑘 𝑗 − 𝐼 𝑗

)
, (21)

0 mutations 1 mutation 5 mutations

20 mutations 50 mutations Reference

Mutations
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al

 c
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ia
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e
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RM
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0 mutations
1 mutations
5 mutations

20 mutations
50 mutations

Fig. 9. Sample mutations reduce short range correlation artifacts produced
by ReSTIR, with even 1-5 mutations providing noticeable improvements in
image quality (measured in the bottom left using average radial covariance).
Mutations typically have little impact on mean squared error (shown in the
bottom right at equal spp), as we perturb samples only within each pixel.

Mutations

R
ad

ia
l c

ov
ar

ia
nc

e

Mutations

full path mutation 
partial path mutation 
reconnection vertex mutation 

Kitchen
full path mutation 
partial path mutation 
reconnection vertex mutation 

Victorian House

Fig. 10. Reduction in covariance depends on the mutation strategy, as in any
MCMC technique. Left: On the Kitchen (Figure 9), we get smaller covariance
using the hybrid shift with partial path or reconnection vertex mutations
as they minimize changes to paths selected by resampling. Right: In the
Victorian house (Figure 12, bottom row), reconnection vertex mutations are
less effective as fewer paths are reconnected due to a lack of consecutive
diffuse vertices, whereas partial path mutations just perturb the entire path.

where 𝐾 is the number of images used to estimate covariance (we

use 𝐾 = 100), and 𝐼 is the average of 𝐾 images. To capture the joint

variability of a pixel with its local neighborhood, in our experiments

we average covariance estimates over boxes of a given radius cen-

tered at each pixel. We then further average over the entire image

to get a single number. Figure 9 (bottom left) shows average radial

covariance decreases with increasing spatial radius. This is expected
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RMSE: 0.0964 
0 mutations

 
1 mutation
Mcap = 50

RMSE: 0.0958 
1 mutation

Reference

Fig. 11. By reducing correlation artifacts, mutations allow for use of larger
𝑀cap values in ReSTIR to trade noise for correlation, yielding lower error in
scenes with difficult to sample light-carrying paths (see Figure 4 for results
with smaller𝑀cap values).

as ReSTIR only reuses samples in local neighborhoods (so small-

scale correlation artifacts are more pronounced); mutations reduce

covariance in these short ranges.

Table 1 lists the reduction in average covariance (with pixel radius

equal to 8) and the FLIP weighted median score [Andersson et al.

2020] we observe on our scenes—FLIP tends to be marginally more

sensitive to short range correlations than mean squared error. As

correlations are typically localized, the reduction is even larger for

the image insets in our figures compared to the results in Table 1.

Ineffective shift mappings in ReSTIR often result in increased corre-

lations; mutations compensate for this shortcoming. For instance,

mutations typically have fewer correlation artifacts to resolve with

a hybrid shift in ReSTIR PT compared to, e.g., random replay (Fig-

ures 13 and 8 respectively), which highlights the benefit of using

good shift mappings. In contrast, mutations provide greater covari-

ance reduction in the scenes rendered with ReSTIR DI (Figure 7),

where higher covariance stems from vertex reconnections failing to

preserve path contributions for low roughness surfaces.

Why mutations help? The supplemental document details why

mutations reduce covariance, simplifying down to the following,

somewhat unintuitive, phenomenon: without mutations, covariance

between pixels 𝑖 and 𝑗 stems from the mismatch between the distri-

butions of input samples and the target functions at 𝑖 and 𝑗 (Equation

16 in the supplemental). However, in the limit of infinite mutations,

covariance is determined by each sample’s mismatch with its own

pixel’s target function (Equation 10 in the supplemental) due to the

ratio 𝑝 (𝑥0)/𝑝 (𝑥𝑘 ) in the mutated contribution weight (Equation 16);

this mismatch tends to be smaller. Though our analysis predicts that

covariance does not vanish completely even with infinite mutations,

our results show covariance is often reduced with just one mutation.

