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Fig. 1. A volumetric bunny illuminated by a complex environment map and emissive logos. We compare our new volumetric ReSTIR with offline
references and an equal-time baseline (combining decomposition tracking [Kutz et al. 2017] and residual ratio tracking [Novák et al. 2014]). We
show our work with (left) single scattering in 55 ms and (right) three-bounce multiple scattering in 142 ms.

Volume rendering under complex, dynamic lighting is challenging, especially
if targeting real-time. To address this challenge, we extend a recent direct
illumination sampling technique, spatiotemporal reservoir resampling, to
multi-dimensional path space for volumetric media.

By fully evaluating just a single path sample per pixel, our volumetric
path tracer shows unprecedented convergence. To achieve this, we properly
estimate the chosen sample’s probability via approximate perfect importance
sampling with spatiotemporal resampling. A key observation is recognizing
that applying cheaper, biased techniques to approximate scattering along
candidate paths (during resampling) does not add bias when shading. This
allows us to combine transmittance evaluation techniques: cheap approxi-
mations where evaluations must occur many times for reuse, and unbiased
methods for final, per-pixel evaluation.

With this reformulation, we achieve low-noise, interactive volumetric
path tracing with arbitrary dynamic lighting, including volumetric emission,
and maintain interactive performance even on high-resolution volumes.
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When paired with denoising, our low-noise sampling helps preserve smaller-
scale volumetric details.
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1 INTRODUCTION
Smoke, fire, clouds, and other participating media are vital in virtual
scenes; modern movies, games, and simulations rely heavily on
media for realism and ambiance. But real-time rendering of partici-
pating media is challenging. Even traditional raster pipelines have
separate order-independent transparency passes [Wyman 2016] and
data structures for volume lighting [Kaplanyan and Dachsbacher
2010]. With real-time ray tracing [Kilgariff et al. 2018] and more
complex ray-traced lighting [Majercik et al. 2019], integrating dy-
namic ray-traced media will be vital for achieving a uniform look.

In this paper, we introduce an effective path sampling solution for
real-time volume rendering with multiple scattering and volumetric
emission. To do this, we generalize resampled importance sampling
[Talbot et al. 2005] and spatiotemporal reservoir resampling [Bitterli
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et al. 2020] to path integrals. These have proven effective for sam-
pling direct illumination on surfaces. We generalize them to path
space, providing importance sampling that closely approximates
our integrand: a path integral formulation of the volume render-
ing equation. We also present numerous optimizations to minimize
computation and memory overhead. As a result, we can estimate the
multi-dimensional volume rendering integral while shading just one
path per pixel, enabling real-time volume rendering under arbitrary
scene illumination, including environment maps, area lights, and
volumetric emission.

Our technical contributions include:
• A generalization of resampled importance sampling (Sec-
tion 3) and spatiotemporal reservoir resampling (Section 4)
to complex path integrals,
• An efficient importance sampling estimator for the volumetric
path integral (Section 3.3), including multiple scattering and
volumetric light emission,
• A temporal reprojection (Section 4.4) and practical velocity
resampling method for robust temporal reuse (Section 5.2),
• Optimized path space transmittance estimates (Section 5.1).
These only affect importance sampling, not final path through-
put, allowing use of efficient biased estimates without biasing
the results (e.g., sampling lower resolution volumes).

Our renderer runs interactively, reusing carefully-chosen paths
to evaluate the volume rendering equation. While we can produce
unbiased renderings (with static volumes and dynamic lighting), by
allowing a little bias (Section 4.4) we can reduce sampling variance
and handle more dynamism. Our work significantly lowers variance
compared to state-of-the-art real-time path sampling (Figure 1).

Section 2 reviews prior work, summarizing resampled importance
sampling (RIS) and spatiotemporal reservoir resampling (ReSTIR).
In Section 3, we develop an RIS estimator to efficiently sample
the volumetric path integral. In Section 4, we modify ReSTIR’s
iterative resampling to efficiently reuse spatiotemporal volumetric
path samples. We provide key implementation details in Section 5.

2 BACKGROUND
The volume rendering equation represents incident radiance 𝐿 at
point x0 from direction 𝝎𝑜 and integrates the outgoing radiance
through volumetric media 𝐿𝑚 and the surface or light behind it, 𝐿𝑠

𝐿(x0,𝝎𝑜 ) =
∫ 𝑧𝑠

0
𝑇 (x0 ↔ x) 𝜎𝑡 (x) 𝐿𝑚 (x,𝝎𝑜 ) 𝑑𝑧 (1)

+𝑇 (x0 ↔ x𝑠 ) 𝐿𝑠 (x𝑠 � x0) ,

where x = x0 − 𝑧𝝎𝑜 is a point along direction 𝝎𝑜 towards x0, 𝜎𝑡 (x)
is the extinction coefficient at x, and the transmittance function
𝑇 (x0 ↔ x) represents visibility between x0 and x

𝑇 (x0, x) = 𝑒−
∫ 𝑧

0 𝜎𝑡 (x0−𝑦𝝎𝑜 )𝑑𝑦, (2)

and x𝑠 = x0 − 𝑧𝑠𝝎𝑜 is the corresponding surface along the ray. 𝐿𝑚
includes volumetric emission 𝐿𝑚𝑒 and in-scattering

𝐿𝑚 (x,𝝎𝑜 ) =
𝜎𝑎 (x)
𝜎𝑡 (x)

𝐿𝑚𝑒 (x,𝝎𝑜 ) +
𝜎𝑠 (x)
𝜎𝑡 (x)

∫
𝑆

𝜌 (x,𝝎,𝝎𝑜 )𝐿(x,𝝎)𝑑𝝎,
(3)

where 𝜎𝑎 and 𝜎𝑠 are absorption and scattering coefficients with
𝜎𝑡 (x) = 𝜎𝑎 (x) + 𝜎𝑠 (x), 𝑆 is the sphere of all directions, and
𝜌 (x,𝝎,𝝎𝑜 ) is the media’s phase function.
With multiple scattering, computing 𝐿(x,𝝎) inside the integral

from Equation 3 via Equation 1 is costly, particularly for real-time
rendering. For simple single scattering, with no volumetric emission
and a few point or directional lights, volumetric shadow mapping
can achieve real-time rendering performance [Delalandre et al. 2011;
Gautron et al. 2013; Jansen and Bavoil 2010; Kim and Neumann 2001;
Salvi et al. 2010; Yuksel and Keyser 2008]. But these are inefficient for
more general lighting conditions and multiple scattering. Modern
games use "froxel" representations [Hillaire 2015] to align volumes
with the view frustum to minimize memory incoherence during
traversal, but otherwise behave similarly.

2.1 Monte Carlo Sampling for Volume Rendering
Path tracing and Monte Carlo sampling provide a more general
solution for integrating the volume rendering equations 1, 2, and 3.
Importance sampling distance 𝑧 (Equation 1) in a homogeneous

volume (constant 𝜎𝑡 ) with a probability distribution function (PDF)
proportional to 𝜎𝑡𝑇 (x0, x) is trivial; the resulting cumulative distri-
bution function (CDF) 1 − 𝑒−𝑧𝜎𝑡 is easily inverted. The resulting 𝑧
values are called the free-flight distance. In heterogeneous volumes,
regular tracking [Sutton et al. 1999] represents 𝜎𝑡 (x) with piece-
wise simple functions with analytically invertible CDFs, allowing
tracking of each piece separately to find scattering events via an
exact PDF. In general heterogeneous volumes, ray marching finds
these events with an approximated PDF [Novák et al. 2018] , which
introduces bias to the result. Null-collision methods avoid bias by
introducing fictitious media to simplify the CDF. For example, delta
tracking [Raab et al. 2008; Woodcock et al. 1965] uses piecewise
constant majorant 𝜎 (for 𝜎 ≥ 𝜎𝑡 ) and determines null collisions via
a secondary Monte Carlo process, but the sampling PDF is generally
not available in closed form.
Recently, Miller et al. [2019] introduces a special path space for-

mulation including null scattering to obtain analytical PDFs. But
null-collisions can reduce performance in highly uneven volumetric
densities, when long chains of short null collisions occur. Accel-
eration structures (e.g., super-voxels [Szirmay-Kalos et al. 2011]
and kd-trees [Yue et al. 2011]) partition space with separate, tighter
majorants to improve performance. Decomposition tracking [Kutz
et al. 2017] reduces overhead by splitting media into a constant
density control volume and a residual volume, where tracking occur
separately and the minimum distance is taken. Kutz et al. [2017]
introduces weighted delta tracking [Galtier et al. 2013] to allow
non-tight upper bounds in the residual volume.
Distance sampling techniques also apply to transmittance es-

timation. For example, delta tracking gives a per-sample binary
transmittance decision, based on if a real collision occurs. Ratio
tracking modifies delta tracking, replacing stochastic termination
with its expectation, giving non-binary transmittance and improv-
ing convergence speed. Residual ratio tracking uses fewer steps for
ratio tracking by separating residual and control components of
the extinction function [Novák et al. 2014] and applies in various
contexts [d’Eon and Novák 2021; Szirmay-Kalos et al. 2017]. Recent
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next-flight estimators [Novák et al. 2018] improve delta and ratio
tracking efficiency if the fictitious media has a lower density.

