
Copyright © 2005 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from Permissions
Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.
© 2005 ACM 0730-0301/05/0700-1050 $5.00

An Approximate Image-Space Approach for Interactive Refraction

Chris Wyman∗

University of Iowa

Abstract

Many interactive applications strive for realistic renderings,
but framerate constraints usually limit realism to effects that
run efficiently in graphics hardware. One effect largely ig-
nored in such applications is refraction. We introduce a sim-
ple, image-space approach to refractions that easily runs on
modern graphics cards. Our method requires two passes on a
GPU, and allows refraction of a distant environment through
two interfaces, compared to current interactive techniques
that are restricted to a single interface. Like all image-based
algorithms, aliasing can occur in certain circumstances, but
the plausible refractions generated with our approach should
suffice for many applications.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism

Keywords: interactive rendering, refraction, hardware

1 Introduction

In many applications, interactivity must take precedence
over realism. This has motivated many researchers to ap-
proximate realistic effects in order to optimize for speed.
Increasing the available computational power through par-
allelism [Wald et al. 2002] can allow interactive realism using
standard ray and path tracing techniques, though high cost
often prohibits such parallelism in mainstream applications.
Hence, researchers have developed hardware-accelerated ap-
proximations for shadows [Assarsson and Akenine-Möller
2003; Chan and Durand 2003; Kautz et al. 2004; Wyman
and Hansen 2003], caustics [Wand and Straßer 2003; Pur-
cell et al. 2003], global illumination [Ng et al. 2004; Sloan
et al. 2002], reflection [Ofek and Rappoport 1999], and ba-
sic refraction [Guy and Soler 2004; Schmidt 2003; Ts’o and
Barsky 1987].

This paper addresses one of the major limitations of most
GPU-based interactive refraction algorithms: only allowing
refraction through a single surface. Few situations arise in
real scenes where refraction occurs at only one surface. Often
people look through dielectric objects (e.g., a pair of glasses),
so handling multiple interfaces proves important.

Researchers have proposed various ways to approximate
refraction through a single surface. One approach uses the
programmable features of GPUs to compute refracted or
pseudo-refracted directions through visible front facing poly-
gons. The refracted color is then determined by either index-
ing into a distant environment map [Lindholm et al. 2001]

∗E-mail: cwyman@cs.uiowa.edu

Figure 1: Previous interactive techniques (a) only refract
through one surface [Oliveira 2000]. Our approach (b) re-
fracts through two surfaces at 53 frames per second, and
compares favorably with ray tracing (c).

or a perturbed texture describing nearby geometry [Oliveira
2000]. Schmidt [2003] used a geometric technique, similar to
Ofek and Rappoport’s [1999] approach to reflection. Ofek’s
method exhibits problems when reflecting off concave ob-
jects, but Schmidt’s approach exhibits similar problems even
when refracting through convex objects. In such cases, ac-
curately connecting the refracted virtual vertices to render
proves difficult.

A few researchers have considered multi-sided refraction.
Guy and Soler [2004] interactively rendered simple convex
gemstones. Since they analytically compute refracted ver-
tices and update the resulting facet tree every frame, their
approach may not scale well to more complex objects. Kay
and Greenburg [1979] introduced a ”thickness” parameter
to account for two-sided refractive objects; this works for
objects of uniform thickness, such as a window pane, but
many objects vary considerably in thickness. Diefenbach and
Badler [1997] used a multipass method to render planar re-
fractions interactively on graphics hardware. Ohbuchi [2003]
suggested a vertex tracing preprocess to approximate inter-
active refractions on a prototype multimedia processor. Hei-
drich et al. [Heidrich et al. 1999] used a light field representa-
tion to trade higher memory consumption for interactivity.

While not the focus of this paper, Hakura et al. [2001]
accelerated ray tracing by leveraging GPU resources. Unfor-
tunately, this approach does not produce real-time results,
even utilizing both the CPU and GPU solely for rendering.

2 Basic Refraction

Computing refractions through a single interface is relatively
simple given basic information about the surface at the hit-
point P1 (see Figure 2). The behavior of refracted rays

1050

Index of
refraction: ni

P1

Index of
refraction: nt

~N2

~T2

~T4

P3

~V

θi

θt

P2 d ~N

~N1

d~V

~T1

P4

Figure 2: Vector ~V hits the surface at P1 and refracts in di-

rection ~T1 based upon the incident angle θi with the normal
~N1. Physically accurate computations lead to further refrac-
tions at P2, P3, and P4. Our method only refracts twice,
approximating the location of P2 using distances d ~N and d~V .

follows Snell’s Law, given by:

ni sin θi = nt sin θt,

where ni and nt are the indices of refraction for the incident
and transmission media. θi describes the angle between the

incident vector ~V and the surface normal ~N1, and θt gives

the angle between the transmitted vector ~T1 and the negated
surface normal.