6 RELATED WORK
Our method builds directly on the recent ReSTIR family of algo-

rithms for real-time direct [Bitterli et al. 2020] and global illumi-

nation [Ouyang et al. 2021; Lin et al. 2021, 2022]. We augment

0 mutations 10 mutations

M
ca

p
=5

0
M

ca
p

=1
00

0

Fig. 12. ReSTIR PT excessively reuses a few paths and suffers from “boiling”
in scenes with difficult-to-sample indirect lighting such as the Victorian
house where paths must be reflected in through the windows (top left). Our
mutations do not resolve this boiling by finding better paths (top right), but
increasing𝑀cap does due to greater temporal reuse (bottom left). Mutations
mitigate correlation artifacts caused by a large𝑀cap (bottom right).

Hybrid Shift, 0 mutations Hybrid Shift, 5 mutations

Sample count Mutations
R

M
SE

R
M

SE

0 mutations
5 mutations

Fig. 13. Mutations typically do not reduce mean squared error, shown here
on the Veach Ajar scene rendered using ReSTIR PT with the hybrid shift.
This suggests that unlike Metropolis Light Transport, resampling (and not
mutations) finds important light-carrying paths in ReSTIR. Compared to the
random replay shift in Figure 8, resampling with the superior hybrid shift
also introduces fewer correlations in this scene for mutations to resolve.

spatiotemporal reservoir resampling in ReSTIR with sample muta-

tions, and demonstrate the complementary strengths of resampling

and mutations in this framework. In graphics, our approach is most

closely related to Metropolis Light Transport (MLT) [Veach and

Guibas 1997] and associated techniques [Kelemen et al. 2002; Jakob

and Marschner 2012; Lehtinen et al. 2013; Hachisuka et al. 2014;

Otsu et al. 2018; Cline et al. 2005; Lai et al. 2007, 2009; Bashford-

Rogers et al. 2021]. In the broader Monte Carlo landscape, our ap-

proach belongs to the class of algorithms that jointly use resampling

and mutations for sampling problems, such as Sequential Monte

Carlo (SMC) [Doucet et al. 2001] and Population Monte Carlo (PMC)

[Cappé et al. 2004]. We discuss the relation to MLT, SMC and PMC

in more detail next; Table 2 provides a summary. We refer the reader
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Forest (Fig. 7) 

Relative Cov/FLIP 
1 vs. 0 mutations

Kitchen (Fig. 1)

Kitchen (Fig. 2)

Veach Egg (Fig. 10)

Veach Ajar (Fig. 13)

Time (ms) 
1 mutation 

Time (ms) 
5 mutations 

Time (ms) 
0 mutations 

Method  
ReSTIR/Shi!/Mutation

DI / - / BSDF

PT / H / RV

Scene 

PT / H / RV

PT / H / RV

PT / H / RV

Relative Cov/FLIP 
5 vs. 0 mutations

30 37 43
32 39 47
11 15 17
26 33 37

11 12.5 160.017 / 0.871 0.060 / 0.909

0.733 / 0.9250.824 / 0.956
0.697 / 0.9680.764 / 0.977
0.668 / 0.8740.737 / 0.886
0.881 / 0.9770.922 / 0.988

Veach Ajar (Fig. 8) PT / RR / FP 44 64 900.608 / 0.9530.692 / 0.964

Bistro Exterior (Fig. 7) 

Lego city (Fig. 7) 

DI / -  /BSDF

DI / - / BSDF

Victorian House (Fig. 12)

Victorian House (Fig. 12)

PT / H / RV

PT / H / PP

0.027 / 0.9050.039 / 0.919

0.258 / 0.8940.386 / 0.928

7.1 7.5 8.6

12.5 14.2 18.5

0.340 / 0.879 0.287 / 0.848 34 58 78
34 40 460.934 / 0.953 0.817 / 0.930

Table 1. Relative reduction in covariance and FLIP scores from mutations at 1 spp. We first average covariances over boxes of pixel radius 8, and then over the
entire image. The ReSTIR DI scenes use𝑀cap = 20 while the ReSTIR PT scenes use𝑀cap = 50, except for the Victorian house where𝑀cap = 1000.

to Bitterli et al. [2020, Section 7] and Lin et al. [2022, Section 9.3]

for comparisons between ReSTIR and other rendering algorithms

that exploit path reuse and spatial correlations.