New integral formulations using power-series expansion improve
transmittance estimation via sample stratification [Georgiev et al.
2019]. Kettunen et al. [2021] propose unbiased raymarching that cor-
rects biased methods with occasional higher order terms, leveraging
ray marching efficiency to compute low-noise transmittance.
Importance sampling 𝝎 in the phase function 𝜌 [Henyey and

Greenstein 1941] is similar to any bidirectional scattering distri-
bution function. However, explicitly sampling light sources with
next event estimation (NEE) often increases efficiency. NEE can be
combined with other sampling via multiple importance sampling
(MIS). Miller et al. [2019] use MIS to integrate in path space using
previously unknown PDFs. To efficiently integrate volumetric emis-
sion, Simon et al. [2017] introduce forward next event estimation
(FNEE) that samples solid angle to perform line integration.

All these methods consider local sampling, rather than impor-
tance sampling full paths. This limits quality, increasing samples
needed to converge and reducing their real-time appeal. Recent de-
noisers can filter noisy samples to a final image. But sample counts
must be sufficient to achieve post-filter temporal stability. Thus, im-
proving sample quality is vital, even with state-of-the-art denoising.

2.2 Bidirectional Volume Rendering
Bidirectional methods consider entire paths to improve sampling
quality. Equiangular sampling [Kulla and Fajardo 2012] jointly sam-
ples a light vertex and the penultimate path vertex receiving in-
scattered light. Joint importance sampling [Georgiev et al. 2013]
allows double scattering with a joint distribution. Zero-variance
randomwalks further extend joint sampling, building randomwalks
with near-zero variance by considering all terms in the path integral.
In some scenarios, this applies to subsurface scattering [Křivánek
and d’Eon 2014; Meng et al. 2016] and can improve path guiding
[Herholz et al. 2019] in general participating media.
Other bidirectional techniques estimate photon density using

volumetric photon maps [Jensen and Christensen 1998]. Density
estimation queries can be improved using beams [Jarosz et al. 2008].
Higher dimensional primitives, such as photon beams [Jarosz et al.
2011], photon planes and volumes [Bitterli and Jarosz 2017], and
photon surfaces [Deng et al. 2019] can significantly reduce variance.
Bidirectional techniques based on virtual lights [Novák et al.

2012a,b] also benefit from higher dimensional light representations.
Combining different kinds of density estimation with path trac-
ing [Křivánek et al. 2014] often provides a robust framework to
optimally sample across various scenes.

However, bidirectional methods often use complex data structures
with costly generation and maintenance phases. This adds often
insurmountable engineering complexity in real-time contexts.

2.3 Path Reuse
Photon- and VPL-based bidirectional methods reuse subpaths, but
reuse can occur between pixels [Bekaert et al. 2002]. This can dra-
matically reduce variance, though it imposes fairly high storage
and computation costs; paths must explicitly remain in memory to
benefit others, and visibility rays are required to connect neighbors.

More recent work reuses paths via finite differences in the gra-
dient domain [Lehtinen et al. 2013], which can also apply to path
tracing [Kettunen et al. 2015] and volume rendering [Gruson et al.
2018]. Similar to the spatiotemporal resampling we use in this paper,
these techniques also leverage correlations between pixels.
However, spatiotemporal resampling reuses samples indirectly

to improve PDFs, rather than explicitly reusing paths for shading.
In this sense, it is more akin to path guiding [Vorba et al. 2019], if
done in a feed-forward, streaming fashion.

2.4 Resampled Importance Sampling (RIS)
Our volume sampling builds on resampled importance sampling (RIS)
[Talbot et al. 2005], Given function 𝑓 (𝑥) defined over domain 𝑥 ∈ 𝐷 ,
RIS provides an importance sampling estimator for the integral:

𝐼 =

∫
𝐷

𝑓 (𝑥) 𝑑𝑥 . (4)

Let 𝑝 be a target PDF without a practical sampling algorithm. RIS
generates 𝑀 ≥ 1 candidate samples x = {𝑥1, . . . , 𝑥𝑀 } using a (sub-
optimal) source PDF 𝑝 . Then, it randomly selects a sample 𝑥𝑟 , for
𝑟 ∈ {1, . . . , 𝑀}, using discrete probabilities

𝑝 (𝑥𝑟 |x) =
𝑤 (𝑥𝑟 )∑𝑀
𝑗=1𝑤 (𝑥 𝑗 )

with 𝑤 (𝑥) = 𝑝 (𝑥)
𝑝 (𝑥) . (5)

The resulting 1-sample RIS estimator can be written as

⟨𝐼 ⟩1,𝑀ris = 𝐸𝑝 (𝑥𝑟 )
©« 1
𝑀

𝑀∑
𝑗=1

𝑤 (𝑥 𝑗 )
ª®¬ with 𝐸𝑝 (𝑥𝑟 ) =

𝑓 (𝑥𝑟 )
𝑝 (𝑥𝑟 )

. (6)

The parenthetical term corrects for differences between the actual
probability used to sample 𝑥𝑟 and the desired PDF 𝑝 (𝑥𝑟 ). This gives
an unbiased estimate if 𝑝 (𝑥) and 𝑝 (𝑥) are non-zero for all 𝑥 with
non-zero 𝑓 (𝑥). As𝑀 →∞, the distribution of 𝑥𝑟 approaches 𝑝 .

RIS is particularly effective if 𝑝 closely approximates 𝑓 and gener-
ation and evaluation of candidate samples 𝑥 𝑗 and𝑤 (𝑥 𝑗 ) are cheap.
In Talbot et al. [2005], 𝑥 is a point on a light source, 𝑝 (𝑥) is the
light sampling PDF. 𝑝 (𝑥) is unshadowed reflected radiance, includ-
ing BSDF, geometry term, and incident radiance. This reasonably
approximates the integrand, without expensive visibility queries.
When directly lighting opaque surfaces, this improves sampling
quality over standard importance sampling.

2.5 Spatiotemporal Reservoir Resampling (ReSTIR)
Spatiotemporal reservoir resampling (ReSTIR) [Bitterli et al. 2020]
transforms RIS into a streaming algorithm, avoiding storage of most
candidate samples by using weighted reservoir sampling [Chao
1982]. It is designed for direct illumination sampling from many
lights for real-time rendering. For each pixel, ReSTIR maintains
a reservoir that stores a sample 𝑥𝑟 selected from the previous 𝑚
candidates. Each new candidate 𝑥𝑚+1 is selected with probability

𝑝 (𝑥𝑚+1 |x ∪ {𝑥𝑚+1}) =
𝑤 (𝑥𝑚+1)∑𝑚+1
𝑗=1 𝑤 (𝑥 𝑗 )

. (7)

This can be seen as streaming candidate samples into a reservoir.
Since the reservoir stores only the selected sample and a running
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Fig. 2. Extending ReSTIR [Bitterli et al. 2020] for participating media
entails updating each component of this ReSTIR pipeline: defining
candidate generation in path space (see Section 3.2), RIS estimators
to efficiently evaluate high-dimensional integrals (Section 3.3), and
spatial and temporal sample reuse in this domain (Section 4).

sum of weights
∑𝑚+1

𝑗=1 𝑤 (𝑥 𝑗 ), many candidate samples𝑀 can be con-
sidered without additional storage, improving the sampling quality.

ReSTIR also enables spatiotemporal reuse by combining the reser-
voirs of nearby pixels and the previous frame, exponentially increas-
ing the effective candidate sample count (Figure 2). While rendering
the first frame, each pixel 𝑞 allocates a reservoir and streams 𝑀
newly generated candidates to select a sample 𝑥𝑞 . Then, the reser-
voirs of a random subset of nearby pixels are combined. Let 𝑞′
represent a pixel near 𝑞. Their two reservoirs cannot simply be
combined, unless the target PDFs 𝑝𝑞 (𝑥) and 𝑝𝑞′ (𝑥) for both pix-
els are identical. Generally, this is not the case and 𝑝𝑞 (𝑥) ≠ 𝑝𝑞′ (𝑥).
Therefore, ReSTIR includes a correction factor𝑤𝑞′→𝑞 for using the
selected sample 𝑥𝑞′ in reservoir 𝑞′ for pixel 𝑞, defined as

𝑤𝑞′→𝑞 =
𝑝𝑞 (𝑥𝑞′)
𝑝𝑞′ (𝑥𝑞′)

𝑤 sum
𝑞′ , where 𝑤 sum

𝑞′ =

𝑀∑
𝑗=1

𝑝𝑞′ (𝑥 𝑗 )
𝑝𝑞′ (𝑥 𝑗 )

. (8)

Note that 𝑤 sum
𝑞′ is the running sum in the reservoir from initial

candidate generation. For multiple iterations of reuse (chained RIS
passes),𝑤 sum

𝑞′ becomes the running sum from the prior RIS pass.
The resulting estimator combining𝑁 neighboring reservoirs from

pixels 𝑞1, . . . , 𝑞𝑁 can be written as

⟨𝐼 ⟩𝑁,1,𝑀
ReSTIR = 𝐸𝑝𝑞 (𝑥𝑟 )

(
1
𝑀𝑞

𝑁∑
𝑖=0

𝑤𝑞𝑖→𝑞

)
, (9)

where 𝑥𝑟 is the sample selected from one of the 𝑁 +1 reservoirs,
𝑀𝑞 = (𝑁 +1)𝑀 is the total effective candidate sample count for pixel
𝑞, and we define 𝑞0 ≡ 𝑞. Yet, this leads to a biased estimator, because
𝑝𝑞′ (𝑥) can be zero for 𝑥 with non-zero 𝑝𝑞 (𝑥). For correcting this bias,
Bitterli et al. [2020] propose replacing the 1/𝑀𝑞 term in Equation 9
with the MIS weight of the selected sample

𝑝𝑟 (𝑥𝑟 )
𝑀

∑𝑁
𝑖=0 𝑝𝑞𝑖 (𝑥𝑟 )

, (10)

where 𝑝𝑟 denotes the PDF of the reservoir that produced 𝑥𝑟 .
This MIS weight is stochastic (it depends on the chosen sample).

Although cheaper to evaluate than the deterministic MIS weight
proposed by Talbot [2005], it introduces noise. The deterministic
Talbot MIS can be used by multiplying the weights of samples in

Equation 9 with an additional term:

𝑤new
𝑞𝑖→𝑞 = 𝑤𝑞𝑖→𝑞 ·

𝑀𝑞𝑝𝑞𝑖 (𝑥𝑞𝑖 )
𝑀

∑𝑁
𝑠=0 𝑝𝑞𝑠 (𝑥𝑞𝑖 )

, (11)

Additionally, ReSTIR allows temporal reuse by passing the final
selected sample 𝑥𝑟 forward for reuse next frame. Combining spatial
and temporal reuse, the effective candidate sample count 𝑀𝑞 grows
exponentially. To prevent unbounded influence of temporal samples,
a user-defined temporal limiting factor 𝑄 is used to enforce 𝑀𝑞 ≤
𝑄𝑀 . When 𝑀𝑞 exceeds this limit, the running sum is scaled by
𝑄𝑀/𝑀𝑞 and then𝑀𝑞 is updated as𝑀𝑞 ← 𝑄𝑀 .

But the benefit of spatiotemporal reuse is not indefinite. If 𝑝𝑞′ from
neighbor reservoir 𝑞′ substantially differs from 𝑝𝑞 , spatially reusing
𝑞′ can negatively impact sampling quality instead of improving
it. Thus, applying heuristics to selectively reject reservoirs and
using high quality MIS to reweight samples can substantially reduce
variance [Bitterli 2021; Wyman and Panteleev 2021].

ReSTIR is highly effective in estimating direct illumination on
opaque surfaces from many lights [Bitterli et al. 2020]. It chains RIS
passes spatiotemporally to quickly accumulate many samples. Addi-
tionally, successive RIS passes can use higher quality 𝑝 to improve
sampling quality at relatively low cost. While 𝑝 typically contains
unshadowed reflected radiance, ReSTIR injects visibility into 𝑝 at a
lower frequency (known as visibility reuse).

Boksansky et al. [2021] store reservoirs in world space so a path
tracer can efficiently perform NEE on secondary path vertices. Con-
current work by Ouyang et al. [2021] extends screen space ReSTIR
for surface global illumination. This can be viewed as a special case
of our method, which handles both surface and volume transport
and interreflections between them (see Figure 1, right).
We extend the concepts in ReSTIR to real-time volume render-

ing; to achieve that, we solve various challenges when resampling
(Section 3) and reusing samples (Section 4) in volumetric path space.

3 RIS FOR VOLUME RENDERING
We target extending ReSTIR [Bitterli et al. 2020] to volumetric path
tracing. As ReSTIR builds on RIS [Talbot et al. 2005], we begin by
developing an RIS estimator for the volume rendering equation.

Volume rendering involves higher-dimensional integrals than the
direct surface illumination in Bitterli et al. [2020] and Talbot et al.
[2005]. Visibility alone forms an integral along primary rays. Thus,
we cannot just sample light positions; we must sample entire paths.

In this section, we provide a path integral representation of the
volume rendering equation (Section 3.1), describe how we can gen-
erate candidate paths (Section 3.2), and explain how to estimate the
volume rendering equation using RIS (Section 3.3).

3.1 Path Integral Representation of Volume Rendering
Let 𝝀 denote a path. We can write the volume rendering equation
(Equation 1) as a path integral

𝐿(x0,𝝎𝑜 ) =
∫
𝚲

𝐹 (𝝀) 𝑑𝝀 , (12)

where 𝚲 is the set of all paths and 𝐹 (𝝀) is the incident radiance
through the path 𝝀.
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Fig. 3. A random walk with 𝐾 vertices generates 2𝐾 candidate paths
for later reuse: 𝐾 are scattering paths that terminate at a light (yellow)
with next event estimation and the remaining 𝐾 are emission paths
terminating in the media due to volumetric emission (red).

Consider a path 𝝀 with 𝑘 scattering events, forming 𝑘 + 2 vertices
x0, . . . , x𝑘+1, with x0 a camera vertex and x𝑘+1 a light vertex. A light
vertex can be a point on a light surface or inside emissive media.
For brevity, the formulations below assume intermediate vertices
x1, . . . , x𝑘 are in the medium, but this can easily be extended to
points on surfaces (e.g., see Figures 1 and 18).
Let 𝑧𝑖 = |x𝑖+1 − x𝑖 | be the distance between consecutive path

vertices and 𝝎𝑖 = (x𝑖+1 − x𝑖 )/𝑧𝑖 be the direction towards the next
path vertex. Then, we can write the incident radiance as

𝐹 (𝝀) = Γ𝑠 (𝝀, 𝑘)𝑇 (x𝑘 ↔ x𝑘+1)𝐺 (x𝑘 ↔ x𝑘+1) 𝐿(x𝑘+1 � x𝑘 ), (13)

where geometry term 𝐺𝑖 = 𝐺 (x𝑖−1 ↔ x𝑖 ) is 1 using solid angle
measure and 1/𝑧2

𝑖
using volume measure, and Γ𝑠 represents path

throughput:

Γ𝑠 (𝝀, 𝑘) =
𝑘∏
𝑖=1

𝑇 (x𝑖−1 ↔ x𝑖 ) 𝜎𝑠 (x𝑖 )𝐺𝑖 𝜌𝑖 , (14)

with 𝜌𝑖 = 𝜌 (x𝑖 ,−𝝎𝑖−1,𝝎𝑖 ) the phase function and 𝐿(x𝑘+1 � x𝑘 )
the emitted radiance at x𝑘+1 towards x𝑘 . Note, for a path with 𝑘 = 0
(i.e. no scattering events) we take Γ𝑠 (𝝀, 𝑘) = 1.

The emitted radiance 𝐿 can come from either a light sample at
x𝑘+1, if 𝝀 is a scattering path, or volumetric emission at x𝑘+1, if 𝝀 is
an emission path. More specifically, we can write

𝐿(x𝑘+1 � x𝑘 ) =
{
𝐿𝑠 (x𝑘+1 � x𝑘 ) if scattering path,
𝜎𝑎 (x𝑘+1) 𝐿𝑚𝑒 (x𝑘+1 � x𝑘 ) if emission path.

(15)

We use 𝐿𝑠 to represent radiance from the light. The notation assumes
the source is an emissive surface, but it can easily be extended to
other lights. For example, for an environment map x𝑘+1 is an infin-
itely distant vertex and 𝐿𝑠 is the radiance along direction x𝑘+1 � x𝑘 .

3.2 Generating Path Samples
To use an RIS estimator for the path integral formulation of volume
rendering (Equation 12), we must generate numerous random paths
𝝀 with PDF 𝑝 (𝝀).

Our path generation approach is similar to path tracing with next
event estimation, as shown in Figure 3. We start with a ray from x0
towards 𝝎0 = −𝝎𝑜 . At each step, we first pick a random distance
𝑧𝑖 along our ray with PDF 𝑝 (𝑧𝑖 |x𝑖−1,𝝎𝑖−1). This specifies the next
path vertex x𝑖 = x𝑖−1 + 𝑧𝑖𝝎𝑖−1. Then, for each scattering event, we
pick a scattering direction 𝝎𝑖 with a PDF 𝑝 (𝝎𝑖 |x𝑖 ). We repeat this
step to generate a random walk of a desired length.

As shown in Figure 3, each vertex x𝑖 on our random walk spawns
two candidate paths to feed our resampling. The first is a scattering
path, using next event estimation to sample a light for x𝑖+1. If our
media emits light, we generate an emission path ending at x𝑖 . Both
scattering and emission paths end at a light: either on a surface or
in the media. Emission at intermediate vertices is ignored, as it is
accounted for on shorter paths (i.e. spawned at vertex x𝑗 , for 𝑗 < 𝑖).
With this procedure, the PDF of a scattering or emission path

with 𝑘 scattering events and 𝑘 + 2 vertices can be written as

𝑝 (𝝀) =
𝑘′∏
𝑖=1

𝑝 (𝑧𝑖 |x𝑖−1,𝝎𝑖−1)𝐺𝑖 𝑝 (𝝎𝑖 |x𝑖 ) , (16)

where 𝑘 ′ = 𝑘 for scattering paths and 𝑘 + 1 for emission paths. Here,
the PDF of sampling a direction is

𝑝 (𝝎𝑖 |x𝑖 ) =


𝜌𝑖 if 𝑖 < 𝑘 ′,
𝑝NEE (𝝎𝑘 |x𝑘 ) if 𝑖 = 𝑘 ′ and scattering path,
1 if 𝑖 = 𝑘 ′ and emission path.

(17)

where 𝑝NEE (𝝎𝑘 |x𝑘 ) represents the light sampling PDF used for next
event estimation.

The PDF of sampling a distance 𝑧𝑖 along a ray from x𝑖−1 towards
𝝎𝑖−1 depends on the sampling method used. When using RIS with-
out ReSTIR, delta tracking [Woodcock et al. 1965] is a convenient
choice for this task. Delta tracking has a very desirable PDF

𝑝 (𝑧𝑖 |x𝑖−1,𝝎𝑖−1) = 𝑇 (x𝑖−1 ↔ x𝑖 ) 𝜎𝑡 (x𝑖 ) . (18)

A problem with this PDF is transmission 𝑇 is either not available
in closed form or expensive to compute, and it must be reevaluated
repeatedly (as part of 𝑝 (𝝀)) when resampling via RIS. Fortunately,
we can select target PDF 𝑝 (𝝀) to cancel terms in 𝑝 (𝝀), avoiding
explicit evaluation of𝑇 in 𝑝 (𝝀). But when spatiotemporally reusing
samples, this cancellation is no longer possible; thus, we must re-
place delta tracking with another sampling method, as discussed in
Section 4.