Metropolis Light Transport. MLT uses statistically correlated sam-

ples generated by Metropolis–Hastings to solve the rendering equa-

tion. Unlike algorithms using independent samples, MLT is effective

at finding difficult light paths by locally exploring the path space. It

reuses samples by mutating high-contribution paths over the image.

Algorithmically, our method resembles MLT in various ways. Both

techniques require secondary estimators, respectively RIS and bidi-

rectional path tracing (BDPT) [Lafortune and Willems 1993; Veach

and Guibas 1995a], to normalize the MH target function. Samples

used by these estimators are resampled into a smaller set to ini-

tialize MH (our Section 3 and Veach [1998, Chapter 11.3.1]), and

contributions of mutated samples are effectively weighted by the

same weights (Equation 17) to remain unbiased (our Appendix A

and Veach [1998, Appendix 11.A]).

The crucial difference between ourwork andMLT lies in how sam-

ples are reused across pixels. MLT latches onto high-contribution

paths and mutates them over the entire image while resampling

just to eliminate start-up bias. Thus, MLT results often contain cor-

relation artifacts caused by mutations, applying MH to both find

important samples and redistribute them between pixels. In contrast,

ReSTIR derives spatiotemporal reuse exclusively from resampling; in

this paper, we mutate samples within each pixel to mitigate correla-

tions and sample impoverishment from spatiotemporal resampling.

As a result, our method does not require numerous MH iterations,

as the primary purpose of mutations is not finding important paths

(Figures 12 and 13). Further, our approach suits real-time rendering

as it integrates seamlessly into ReSTIR. MLT can be adapted to mu-

tate temporally, but unlike our work, the entire animated sequence

must be available in advance [Van de Woestijne et al. 2017].

Several features have recently been added to MLT, including

sample stratification [Cline et al. 2005; Gruson et al. 2020], MIS

[Hachisuka et al. 2014] and enhanced mutation strategies [Jakob

and Marschner 2012; Kaplanyan et al. 2014; Bitterli et al. 2017; Otsu

et al. 2018; Luan et al. 2020]. Though we mostly employ simple PSS

mutations [Kelemen et al. 2002], many of these improvements can

also be incorporated into our approach to reduce correlations faster.

Resampling

Mutations

frame  t1
frame  t2

Weighted samples

frame  t2

Target function at frame t1
Target function at frame t2

Sequential Monte Carlo.
SMC is a family of Monte

Carlo methods used for

filtering and tracking prob-

lems in Bayesian infer-

ence and signal process-

ing [Doucet et al. 2001].

As shown in the inset, the

goal is maintaining a population of weighted samples distributed

roughly proportional to an evolving target distribution (with un-

known normalization factor). Sample weights are adjusted every

iteration to reflect each sample’s importance to the most recent

distribution. Resampling discards samples with low weights and

duplicates those with high weights. Mutations ensure the popula-

tion does not contain identical samples. Unlike ReSTIR, which uses

RIS, SMC methods use weighted importance sampling (WIS) to esti-

mate correlated integrals in a chained fashion, i.e., the current step’s
sample weights and normalization factors are defined incrementally

based on corresponding quantities from earlier steps [Del Moral

et al. 2006]. This allows temporally reusing samples for estimation,

instead of generating new samples every frame.

SMC methods have found limited use in rendering: Hedman et al.

[2016] maintain a temporally coherent distribution of VPLs for

indirect illumination via a sampling method that moves as few of

the VPLs between frames as possible. This work is only loosely

inspired by SMC, in that it does not perform any sample mutations

and generates biased results as it discards VPLs heuristically.

Ghosh et al. [2006] instead sample a sequence of per-pixel target

functions for direct illumination of dynamic environment maps.

Unlike ReSTIR, which derives its samples from spatiotemporally

neighboring pixels, Ghosh et al. [2006] maintain a fixed sample

population per pixel that is resampled and mutated to be updated for

each frame. Large populations are needed for effective importance
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MLT SMC ReSTIR (Ours)PMC (ERPT)

Estimator

Role of 
resampling

Role of 
mutations

Standard Monte Carlo Standard Monte Carlo Weighted Importance Sampling Resampled Importance Sampling

Contribution 
weights

Estimate integrated 

luminance using BDPT*


(value is constant over image) 

Estimate per-pixel target 
distribution for current frame


Defined incrementally using 
weights from previous frame

Estimate per-pixel reciprocal target 
distribution for current frame


Defined incrementally using 

weights from neighboring 


(spatial and temporal) pixels

Eliminate start-up bias in MH

*For animated sequences, luminance is integrated over all images, and samples are mutated spatiotemporally

Introduce new samples into 
population each frame, discard 

low-contribution samples


Eliminate start-up bias in MH

Temporal reuse of sample 
population within a pixel


Discard low-contribution samples


Eliminate start-up bias in MH

Spatiotemporal reuse of sample 
populations across pixels


Introduce new samples into 
population each frame, discard 


low-contribution samples


Eliminate start-up bias in MH

Mitigate sample impoverishment 
due to resampling

Mitigate correlations and 

sample impoverishment 


due to resampling

Share samples spatially 

across the image*

Share samples spatially 

across the image*

Sample reuse derived from resamplingSample “reuse” derived from mutations

Estimate integrated 

luminance using BDPT*


(value is constant over image) 

Table 2. Overview of the role of resampling and mutations in MLT, PMC, SMC and ReSTIR.

sampling, as high-contribution samples are not shared spatially

between pixels; in contrast, ReSTIR often stores just a single sample

per reservoir. SMC methods likely require MIS weights and shift

mappings (like ReSTIR) to resolve bias and correctly derive effective

spatiotemporal reuse from neighbors. Similar to ourwork, mutations

mitigate sample impoverishment but do not provide reuse.

Population Monte Carlo. PMC methods also couple resampling

and mutations to distribute weighted samples in proportion to a

sequence of target functions [Cappé et al. 2004]. The main added

feature is they sample using parametric mixture models with simple

source PDFs. Mixture probabilities are tuned for each target function

using previously generated samples and their importance.

In rendering, the PMC framework has been used for direct lighting

[Fan et al. 2007; Lai et al. 2015], global illumination [Lai and Dyer

2007; Lai et al. 2007] and animation [Lai et al. 2009]. Lai et al.’s

[2009] work is most relevant to ours: they derive sample reuse

by mutating samples spatially and temporally across the image

plane using Energy Redistribution Path Tracing (ERPT) [Cline et al.

2005]. Resampling serves to select high-contribution samples while

discarding those with small weights; it is also used to refresh the

sample population (much like initial resampling in ReSTIR) and

eliminate start-up bias from mutations. Unlike our method, they

require knowing animated sequences in advance, precluding most

real-time applications.

7 LIMITATIONS AND FUTURE WORK
In this paper, we provide an unbiased mechanism leveraging MCMC

mutations to diversify ReSTIR’s sample population. Often, just a

single mutation per pixel effectively mitigates correlation artifacts

in glossy scenes with complex lighting. However, as in most MCMC

schemes, we cannot accurately predict the number of Metropolis–

Hastings iterations needed to reduce correlations below a given

threshold. Beyond the analysis in the supplemental document, fur-

ther investigation is also needed to understand how mutations ad-

dress sample impoverishment in ReSTIR—not just in terms of the

number of duplicate samples (Figure 8), but also the discrepancy

characteristics of the resulting sample population.

Mutations in ReSTIR have a non-negligible run-time overhead.

Though we demonstrate improvements on an equal-time covariance

metric with simple mutation strategies in both ReSTIR DI and PT

(Figure 7 and Table 1), more sophisticated mutations [Jakob and

Marschner 2012; Kaplanyan et al. 2014; Bitterli et al. 2017; Otsu et al.