A random walk up to (a user-defined maximum of) 𝐾 steps gen-
erates up to 𝐾 scattering paths with 0 < 𝑘 ≤ 𝐾 and 𝐾 emission
paths with 0 ≤ 𝑘 < 𝐾 , as shown in Figure 3. But a random walk
may terminate early, if it exits the media prior to the 𝐾 th scattering
event. Let 𝑛 be the total number of paths generated by a random
walk (i.e. 𝑛 ≤ 2𝐾). If sampling one of these 𝑛 paths uniformly, the
joint sampling PDF 𝑝 (𝝀) can be written relative to the PDF of the
random walk 𝑝 (𝝀) as

𝑝 (𝝀) = 1
𝑛
𝑝 (𝝀) . (19)

To generate more candidate paths, we can perform additional
random walks starting from x0.
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3.3 RIS Estimation of Volume Rendering
We generate paths using 𝑀 random walks. Each random walk 𝑗
produces 𝑛 𝑗 paths. Uniformly selecting one of the 𝑛 𝑗 paths as a
sample for the path integral leads to high variance. Instead, we use
RIS to select one path from each random walk to estimate the path
integral, treating the 𝑛 𝑗 paths as stratified samples with source PDF
𝑝 (𝝀𝑖

𝑗
) for each path 𝑖 ∈ {1, ..., 𝑛 𝑗 } and using a target PDF 𝑝 (𝝀𝑖

𝑗
). If

𝑀 = 1, then this RIS estimator can be written as

⟨𝐿(x0,𝝎𝑜 )⟩1,1ris = 𝐸𝑝 (𝝀𝑟𝑗 )
1
𝑛 𝑗

𝑛 𝑗∑
𝑖=1

𝑝 (𝝀𝑖
𝑗
)

𝑝 (𝝀𝑖
𝑗
)
= 𝐸𝑝 (𝝀𝑟𝑗 )

𝑛 𝑗∑
𝑖=1

𝑝 (𝝀𝑖
𝑗
)

𝑝 (𝝀𝑖
𝑗
)

(20)

where 𝐸𝑝 (𝝀𝑟𝑗 ) = 𝐹 (𝝀
𝑟
𝑗
)/𝑝 (𝝀𝑟

𝑗
) and 𝝀𝑟

𝑗
represents the selected path.

Notice the 1/𝑛 𝑗 factor cancels the same value inside 𝑝 (𝝀𝑖
𝑗
). Our

supplemental document has a more rigorous derivation. Given 𝑀
random walks, we again resample to select one of the 𝑀 paths
𝝀𝑟1, ...,𝝀

𝑟
𝑀

(note index 𝑟 varies with 𝑗 ). As each candidate path 𝝀𝑟
𝑗

comes from a prior RIS step, theymust beweighted appropriately (by
the running sum from the prior RIS round). Thus, the RIS estimator
to select one path out of all𝑀 random walks is

⟨𝐿(x0,𝝎𝑜 )⟩1,𝑀ris = 𝐸𝑝 (𝝀𝑟 )
©« 1
𝑀

𝑀∑
𝑗=1

𝑛 𝑗∑
𝑖=1

𝑤 (𝝀𝑖𝑗 )
ª®¬ . (21)

We simplify the notation to 𝝀𝑟 (instead of 𝝀𝑟
𝑟 ′ ) to represent the

final path sample from this round of RIS. Here both 𝐸𝑝 (𝝀𝑟 ) =

𝐹 (𝝀𝑟 )/𝑝 (𝝀𝑟 ) and 𝑤 (𝝀𝑖𝑗 ) = 𝑝 (𝝀
𝑖
𝑗
)/𝑝 (𝝀𝑖

𝑗
) depend on chosen target

PDF 𝑝 (𝝀).
Ideally, 𝑝 (𝝀) closely matches 𝐹 (𝝀) but is cheaper to compute,

as 𝑝 (𝝀) gets evaluated for each candidate path sample. Therefore,
we use 𝐹 (𝝀), a cheaper approximation of 𝐹 (𝝀), for paths with next
event estimation

𝑝 (𝝀) =
{
𝐹 (𝝀) if scattering path,
𝐹 (𝝀) if emission path.

(22)

This approximation comes from simply using a cheaper transmit-
tance estimate 𝑇 for light samples (discussed in Section 5.1):

𝐹 (𝝀) = Γ𝑠 (𝝀)𝑇 (x𝑘 ↔ x𝑘+1)𝐺 (x𝑘 ↔ x𝑘+1) 𝐿(x𝑘+1 � x𝑘 ) . (23)

This particular definition of 𝑝 (𝝀) includes the same transmittance
terms 𝑇 as 𝑝 (𝝀). Thus, all 𝑇 terms cancel when computing𝑤 (𝝀) =
𝑝 (𝝀)/𝑝 (𝝀), such that

𝑤 (𝝀) =𝑊𝑘 (𝝀)
𝑘∏
𝑖=1

𝜎𝑠 (x𝑖 )
𝜎𝑡 (x𝑖 )

, (24)

where

𝑊𝑘 (𝝀) =

𝜌𝑘 𝑇 (x𝑘↔x𝑘+1)𝐺𝑘+1 𝐿𝑠 (x𝑘+1�x𝑘 )

𝑝NEE (𝝎𝑘 |x𝑘 ) if scattering path,
𝜎𝑎 (x𝑘+1)
𝜎𝑡 (x𝑘+1) 𝐿

𝑚
𝑒 (x𝑘+1 � x𝑘 ) if emission path.

(25)

This particular choice for 𝑝 (𝝀𝑟 ) also simplifies the computation of
the 𝐸𝑝 (𝝀𝑟 ) = 𝐹 (𝝀𝑟 )/𝑝 (𝝀𝑟 ) term, such that

𝐸𝑝 (𝝀𝑟 ) =
{
𝑇 (x𝑘↔x𝑘+1)
𝑇 (x𝑘↔x𝑘+1)

if scattering path,

1 if emission path.
(26)

Note the only remaining 𝑇 term is needed to compute direct
illumination for the one chosen path sample 𝝀𝑟 in 𝐸𝑝 (𝝀𝑟 ). This
𝑇 term appears in no PDFs, only final shading, so we can afford
unbiased estimates or even analytical methods. We discuss our
choices for evaluating and estimating 𝑇 in Section 5.1.
All source PDFs, however, cannot use stochastic estimation or

biased approximation. While resampling allows arbitrarily defining
𝑝 (𝝀) (including approximations), approximating source PDF 𝑝 (𝝀)
after choosing sample 𝝀 introduces estimation error. By carefully
choosing 𝑝 (𝝀), we avoid expensive 𝑇 terms in our PDFs and al-
lows building an efficient RIS estimator for volume rendering with
multiple scattering and volumetric emission.

This RIS estimator can be performed in a streaming manner using
weighted reservoir sampling [Chao 1982], such that only the one
selected sample per pixel is stored, instead of explicitly storing all
𝑀 candidate path samples. We provide implementation details in
our supplemental document.

4 SPATIOTEMPORAL REUSE
Quality of the RIS estimator in Equation 21 depends on the candidate
sample count𝑀 . By reusing a pixel’s candidate samples when eval-
uating neighbor pixels, we can substantially increase the effective
per-pixel candidate sample count with minimal overhead. Similar
to the direct illumination sampling in ReSTIR [Bitterli et al. 2020],
we leverage streaming RIS and screen-space spatiotemporal reuse,
storing intermediates in per-pixel reservoirs.

We generate𝑀 candidate samples 𝝀𝑟1, ...,𝝀
𝑟
𝑀

for each pixel. Each
pixel selects one candidate 𝝀𝑟 using RIS and weighted reservoir sam-
pling. We then consider the samples selected in nearby reservoirs
and from the prior frame. Combining these reservoirs, we pick one
sample per pixel to evaluate.
While our reuse follows the pattern of Bitterli et al. [2020], key

changes are needed to reuse volumetric path samples. Generating
candidate paths for spatiotemporal reuse requires sampling a closed-
form PDF, which requires updating the candidate generation process
in Section 3.3, as we describe in Section 4.1. We discuss reusing paths
between reservoirs in Section 4.2; unlike reusing direct light samples
in ReSTIR, paths can bemapped between reservoirs in different ways
with varying trade-offs. We introduce changes for spatial reuse in
Section 4.3, refining the transmittance estimation and removing
bias via different MIS weighting. Finally, in Section 4.4 we introduce
a new stochastic reprojection for temporally reusing volumetric
path samples, as surface motion vectors fail in volumes. Combined
spatiotemporal reuse dramatically increases effective sample count,
giving better quality than either reuse alone, as shown in Figure 4.

Importantly, our work combines transmittance estimates of vary-
ing quality, as we need a closed-form PDF for distance sampling,
an efficient way to resample transmittance spatiotemporally, and
unbiased transmittance for final shading (see Sections 4.1 and 4.3).
We exploit resampling to iteratively refine transmittance, doing
more expensive computations at lower frequency (see Figure 5).

4.1 Generating Candidate Samples for Reuse
When reusing samples 𝝀 from neighbor pixels or prior frames, we
must explicitly compute (i.e. resample) the target PDF 𝑝 (𝝀) at the
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RIS Only (No Reuse) Temporal Reuse Only Spatial Reuse Only Spatiotemporal Reuse

17 ms 32 ms 42 ms 45 ms

4 ms 10 ms 8 ms 11 ms

Fig. 4. Both spatial and temporal reuse improve quality significantly. (Left) scenes with spatiotemporal reuse, and (right) insets comparing quality
and performance without reuse, with only spatial or temporal reuse alone, and with spatiotemporal reuse. (Top) the Bunny Cloud scene uses a
quickly rotating environment map and (bottom) the Plume scene has dynamic volume data. See the supplementary video for animated results.

Temporal Reuse

Fig. 5. During sample reuse, transmittance gets refined from an initial
piecewise constant approximation 𝑇 ∗ to trilinear interpolation for
ray marching 𝑇 to an analytical evaluation for shading 𝑇 . But we
always compute transmittance for NEE via ray marching (except final
shading). Buckets visualize reservoirs, with initial candidates marked
in blue, reservoir samples in red, and final shaded samples in purple.

current pixel and frame. Thus, using a target 𝑝 (𝝀) containing ex-
pensive transmittance terms 𝑇 (as in Section 3) makes spatiotem-
poral reuse computationally infeasible. But not including 𝑇 in 𝑝 (𝝀)
means cancellation will not occur (in Equation 24) while computing
𝑤 (𝝀) = 𝑝 (𝝀)/𝑝 (𝝀), requiring explicit transmittance computation
for each candidate path (in 𝑝 (𝝀)). To avoid this expense, we avoid us-
ing 𝑇 terms in both 𝑝 (𝝀) and 𝑝 (𝝀), replacing delta tracking (during

candidate path generation) with an alternative distance sampling
method with a closed-form PDF that is cheap to evaluate.
We use regular tracking [Sutton et al. 1999]. Regular tracking

may not outperform delta tracking, but it can be accelerated using
a piecewise-constant approximation of the volume. For voxelized
volumes, all points x within voxel 𝑣 with constant density 𝜎∗𝑡,𝑣 get
𝜎∗𝑡 (x) = 𝜎∗𝑡,𝑣 . Let 𝑇

∗ denote transmittance between two points in
this piecewise-constant volume. The PDF for regular tracking with
piecewise-constant volume is then

𝑝 (𝑧𝑖 |x𝑖−1,𝝎𝑖−1) = 𝑇 ∗(x𝑖−1, x𝑖 ) 𝜎∗𝑡 (x𝑖 ) . (27)

Here, the transmittance term can be written as

𝑇 ∗(x𝑖−1, x𝑖 ) =
∏
𝑣

𝑒−𝜎
∗
𝑡,𝑣𝑑𝑖,𝑣 , (28)

where 𝑑𝑖,𝑣 is the length of line segment x𝑖−1x𝑖 inside voxel 𝑣 (thus,
𝑑𝑖,𝑣 = 0 for voxels that do not intersect x𝑖−1x𝑖 ).

We use this piecewise-constant volume only for importance sam-
pling, i.e., to generate candidates 𝝀𝑖

𝑗
and evaluate their PDFs 𝑝 (𝝀𝑖

𝑗
)

and 𝑝 (𝝀𝑖
𝑗
). When computing final path throughput, 𝐹 (𝝀𝑟 ), for the

one chosen sample 𝝀𝑟 per pixel, we use the more expensive, unbi-
ased transmittance function 𝑇 and density 𝜎𝑡 .

Care is required when generating candidates from the piecewise-
constant volume. If 𝜎𝑡 is non-zero anywhere inside voxel 𝑖 , 𝜎∗

𝑡,𝑖
for

the voxel must be non-zero to avoid bias. For example, we cannot
trilinearly interpolate a voxel grid for 𝑇 and use nearest sampling
for𝑇 ∗. Nearest sampling can return zero some places where trilinear
sampling gives non-zero density, which would introduce bias. To
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ω1
ω2

ω3

x2

x3

x0

ω′0
ω′1

ω′2

ω′3

ω0
x1

x′1
x′3

x′2

(b) Direction Reuse

Fig. 6. Path 𝝀 (black) is created from a neighbor pixel’s path 𝝀′ (blue).
Vertex x1 is the same distance along primary ray 𝝎0 (as x′1 along 𝝎 ′0).
Vertex reuse connects x1 to x′2 (red segment) to form the rest of 𝝀.
Direction reuse takes 𝝎𝑖 = 𝝎 ′

𝑖
and 𝑧𝑖 = 𝑧′𝑖 along the remaining path.

avoid this, we use nearest sampling for 𝑇 ∗, except in zero-density
voxels where we return the average density of their neighbors.

For further acceleration, we can use a lower resolution piecewise-
constant volume for path generation. Our results (Section 5.1) show
that defining this piecewise-constant volume at lower resolution
than the original volume substantially improves performance with
only minor quality impacts.

4.2 Path Reuse
To reuse paths we must create a path 𝝀 with vertices x0, . . . , x𝑘+1
in pixel 𝑞 based on a path 𝝀′ from a different pixel 𝑞′ with vertices
x′0, . . . , x

′
𝑘+1. As both 𝝀 and 𝝀′ start at the same camera position, we

get x0 = x′0. However, the same is not true for the other vertices. The
pixels may have different primary ray directions 𝝎0 ≠ 𝝎 ′0, so the
next vertex x1 = x0 + 𝑧1𝝎0 must be different as well (i.e. x1 ≠ x′1).
We can, however, use the same distance along the primary ray for
both paths, such that 𝑧1 = 𝑧′1.

For the following vertices, we consider two options (Figure 6):

• Vertex reuse by simply setting x𝑖 = x′
𝑖
for 𝑖 ≥ 2, or

• Direction reuse by taking 𝝎𝑖 = 𝝎 ′
𝑖
and 𝑧𝑖 = 𝑧′𝑖 .

Vertex reuse reduces computation, as we need not recompute
𝑇 ∗(x𝑖 ↔ x𝑖+1) for 𝑖 ≥ 1. However, it includes an unbounded geom-
etry term 𝐺 (x1 ↔ x2) = 1/|x2 − x1 |2 that introduces fireflies. In
Bitterli et al. [2020], singularities occur around corners and edges,
but in volumes they can occur anywhere.
Direction reuse must compute 𝑇 ∗(x𝑖 ↔ x𝑖+1), but avoids these

artifacts. It is also possible to combine both approaches by reusing
directions for a desired number of scattering events then switching
to vertex reuse; this reduces the probability of fireflies and bounds
the cost. Our experiments show reduced noise for a slight cost
increase with direction reuse (see comparison in the supplemental
document), so results in the paper all rely on direction reuse. While
long very paths may be initially generated, they are unlikely to be
selected and reused via RIS as they carry less energy. This helps
bounds the average cost of direction reuse.
As for the last vertex x′

𝑘+1, if on a light surface or in emissive
media, we take x𝑘+1 = x′

𝑘+1. If our reused path samples the envi-
ronment map, we take 𝝎𝑘 = 𝝎 ′

𝑘
.

Vertex reuse in the presence of surfaces is straightforward, by
simply adding surface vertices to the path. For direction reuse, if x′

𝑖
lies on a surface, we put x𝑖 onto the closest surface along the ray
starting at x𝑖−1 with direction 𝝎𝑖−1. Hence, if the scene does not
contain a volume, only reflection directions are reused.

4.3 Spatial Reuse
After generating𝑀 per-pixel candidates, each pixel 𝑞’s reservoir has
selected a path 𝝀𝑞 (i.e. 𝝀𝑟 for each 𝑞). Next, we spatially reuse from
neighbor pixel reservoirs, using RIS to combine the neighbor reser-
voirs with the current pixel’s. For each neighbor 𝑞′, this involves
computing correction factor𝑤𝑞′→𝑞 (per Equation 8), using

𝑤𝑞′→𝑞 =
𝑝𝑞 (𝝀𝑞′)
𝑝𝑞′ (𝝀𝑞′)

𝑤 sum
𝑞′ , where 𝑤 sum

𝑞′ =

𝑀∑
𝑗=1

𝑛 𝑗∑
𝑖=1

𝑝𝑞′ (𝝀𝑖𝑗 )

𝑝𝑞′ (𝝀𝑖𝑗 )
.

(29)

Here, the same path sample 𝝀𝑞′ contains different vertices in
pixels 𝑞 and 𝑞′ due to the reuse of 𝑧1 along different rays and later
direction reuse. Therefore, when computing 𝑝𝑞/𝑝𝑞′ in𝑤𝑞′→𝑞 , not
all transmittance terms in the PDFs cancel, as they are evaluated for
different pixels (none of them cancel with direction reuse and only
some of them cancel with vertex reuse).
As noted in Section 4.1, as a byproduct of distance sampling we

used a piecewise-constant volume to compute transmittance 𝑇 ∗.
However, when recomputing transmittance values during reuse,
there is no computational need for such simplification (cancellation
of terms generally cannot happen between neighboring pixels). Plus,
the piecewise-constant sampling enlarges non-zero density regions
and leads to suboptimal sampling quality.
Instead of keeping the lower quality transmittance estimate 𝑇 ∗,

during resampling we can update target function 𝑝𝑞 to use higher
quality transmittance than the input 𝑝𝑞′ values. For resampling 𝑝𝑞
during reuse, we compute a new transmittance estimate, 𝑇 , using
ray-marching with trilinearly filtered densities to improve subse-
quent sample quality. Because this (biased) ray marching is only
used during importance sampling, and not for final throughput
in 𝐹 (𝝀), it does not bias the rendering. An additional advantage
of ray marching is the ability to tune step size, depending on our
resampling budget.

Thus, 𝑝𝑞 ≠ 𝑝𝑞′ even for 𝑞 = 𝑞′, simply because we use an updated
target function for 𝑝𝑞 (with 𝑇 instead of 𝑇 ∗) for 𝑝𝑞 . This improved
transmittance estimate behaves similar to Bitterli et al.’s [2020]
visibility reuse.