2018; Luan et al. 2020] could provide further gains. Our decision to

mutate only after temporal (but not spatial) resampling is informed

in part by run-time considerations. As mentioned in Section 3, ap-

plying mutations selectively (i.e., not at each pixel every frame)

based on local correlation heuristics could improve performance. As

both mutations and ReSTIR’s initial path candidates serve to rejuve-

nate the sample population, it may also be worthwhile to carefully

balance costs of per-pixel mutations and new path candidates.

Our proposed samplemutations reduce correlation between nearby

pixels, leading to an error distribution (likely) closer to white noise.

But blue noise error distributions are often superior with respect to

human perception [Mitchell 1987]; perhaps our mutations could be

modified to more directly optimize for blue noise characteristics. For

example, when deciding mutation acceptance, we might consider

both the target function and the neighboring pixel samples, pre-

ferring mutations that introduce differing sample values. A further
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improvement might apply the insights of Heitz and Belcour [2019]

to optimize the image-space distribution of error rather than solely

considering the sample values.

Like Metropolis Light Transport, mutating samples across pixels

potentially unlocks further amortization by sharing samples over

the entire image (e.g., using the expected values technique [Veach
1998, Section 11.5]). We leave such “cross-pixel” mutations to fu-

ture work as the change of integration domain from one pixel to

another requires a further adjustment to a mutated sample’s contri-

bution weight beyond Equation 16, i.e., as with temporal and spatial

resampling, MIS weights and shift mappings are likely needed to

correctly mutate a sample in proportion to the target function of a

neighboring pixel whose support does not coincide entirely with its

own. Alternatively, it is possible that the replica exchange approach

adopted by Gruson et al. [2020] enables swapping of independent

Markov chains from separate pixels in our framework as well.

Our mathematical presentation of resampling for ReSTIR in Sec-

tion 2 is essentially unchanged from that of Lin et al. [2021] for

fast volume rendering. Consequently, extending their approach to

incorporate mutations from Section 3 likely requires no further

modifications to the framework for volumes beyond the specific

choice of mutation strategies, such as the scattering and propagation

perturbations proposed by Pauly et al. [2000, Section 5.1].

More generally, by augmenting ReSTIR with mutations, our work

establishes a closer correspondence between the RIS-based resam-

pling techniques developed in graphics, and those in the broader sta-

tistics literature such as SMC and PMC. In particular, our approach

stands to benefit from techniques such as annealed importance sam-

pling [Neal 2001] used in SMC to reduce variance in the resampling

weights [Ghosh et al. 2006, Section 4], as well as from adaptation

strategies for mutation kernels developed in PMC to increase accep-

tance rates [Lai et al. 2007, Section 4.2]. Moreover, as in these fields,

mutations in ReSTIR open the door not just to artifact-free integra-

tion (of the rendering equation), but also to tracking and filtering

problems—for instance using well-distributed sample populations

generated by our approach as training data for path guiding [Müller

et al. 2017; Müller et al. 2019].
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A UNBIASED CONTRIBUTION WEIGHTS AND
ELIMINATION OF STARTUP BIAS

Equation 16 shows how to update the contribution weight𝑊 (𝑥𝑘 ) of
a mutated sample 𝑥𝑘 from the Markov chain 𝑥0, ..., 𝑥𝑘 , ..., generated

with target function 𝑝 . Here we prove this rule yields an unbiased

contribution weight for any mutated sample 𝑥𝑘 , i.e., for any 𝑓 with
the same or smaller support,

E[𝑓 (𝑥𝑘 )𝑊 (𝑥𝑘 )] =
∫
Ω
𝑓 (𝑥) d𝑥 . (22)

We assume sample 𝑥0
initializing the chain has the same support

Ω as target function 𝑝 . For us, this is guaranteed by chained ap-

plications of RIS with a valid shift map in Algorithm 2. Any 𝑥0

chosen by RIS is not distributed exactly proportional to 𝑝 (unless we

have infinite samples), however its contribution weight𝑊 (𝑥0) is
unbiased and satisfies Equation 22 [Lin et al. 2022]. Next, we show

access to𝑊 (𝑥0) is sufficient to eliminate any startup bias with MH.