We must also consider that some valid path samples 𝝀 for pixel 𝑞
may never be sampled by a neighboring pixel 𝑞′, i.e., 𝑝𝑞′ (𝝀) may
be zero for some 𝝀 with non-zero 𝑝𝑞 (𝝀). Simply ignoring this in-
troduces sampling bias, excessively darkening the results. Bitterli
et al. [2020] correct this via stochastic MIS weighting (i.e. Equa-
tion 10). Although faster than the deterministic MIS (Equation 11)
weighting introduced by Talbot [2005], we found stochastic MIS
excessively noisy in volumes, as shown in Figure 7. Heuristically
rejecting spatial neighbors based on features like surface normal or
depth is effective for reducing the noise on surfaces [Wyman and
Panteleev 2021], but for volumes such features are stochastic, mak-
ing heuristics-based rejection challenging. Instead, we use Talbot
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(a) No MIS (24 ms) (b) Stochastic MIS (31 ms) (c) Talbot MIS (38 ms) (d) Reference

Fig. 7. Sample reuse without fireflies requires MIS to appropriately weight samples. Bitterli et al. [2020] introduced a cheaper 𝑂 (𝑁 ) stochastic
MIS, though for our volume formulation the more expensive Talbot [2005] MIS works better.

(a) Spatial reuse only (b) No reprojection (c) Temporal reprojection (d) Reference

(e) Spatial reuse only (f) No reprojection (g) Temporal reprojection (h) Reference

Fig. 8. Under camera motion (top) or volume deformation (bottom), temporal reprojection helps identify good samples for reuse. At left, we show
references using motion blur to illustrate the magnitude of per-frame motion. At right, we show insets from a single frame without motion blur.
(a,e) Only spatial reuse within the current frame. (b,f) Without temporal reprojection we reuse from inappropriate prior frame locations, causing
halos and masking the noise reduction from temporal reuse. (c,g) Our novel temporal reprojection reduces the haloing and generally reduces noise.
See the supplemental video for full comparison.

MIS for spatial reuse; while it has quadratic cost, this is acceptable
when using a small number of spatial neighbors.

4.4 Temporal Reuse
Temporal reuse significantly improves sample quality by incorpo-
rating knowledge from prior frames. The challenge for such reuse
is finding relevant samples by temporally reprojecting prior frames,
including changes from camera motion and volumetric deformation.
But temporal reprojection is ill-defined for volume rendering.

The media in any pixel may move in many directions, so no single
“correct” motion vector can tell us what prior-frame data should be
reused.

We approach the problem probabilistically. With temporal repro-
jection we seek motion vectors that select, with high probability,
prior frame reservoirs containing useful data. For example, if most
media in a pixel has one motion vector, reusing a reservoir corre-
sponding to that motion likely reduces variance best (e.g., prefer-
entially sampling motion from denser media in a pixel instead of
following a closer, wispy cloud’s motion).
To that end, we use the motion vector at x1, the first vertex on

pixel 𝑞’s selected path 𝝀𝑞 (prior to spatial reuse). To compute the
motion vector, we treat x1 as a particle such that its previous frame’s
position is determined by the velocity field of the volume. This
randomizes the choice of motion vector, allowing any visible media
to (potentially) contribute motion, using the target PDF 𝑝 (𝑧1 |x0,𝝎0).
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Moderate Camera Motion

Ours (averaged) Reference Difference ×4

Fast Camera Motion

Ours (averaged) Reference Difference ×4

Moderate Volume Deformation

Ours (averaged) Reference Difference ×4

Large Volume Deformation

Ours (averaged) Reference Difference ×4
Fig. 9. Bias in temporal reuse with (top) camera motion and (bottom) volume deformation, comparing the results of our method averaged over 256
recomputations of the same frame (to produce nearly-converged images) to reference images. (Left) with moderate motion/deformation bias is
imperceptible, but (right) faster camera motion or larger volume deformation increases this bias. Note that we use a slowly deforming fog as the
example for moderate volume deformation, which is different from other images. The full images on the left are rendered with motion blur to
illustrate the magnitude of the camera motion or volume deformation. The insets do not include motion blur.

Media with higher 𝑝 (𝑧1 |x0,𝝎0) has a higher probability to provide
the motion vector, which is reasonable as it contributes more pixel
radiance.
Figure 8 shows examples of camera animation and volumetric

deformation with and without temporal reprojection. Notice that
temporal reprojection can help reduce the noise substantially.
An important limitation of this temporal reuse and reprojection

is it remains unbiased only for static volumes and camera. Under
camera motion or volume deformation, the chosen temporal reser-
voir depends on 𝑧1 (i.e. the first scatter event). This turns the target
PDFs in RIS into conditional PDFs (conditioned on 𝑧1), introducing
a slight bias during reuse if treated as a marginalized PDF.

Bias increases with larger camera motion or volume deformation
(see Figure 9). But the bias is generally hard to perceive. Figure 9
shows examples with fast camera motion and large volume defor-
mation, but only slight darkening/brightening happens. Lowering
𝑄 , the temporal limiting factor (see Section 2.5), reduces bias, and
the bias disappears entirely a few frames after motion ends.
Note that dynamic lighting does not add bias. Instead, sudden

lighting changes effectively lower the PDF for temporal candidates,
increasing variance near lighting discontinuities.

5 IMPLEMENTATION DETAILS
The above volumetric sampling techniques can be implemented in
various ways. In this section, we provide the details of our prototype.

Our implementation has four passes, similar to the flow in Figure 2.
First, we generate initial candidate paths for each pixel and pick
one, via RIS, to share with neighbors. Second, we reproject to find a
temporal neighbor for reuse and again resample. Third, we perform
spatial resampling. Finally, we evaluate the selected path sample
for shading. We visualize our pipeline in Figure 5, and provide
pseudocode in the supplemental document. Our reservoir stores

full paths as a list of (𝑧𝑖 ,𝝎𝑖 ) tuples. Memory costs are bounded by
the allowed number of scattering events, 𝐾 . But supporting infinite
bounces is possible by switching to vertex reuse after a few bounces
and caching incident radiance of the remaining path.

5.1 Optimizing Transmittance Computation
Transmittance plays a vital role in volumetric resampling, as it
contributes significant cost to target function 𝑝 and must be eval-
uated between every two path vertices. Prior work [Bitterli et al.
2020] notes resampling efficiency is maximized when choosing a
target function 𝑝 that closely approximates integrand 𝑓 but is much
cheaper to evaluate.

When computing transmittance 𝑇 in 𝑝 for spatiotemporal reuse,
we ray march a coarser volume (i.e. Mip 1, the original volume
downsampled by half). Our step size for raymarching is the diagonal
of a Mip 1 voxel. We lossily compress the downsampled volume with
DirectX’s BC4 block compression format, which compresses density
values to 4 bits, giving a total 64:1 compression from the original;
this greatly reduces sampling bandwidth, improving performance.

Directly rendering such volumes causes overblurring, but we use
it just for importance sampling. Figure 10 compares ray marching
our downsampled volume with analytical transmittance compu-
tations in the original volume. The downsampled volume slightly
reduces sampling quality, but significantly improves performance.
But coarsening can go too far; Figure 10c uses a Mip 3 volume for
importance sampling. While cost drops further, sampling quality
decreases significantly.

However, Figure 11 shows initial candidate paths can ray march
a Mip 2 volume to estimate the transmittance on NEE segments
(i.e. for volumetric shadows) without affecting sampling quality.
This shows the benefit of incrementally injecting higher quality
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(a) Analytical
140 ms/MSE: 0.0035

(b) Mip 1 RM
49 ms/MSE: 0.0050

(c) Mip 3 RM
43 ms/MSE: 0.0096

Fig. 10. When resampling, approximating transmittance by ray
marching though coarser volumes (Mip 1 RM) greatly lowers cost,
in exchange for a little noise (compared to analytical transmittance).
But lowering resolution too far (e.g., Mip 3) adds more noise without
much speedup.

(a) Mip 1 RM
83 ms/MSE: 0.0041

(b) Mip 2 RM
62 ms/MSE: 0.0041

(c) No Shadow
55 ms/MSE: 0.0048

Fig. 11. As Bitterli et al. [2020] found, injecting higher fidelity visi-
bility incrementally during resampling improves quality without the
cost to compute it everywhere. Using (c) no transmittance for NEE
segments increases noise due to poorer sample quality. Adding trans-
mittance reduces noise, but (b) even very crude approximations (e.g.,
ray marching a 1/43 sized volume) provide most of the benefits.

(a) Analytical
111 ms/MSE: 0.0047

(b) Mip 1+2 RT
49 ms/MSE: 0.0050

(c) Mip 3 RT
44 ms/MSE: 0.0060

Fig. 12. During candidate path generation, computing transmittance
analytically is costly. We use regular tracking (RT) through coarser
volumes to reduce cost with little impact to sample quality (using Mip
1 for primary and Mip 2 for indirect rays). Coarsening too far (e.g.,
Mip 3) noticeably reduces quality without much performance win.

transmittance into target function 𝑝 over multiple rounds of RIS,
rather than always using the highest quality.

We also sample distances from downsampled volumes when gen-
erating initial path candidates. Figure 12 shows that mixing Mip 1
for sampling primary path segments and Mip 2 volume for indirect
path segments yields similar quality as analytical regular tracking
in the original volume, but with much higher performance. Again,
coarsening too far significantly skews the sampling distribution,
reducing quality (see Figure 12c).
In the integrand 𝐹 , we analytically compute transmittance 𝑇

by traversing the voxels using piecewise-trilinear regular tracking

(a) No Velocity
Resampling

(b) Velocity
Resampling

(c) Reference

Fig. 13. Temporal reprojection with and without velocity resampling,
shown for a dynamic camera. (a) Overusing background motion along
silhouettes causes brightening bias around the edge. (b) Velocity re-
sampling fixes this.

[Szirmay-Kalos et al. 2011], giving a closed-form, unbiased trans-
mittance. This traversal is expensive, fetching 8 density values per
step to evaluate a cubic polynomial. However, we only do this for
one path—the one selected for final shading. Should such a closed
form solution be infeasible, we can switch to ratio tracking [Novák
et al. 2014] for this final transmittance estimate; a large majorant
should be used to minimize noise by forcing a smaller average step.

5.2 Velocity Resampling
Our temporal reprojection (Section 4.4) uses the motion vector of
vertex x1 on each pixel’s selected path 𝝀𝑞 . Generally this works
well, but near volume silhouettes, 𝝀𝑞 may not have vertices in the
media, placing x1 on the background. This often moves differently
than the volume, giving a halo along edges (see Figure 13).
We address this with velocity resampling. For any x1 not in the

volume, we generate a new distance 𝑧 corresponding to a parti-
cle in the volume proportional to the free flight distance 𝑝 (𝑧) =
𝜎𝑡 (x′1)𝑇 (x0 ↔ x′1) with x′1 = x0 + 𝑧𝝎0, and use the motion vector
for this sample. As 𝑧 must be sampled in the volume, 𝑝 (𝑧) is unnor-
malized. We approximate distribution 𝑝 (𝑧) by assigning each voxel a
weight proportional to its average 𝑝 (𝑧), importance sampling along
the ray, and uniformly picking a point within the selected voxel.

This approach increases the probability of picking a point in the
media, providing better temporal reprojection. This reduces noise
and bias from suboptimal reprojections, as temporal reservoirs are
more likely to provide relevant paths that reduce variance during
reuse.

5.3 Parameters of Spatiotemporal Reuse
Resampling has various parameters impacting quality and perfor-
mance. First, we use𝑀 = 4 random walks to generate initial candi-
dates. In scattering paths, this produces fewer light samples than
the 32 light samples used by Bitterli et al. [2020], but our path gener-
ation is more expensive, so we trade fewer initial samples for more
spatiotemporal reuse, which maximizes the sampling efficiency in a
given budget.
We typically use 𝑄 = 4 as the temporal limiting factor, control-

ling the maximum prior frame contribution. Larger 𝑄 accumulates
more samples, but increases the chance of reusing stale temporal
reservoirs, which can cause fireflies under large lighting changes
(see Figure 14c).
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(a) Q = 1
MSE: 0.0027

(b) Q = 4
MSE: 0.0020

(c) Q = 20
MSE: 0.0021

Fig. 14. The temporal limiting factor𝑄 controls reuse behavior. With
𝑄 = 1, temporal samples get low relative weight. With 𝑄 = 20, older
frames have more aggregate impact; this reduces overall noise, but very
old stale samples can get disproportionally weighted under quickly
changing illumination, causing fireflies. We use 𝑄 =4.

(a) 3 pixels
MSE: 0.0012

(b) 10 pixels
MSE: 0.0015

(c) 30 pixels
MSE: 0.0027

Fig. 15. Comparing spatial reuse over different radii. A smaller radius
reduces MSE, but correlation between nearby pixels becomes visually
apparent. Increasing the radius reduces visual correlation, but also
increases error.We use a 10 pixel radius, balancing these considerations.

However, in scenes combining volumes and surfaces under com-
plex illumination, we use larger 𝑄 to accumulate more effective
samples to reduce noise. The value chosen depends on which issue
is more problematic. In scenes containing surfaces, we use 𝑄 = 10.

During spatial reuse, we use a low-discrepancy sequence to sam-
ple 3 random neighbors within a 10 pixel radius. This achieves a bal-
ance between correlation artifacts and error, as shown in Figure 15.
We use direction reuse by default.

6 RESULTS
We built our algorithm in the Falcor real-time rendering framework
[Benty et al. 2020] using GVDB [Hoetzlein 2016] to load and ac-
cess VDB assets [Museth 2013]. We captured results on an NVIDIA
GeForce RTX 3090. Performance numbers include initial candidate
generation, spatiotemporal reuse, and final shading. Scenes with
surfaces use inline ray tracing to allow handling the surface visibility
together with volumes in one compute shader.

We report error metrics and timing for 1920 × 1080 images, aver-
aging over 256 frames (after a warmup) to smooth variations. We
use HDR light probes and polygonal scenes with many emissive
triangles to create realistic lighting environments.
Unless noted, all figures show static scenes and cameras and

are fully unbiased. We do not leverage this to simplify, cancel, or
otherwise reduce computation; thus, the timings are equivalent
under animation. We show scenes with dynamic cameras, volumes,
and lighting in the supplemental video.

We compare our results with a fast implementation of decompo-
sition tracking [Kutz et al. 2017] (to sample free flight distances)

and residual ratio tracking [Novák et al. 2014] (for estimating trans-
mittance in NEE). We call this our baseline. Both decomposition and
residual ratio tracking use super-voxels [Szirmay-Kalos et al. 2011]
with 8× the original voxel size to store local minimum, maximum,
and average density values; these control volume densities as de-
scribed by Novák et al. [2014] and Kutz et al. [2017]. For GVDB, we
use 8×8×8 voxel bricks [Hoetzlein 2016]. This enables storing super-
voxel density bounds in brick headers, allowing efficient fetches
during VDB traversal. This maximizes our baseline’s performance.

Our video includes examples using the NVIDIA OptiX 7.3 tempo-
ral denoiser [NVIDIA 2017], though recent work [Hofmann et al.
2021] may provide even better denoising quality. Denoised compar-
isons can be found in our supplemental document and video.

6.1 Single and Multiple Scattering Results
We show our method in six scenes: the Bunny Cloud in two lighting
configurations (Figures 1 and 16), the Disney Cloud (Figure 16), an
Explosion (Figure 17), an animated Plume (Figure 17), the Amazon
Bistro with a smoke plume (Figure 18), and the Emerald Square with
fog (Figure 18). These cover various uses: emissive lights, complex
environment lighting, volume self-emission, dynamic media, and
volume-surface interactions. We use isotropic scattering (𝑔 = 0), un-
less otherwise stated. In all cases, our method significantly improves
over the optimized baseline.

In real-time contexts, 𝐾 provides an important performance knob,
defining the allowable scattering events. Due to costs in dense voxel
grids (e.g., the bunny), we limit evaluation in most scenes to 𝐾 = 3.
For 𝐾 > 3, we apply Russian roulette after x3 to stochastically
terminate a random walk according to the albedo of the scattering
point. We do the same for terminating paths with the baseline. To
produce equal-time comparison, we choose the number of samples
per pixel (spp) for the baseline method to make the render time
match our method. With each sample, the baseline method performs
a random walk up to 𝐾 scattering events and it performs NEE at
each bounce, just like our initial path candidate generation. Note
we only evaluate 1 spp per frame, in a Monte Carlo sense, but we
generate and reuse many samples as part of importance sampling.

Figures 16 and 17-top explicitly compare performance and quality
in three scenes with environment lighting using varying number
of maximum scattering events (𝐾 = 1, 3, and 7). We sample the
environment proportional to texel intensity. In all cases, our ap-
proach significantly reduces error compared to equal-time baseline
renderings.

In the Explosion scene with𝐾 = 2 and𝐾 = 4 scattering events, our
method significantly reduces the emission sampling noise compared
to the baseline. This provides better scattering quality (emissive
voxels lighting other parts of the volume) as well.

For the Plume scene in Figure 17, our method significantly out-
performs the baseline with both single scattering and multiple scat-
tering up to 7.
We show results of volume single scattering from light sources

and surface direct lighting in the Bistro with over 20k emissive tri-
angles and Emerald Square with around 90k emissives (Figure 18),
our work enables volumes to benefit from RIS and ReSTIR, simi-
lar to surfaces [Bitterli et al. 2020]. Here, the baseline uses a light
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Bunny Cloud (1 bounce) Bunny Cloud (3 bounces)

Baseline Ours Reference Baseline Ours Reference

MSE: 0.0096MSE: 0.0096 MSE: 0.0026MSE: 0.0026 MSE: 0.0141MSE: 0.0141 MSE: 0.0041MSE: 0.0041
Time: 42.4 msTime: 42.4 ms Time: 37.3 msTime: 37.3 ms Time: 64.2 msTime: 64.2 ms Time: 62.0 msTime: 62.0 ms

Disney Cloud (1 bounce) Disney Cloud (3 bounces)

Baseline Ours Reference Baseline Ours Reference

MSE: 0.0072MSE: 0.0072 MSE: 0.0031MSE: 0.0031 MSE: 0.0098MSE: 0.0098 MSE: 0.0049MSE: 0.0049
Time: 51.9 msTime: 51.9 ms Time: 48.8 msTime: 48.8 ms Time: 85.9 msTime: 85.9 ms Time: 83.8 msTime: 83.8 ms

Fig. 16. The Bunny Cloud and Disney Cloud scenes, with roughly equal-time comparisons between the baseline and our method.
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Plume (1 bounce) Plume (7 bounces)

Baseline Ours Reference Baseline Ours Reference

MSE: 0.0053MSE: 0.0053 MSE: 0.0015MSE: 0.0015 MSE: 0.0061MSE: 0.0061 MSE: 0.0026MSE: 0.0026
Time: 13.0 msTime: 13.0 ms Time: 13.0 msTime: 13.0 ms Time: 36.0 msTime: 36.0 ms Time: 32.2 msTime: 32.2 ms

Explosion (2 bounces) Explosion (4 bounces)

Baseline Ours Reference Baseline Ours Reference

MSE: 0.0070MSE: 0.0070 MSE: 0.0032MSE: 0.0032 MSE: 0.0098MSE: 0.0098 MSE: 0.0050MSE: 0.0050
Time: 42.1 msTime: 42.1 ms Time: 37.7 msTime: 37.7 ms Time: 59.5 msTime: 59.5 ms Time: 49.4 msTime: 49.4 ms

Fig. 17. The Plume and Explosion scenes, with roughly equal-time comparisons between the baseline and our method.
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Bistro (1 bounce) Emerald Square (1 bounce)

Baseline Ours Reference Baseline Ours Reference

MSE: 0.0189MSE: 0.0189 MSE: 0.0158MSE: 0.0158 MSE: 0.0309MSE: 0.0309 MSE: 0.0201MSE: 0.0201
Time: 44.7 msTime: 44.7 ms Time: 47.4 msTime: 47.4 ms Time: 75.7 msTime: 75.7 ms Time: 72.1 msTime: 72.1 ms

Fig. 18. The Bistro and Emerald Square scenes, with roughly equal-time comparisons to the baseline.