Proof. To show Equation 22 holds, we first express the update rule

for contribution weight𝑊 (𝑥𝑘 ) (for 𝑘 > 0) in terms of the previous

sample 𝑥𝑘−1
in the chain, as follows:

𝑊 (𝑥𝑘 ) = 𝑝 (𝑥𝑘−1)
𝑝 (𝑥𝑘 )

𝑊 (𝑥𝑘−1). (23)

This is equivalent to Equation 16, shown by recursively unfolding

this relationship for all prior samples 𝑥𝑘−1
to 𝑥1

in the chain. As in

Section 2.5, we also assume a candidate mutation to 𝑥𝑘−1
is gener-

ated using the proposal density 𝑇 (𝑥𝑘−1 → 𝑧𝑘−1), with acceptance

probability for candidate 𝑧𝑘−1
given by Equation 14:

𝑎(𝑥𝑘−1 → 𝑧𝑘−1) ≔ min

(
1,
𝑝 (𝑧𝑘−1) 𝑇 (𝑧𝑘−1 → 𝑥𝑘−1)
𝑝 (𝑥𝑘−1) 𝑇 (𝑥𝑘−1 → 𝑧𝑘−1)

)
. (24)

Metropolis–Hastings sets 𝑥𝑘 = 𝑧𝑘−1
with probability 𝑎; otherwise

𝑥𝑘 = 𝑥𝑘−1
. This lets us rewrite the expectation in Equation 22:

E[𝑓 (𝑥𝑘 )𝑊 (𝑥𝑘 )] =E
[
𝑓 (𝑥𝑘 ) 𝑝 (𝑥

𝑘−1)
𝑝 (𝑥𝑘 )

𝑊 (𝑥𝑘−1)
]

=E

[
𝑓 (𝑧𝑘−1)𝑎(𝑥𝑘−1 → 𝑧𝑘−1) 𝑝 (𝑥

𝑘−1)
𝑝 (𝑧𝑘−1)

𝑊 (𝑥𝑘−1)
]

+ E[𝑓 (𝑥𝑘−1) (1 − 𝑎(𝑥𝑘−1 → 𝑧𝑘−1))𝑊 (𝑥𝑘−1)] .
(25)

Rearranging the terms slightly yields

E[𝑓 (𝑥𝑘 )𝑊 (𝑥𝑘 )] = E[𝑓 (𝑥𝑘−1)𝑊 (𝑥𝑘−1)] +

E

[
𝑓 (𝑧𝑘−1)𝑎(𝑥𝑘−1 → 𝑧𝑘−1) 𝑝 (𝑥

𝑘−1)
𝑝 (𝑧𝑘−1)

𝑊 (𝑥𝑘−1)
]
−

E[𝑓 (𝑥𝑘−1)𝑎(𝑥𝑘−1 → 𝑧𝑘−1)𝑊 (𝑥𝑘−1)] . (26)
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We now write each expectation as an integral. First, assume an in-

ductive hypothesis E[𝑓 (𝑥𝑘−1)𝑊 (𝑥𝑘−1)]=
∫
Ω 𝑓 (𝑥) d𝑥 for the 𝑘−1

st

MH iteration. Base case 𝑘 = 1 holds trivially, as𝑊 (𝑥0) is an unbi-

ased contribution weight. Next, note that for any integrable func-

tion 𝑔(𝑥𝑘−1, 𝑧𝑘−1), its expectation E[𝑔(𝑥𝑘−1, 𝑧𝑘−1)𝑊 (𝑥𝑘−1)] can be

rewritten as a conditional expectation over candidate mutations:

E[𝑔(𝑥𝑘−1, 𝑧𝑘−1)𝑊 (𝑥𝑘−1)] = E[𝐸 [𝑔(𝑥𝑘−1, 𝑧𝑘−1) | 𝑥𝑘−1]𝑊 (𝑥𝑘−1)]

= E

[(∫
Ω
𝑔(𝑥𝑘−1, 𝑧)𝑇 (𝑥𝑘−1 → 𝑧) d𝑧

)
𝑊 (𝑥𝑘−1)

]
, (27)

where 𝑇 is the proposal density used for mutations. This lets us

expand out Equation 26 as follows:

E[𝑓 (𝑥𝑘 )𝑊 (𝑥𝑘 )] =
∫
Ω
𝑓 (𝑥) d𝑥 +∫

Ω

∫
Ω
𝑓 (𝑧)𝑎(𝑥 → 𝑧) 𝑝 (𝑥)

𝑝 (𝑧)𝑇 (𝑥 → 𝑧) d𝑧 d𝑥 −∫
Ω

∫
Ω
𝑓 (𝑥)𝑎(𝑥 → 𝑧)𝑇 (𝑥 → 𝑧) d𝑧 d𝑥 . (28)

Finally, we show that the two double integrals cancel each other

out (resulting in E[𝑓 (𝑥𝑘 )𝑊 (𝑥𝑘 )] =
∫
Ω 𝑓 (𝑥) d𝑥) by invoking the

detailed balance condition from Equation 15:

𝑝 (𝑥)𝑇 (𝑥 → 𝑧)𝑎(𝑥 → 𝑧) = 𝑝 (𝑧)𝑇 (𝑧 → 𝑥)𝑎(𝑧 → 𝑥) (29)

and rewriting it as:

𝑇 (𝑥 → 𝑧)𝑎(𝑥 → 𝑧) = 𝑝 (𝑧)
𝑝 (𝑥)𝑇 (𝑧 → 𝑥)𝑎(𝑧 → 𝑥). (30)

Substituting for 𝑇 (𝑥 → 𝑧)𝑎(𝑥 → 𝑧) in the third line of Equation 28

yields the same integral as the second line, but with integration

variables 𝑥 and 𝑧 swapped. Renaming 𝑥 and 𝑧 and swapping the

integration order in the third line allows cancellation, simplifying to∫
Ω 𝑓 (𝑥) d𝑥 , yielding Equation 22 and giving a proof by induction.

B MIS WEIGHTS FOR TEMPORAL REUSE
ReSTIR uses MIS weights during resampling (Equations 12 and 13)

to mitigate noise and bias from reusing samples across pixels. We

provide explicit expressions for the MIS weights used in Algorithm 2

here; Lin et al. [2022, Equations 37–38] provide similar expressions

for Pairwise MIS weights needed for spatial resampling.

Let 𝑆 𝑗 :Ω 𝑗→Ω𝑖 denote the shift map from pixel 𝑗 to pixel 𝑖 . Let 𝑥𝑖
and 𝑥 𝑗 further represent the corresponding samples for these pixels,

and 𝑆 𝑗 (𝑥 𝑗 )=𝑥 ′𝑗 and 𝑆
−1

𝑗
(𝑥𝑖 )=𝑥 ′𝑖 the respective shift mapped values.

The MIS weights for 𝑥𝑖 and 𝑥
′
𝑗
are then given by:

𝑚𝑖 (𝑥𝑖 ) =
𝑀𝑖 𝑝𝑖 (𝑥𝑖 )

𝑀𝑖 𝑝𝑖 (𝑥𝑖 ) +𝑀𝑗 𝑝 𝑗 (𝑥 ′𝑖 ) |𝜕𝑥
′
𝑖
/𝜕𝑥𝑖 |

, (31)

𝑚 𝑗 (𝑥 ′𝑗 ) =
𝑀𝑗 𝑝 𝑗 (𝑥 𝑗 ) |𝜕𝑥 𝑗/𝜕𝑥 ′𝑗 |

𝑀𝑗 𝑝 𝑗 (𝑥 𝑗 ) |𝜕𝑥 𝑗/𝜕𝑥 ′𝑗 | +𝑀𝑖 𝑝𝑖 (𝑥
′
𝑗
) . (32)

We set𝑚𝑖 (𝑥𝑖 ) = 1 and𝑚 𝑗 (𝑥 ′𝑗 ) = 0 when valid shifts do not exist for

𝑥𝑖 and 𝑥 𝑗 (resp.); Lin et al. [2022, Section 5.6] discusses properties of

these MIS weights in detail.