BVH [Moreau et al. 2019] for light sampling, while our method sam-
ples sources proportional to power. We show results with multiple
scattering and multiple-bounce surface-volume interreflection in
Figure 1. Note that this significantly increases render time, espe-
cially using multiple scattering. Profiler results reveal this stems
from thread divergence between ray tracing and volume tracking.

In all scenes, our method gives lower MSE than the baseline with
approximately equal or less time.

6.2 Participating Media with Different Densities
Our algorithm estimates transmittance using ray marching. Since
path segments are longer in low density volumes, our algorithm
accesses more data for the same model size.

In Figure 19, we scale the density of the Disney Cloud to 0.2× and
3× of the original for comparison. Ourmethod’s cost grows 47% from
83.8 ms to 123.1 ms. In comparison, the baseline method requires
less time per sample, as decomposition tracking and residual ratio
tracking take larger average flight distances between null collisions
(due to smaller majorant).

At the lowest density, our method has slightly higher MSE than
the baseline. Looking closely shows this is caused by color noise, a
limitation of ReSTIR [Bitterli et al. 2020] caused by using the same
scalar PDF to importance sample all color channels. We still achieve
lower MSE for monochromatic images. At low densities, more back-
ground samples are produced. When the background color differs

strongly from the scattered light, color noise is amplified. This is
not bias; aggregating more frames reduces color noise (Figure 20)
and converges to the reference. Note that increasing the initial can-
didate count𝑀 does not reducing color noise, as they all contribute
our scalar target PDF, producing one integrand 𝑓 whose chroma is
randomized.
Conversely, increasing media density speeds our algorithm and

makes each baseline sample more expensive. Note that we still have
color noise, but its influence is smaller than the remaining variance
in the overall integral.

6.3 Participating Media with High Anisotropy
To validate robustness with highly anisotropic phase functions, we
change the Henyey-Greenstein asymmetry parameter 𝑔 to 0.8 in the
Bunny Cloud, causing strong forward-scattering (Figure 21 top). Our
baseline, using only NEE, is outperformed by null scattering [Miller
et al. 2019], which combines residual ratio tracking in NEE with the
radiance of escaped ray (from free-flight sampling) using MIS; this is
infeasible without null scattering. But our method still outperforms
null scattering, despite only using NEE for light samples.
But null scattering does not always outperform decomposition

tracking. For an isotropic phase function (𝑔 = 0) and complex light-
ing (Figure 21 bottom), the MIS in null scattering may not yield
better quality and it adds cost to each sample. As null scattering gen-
erates fewer samples per pixel than our baseline for equal time, the
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Low Density (0.2× default) Moderate Density (default) High Density (3× default)

Baseline Ours Reference Baseline Ours Reference Baseline Ours Reference
130.8 ms (14 spp) 123.1 ms 85.9 ms (7 spp) 83.8 ms 84.5 ms (4 spp) 76.2 ms

MSE: 0.0028 MSE: 0.0047 MSE: 0.0098 MSE: 0.0049 MSE: 0.0196 MSE: 0.0082

MSE: 0.0024 MSE: 0.0009 MSE: 0.0089 MSE: 0.0024 MSE: 0.0181 MSE: 0.0059

Fig. 19. Comparing our method and the baseline in the same volume with different density multipliers. Notice that lower density makes the
execution time of our method longer, while it reduces the time for each sample of baseline. We provide both color and monochromatic images to
show the impact of color noise. Images shown with 3-bounce multiple scattering.

(a) 1 frame (b) 4 frames (c) 16 frames (d) Reference

Fig. 20. Color noise decreases when accumulating multiple frames.

sampling efficiency becomes lower. Here our method significantly
outperforms both methods, despite having some color noise.

Note we could use MIS to sample candidate lights using the MIS
weights for RIS [Talbot 2005]. Since our initial path generation
operates with closed-form PDFs, we do not rely on the null scattering
formulation to compute MIS weights. However, this adds overhead
to candidate generation. To discover when MIS is most effective
requires further investigation.

6.4 Longer Time Convergence
To compare how error evolves with time, we accumulate frames
of both our method and baseline, comparing errors from 100 ms to
10 seconds (Figure 22). The Bunny Cloud, Explosion, and Emerald
Square scenes are selected as representative of high albedo scatter-
ing, emissive volumes, and mixed scenes with complex lighting.

The plots show our method consistently produces less error than
the baseline. Note that allowing more scattering events slows con-
vergence in both methods. Scenes mixing volumes and surfaces

under complex lighting are also more challenging. The general ob-
servation is that while producing lower error than the baseline, our
longer term convergence speed slows down for multiple scattering
and complex surface scenes. Interestingly, our long term conver-
gence still shows clear advantage over the baseline for emissive
volumes with multiple scattering. Overall, our method is superior
in 1–10s time range, suggesting our approach may be applicable to
previsualization for offline rendering.

7 CONCLUSION
We introduced a sampling solution extending resampled importance
sampling [Talbot 2005] and ReSTIR [Bitterli et al. 2020] to path space,
enabling real-time rendering of heterogeneous volumes in complex
lighting environments. Resampling exposes new user-defined target
PDFs in each reuse step. By adjusting these target PDFs, even with
biased or approximate distributions, we can dramatically improve
the distribution quality used to select our final pixel samples.

Beyond the prior resampling work, our approach extends resam-
pling to multi-bounce paths on surfaces and in volumes, mixes path
samples of varying lengths, and shows how transmittance estimates
of increasing fidelity can be injected over multiple resampling steps.
We jointly sample multiple dimensions during resampling; free-
flight distances and scattering directions are mixed together, unlike
prior work [Bitterli et al. 2020] that exclusively considers directions.
We demonstrate an efficient GPU implementation that outperforms
state-of-the-art.
Our work inherits some limitations of prior resampling [Bitterli

et al. 2020] techniques. For instance, we exploit coherence between
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Baseline Null Scattering Ours Reference

Time: 99.6 msTime: 99.6 ms
MSE: 0.0093MSE: 0.0093

Time: 101.5 msTime: 101.5 ms
MSE: 0.0078MSE: 0.0078

Time: 96.2 msTime: 96.2 ms
MSE: 0.0057MSE: 0.0057

Time: 87.6 msTime: 87.6 ms
MSE: 0.0103MSE: 0.0103

Time: 88.2 msTime: 88.2 ms
MSE: 0.0107MSE: 0.0107

Time: 82.4 msTime: 82.4 ms
MSE: 0.0091MSE: 0.0091

Fig. 21. Comparing our baseline (Kutz et al. [2017] plus Novák et al. [2014]), a null scattering integration [Miller et al. 2019], and our method on a
(top) highly anisotropic Bunny Cloud (Henyey-Greenstein scattering coefficient 𝑔 = 0.8). (Bottom) For comparison, we show an isotropic Bunny
Cloud under identical lighting. Images shown with 3-bounce multiple scattering.
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Fig. 22. Comparing convergence between the baseline and our algorithm using log-log plots showing MSE vs. render time from 0 to 10 seconds.

samples and perform poorly where no coherence exists. Specifically,
high frequency variations (e.g., of lighting, density, motion) limit
coherence across boundaries, increasing nearby variance.

Additionally, our work uses scalar target functions. This samples
chroma channels identically, leaving color noise (e.g., Figure 19).
Such noise is usually minor, except in scenes with different, highly-
saturated lights. Using separate target functions per channel avoids
this issue, but at substantial cost. Exploring efficient sampling to
reduce color noise is interesting future work.

For sampling emission, a line integral which effectively combines
our method with the FNEE method [Simon et al. 2017] may more
efficiently collect radiance.
Another issue is the relative high cost for initial candidates and

target function evaluation inside media, compared to Bitterli et al.
[2020]. Coarse volumes reduce cost at the expense of quality, less
accurately approximating target functions. Future workmay explore
adaptive representations or ray marching to speed computations
while minimizing quality loss. Such improvements will accelerate
our work, enabling fast, many-bounce global lighting in the presence
of complex lighting, volumes, and surfaces.

As in most modern real-time renderers, our volume rendering
system provides input to a denoiser. But spatiotemporal reuse can
introduce correlations in the noise, a characteristic not handled
well by existing denoisers (e.g., in OptiX [NVIDIA 2017]). Finding
additional ways to decorrelate the noise or better adapt the denoiser
are interesting future directions.
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