C TRANSITION KERNEL FOR MUTATING A
RECONNECTION VERTEX

A mutation involving a reconnection vertex y𝑖 requires modifying

random numbers not just for y𝑖 , but also for the non-mutated ver-

tices y𝑖+1 and y𝑖+2. This is because the solid angle PDFs used to

sample outgoing directions 𝜈𝑖 and 𝜔𝑖+1 in Section 4.3 depend on

the mutated incoming directions 𝜈𝑖−1 and 𝜈𝑖 (resp.). Here we derive
Equation 20 by first noting the joint PDF for connecting the mutated

reconnection vertex z𝑖 to z𝑖+1 and z𝑖+1 to z𝑖+2 in the surface area

measure is:

𝑝 (z𝑖+2, z𝑖+1 | [z0, z1, . . . , z𝑖 ]) = 𝛿 (z𝑖+2 − y𝑖+2)𝛿 (z𝑖+1 − y𝑖+1).
This is a product of delta functions as z𝑖+1 = y𝑖+1 and z𝑖+2 = y𝑖+2
are the only valid vertex positions. In the PSS to path space mapping,

the joint PDF for the mutated random numbers v̄𝑖+1 and v̄𝑖+2 (for
vertices y𝑖+1 and y𝑖+2) is related to 𝑝 (z𝑖+2, z𝑖+1 | [z0, z1, . . . , z𝑖 ]) via
a Jacobian determinant:

𝑝 (v̄𝑖+2, v̄𝑖+1 | [v̄0, v̄1, . . . , v̄𝑖 ]) = 𝑝 (z𝑖+2, z𝑖+1 | [z0, z1, . . . , z𝑖 ])
���� 𝜕z̄𝜕v̄ ����

This PDF serves as our proposal density 𝑇 (ū→ v̄) for mutations,

which then yields:

𝑇 (v̄→ ū)
𝑇 (ū→ v̄) =

���� 𝜕v̄𝜕z̄ ���� ���� 𝜕ȳ𝜕ū ���� 𝛿 (y𝑖+2 − z𝑖+2)𝛿 (y𝑖+1 − z𝑖+1)𝛿 (z𝑖+2 − y𝑖+2)𝛿 (z𝑖+1 − y𝑖+1)

=

���� 𝜕v̄𝜕𝜈 ���� ���� 𝜕𝜈𝜕z̄ ���� ���� 𝜕ȳ𝜕𝜔̄ ���� ���� 𝜕𝜔̄𝜕ū ����
=

���� 𝜕𝜈𝜕z̄ ���� ���� 𝜕ȳ𝜕𝜔̄ ���� 𝑝 (𝜈𝑖−1, 𝜈𝑖 )
𝑝 (𝜔𝑖−1, 𝜔𝑖 )

𝑝 (𝜈𝑖 , 𝜔𝑖+1)
𝑝 (𝜔𝑖 , 𝜔𝑖+1)

=
|cos 𝜙 |
|cos 𝜃 |

|y𝑖+1 − y𝑖 |2

|y𝑖+1 − z𝑖 |2
𝑝 (𝜈𝑖−1, 𝜈𝑖 )
𝑝 (𝜔𝑖−1, 𝜔𝑖 )

𝑝 (𝜈𝑖 , 𝜔𝑖+1)
𝑝 (𝜔𝑖 , 𝜔𝑖+1)

. (33)

The delta functions in the first line cancel since they are symmetric.

In the third line, we use the fact that the Jacobian determinant of

a sampling scheme is the same as its inverse PDF [Kelemen et al.

2002, Section 2]. The final step substitutes in the definition of the

Jacobians relating the solid angle and area measures.
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