When ray tracing, refracting through complex objects
is trivial, as refracted rays are independently intersected
with the geometry, with subsequent recursive applications of
Snell’s Law. Unfortunately, in the GPU’s stream processing
paradigm performing independent operations for different
pixels proves expensive. Consider the example in Figure 2.

Rasterization determines ~V , P1, and ~N1, and a simple frag-

ment shader can compute ~T1. Unfortunately, exactly locat-
ing point P2 is not possible on the GPU without resorting to
accelerated ray-based approaches [Purcell et al. 2003]. Since
GPU ray tracing techniques are relatively slow, multiple-
bounce refractions for complex polygonal objects are not
interactive.

3 Image-Space Refraction

Instead of using the GPU for ray tracing, we propose to
approximate the information necessary to refract through
two interfaces with values easily computable via rasteriza-
tion. Consider the information known after rasterization.
For each pixel, we can easily find:

• the incident direction ~V ,

• the hitpoint P1, and

• the surface normal ~N1 at P1.
Using this information, the transmitted direction ~T1 is easily
computable via Snell’s Law, e.g., in Lindholm et al. [2001].

Consider the information needed to find the doubly re-

fracted ray ~T2. To compute ~T2, only ~T1, the point P2, and

the normal ~N2 are necessary. Since finding ~T1 is straight-
forward, our major contribution is a simple method for ap-

proximating P2 and ~N2. Once again, we use an approximate

point P̃2 and normal ~N2 since accurately determining them
requires per-pixel ray tracing.

After finding ~T2, we assume we can index into an infinite
environment map to find the refracted color. Future work
may show ways to refract nearby geometry.

Figure 3: Distance to back faces (a), to front faces (b), and
between front and back faces (c). Normals at back faces (d)
and front faces (e). The final result (f).

3.1 Approximating the Point P2

While too expensive, ray tracing does provide valuable in-
sight into how to approximate the second refraction location.

Consider the parameterization of a ray Porigin + t ~Vdirection.

In our case, we can write this as: P2 = P1 +d ~T1, where d is

the distance ‖P2−P1‖. Knowing P1 and ~T1, approximating

location P̃2 simply requires finding an approximate distance
d̃, such that:

P̃2 = P1 + d̃ ~T1 ≈ P1 + d ~T1

The easiest approximation d̃ is the non-refracted distance
d~V between front and back facing geometry. This can eas-
ily be computed by rendering the refractive geometry with
the depth test reversed (i.e., GL GREATER instead of GL LESS),
storing the z-buffer in a texture (Figure 3a), rerendering nor-
mally (Figure 3b), and computing the distance using the z
values from the two z-buffers (Figure 3c). This simple ap-
proximation works best for convex geometry with relatively
low surface curvature and a low index of refraction.

Since refracted rays bend inward (for nt > ni) toward the

inverted normal, as nt becomes very large ~T1 approaches

− ~N1. This suggests interpolating between distances d~V and
d ~N (see Figure 2), based on θi and θt, for a more accurate

approximation d̃. We take this approach in our results, pre-
compute d ~N for every vertex, and interpolate using:

d̃ =
θt

θi

d~V +

„

1 −
θt

θi

«

d ~N .

A precomputed sampling of d could give even better ac-
curacy if stored in a compact, easily accessible manner. We
tried storing the model as a 642 geometry image [Praun and
Hoppe 2003] and sampling d in 642 directions for each texel
in the geometry image. This gave a 40962 texture containing
sampled d values. Unfortunately, interpolating over this rep-
resentation resulted in noticeably discretized d values, lead-
ing to worse results than the method described above.

1051

Figure 4: The Buddha’s base using (a) the furthest surface or
(b) the 2nd surface for our secondary refraction, (c) a single
refractive interface, and (d) ray tracing with ray depth 6.

3.2 Determining the Normal ~N2

After approximating P̃2, the last requirement to compute ~T2

is the normal ~N2. This information is stored with the mesh
at each vertex, but determining which polygon ~T1 intersects
is costly unless we rely on an image-space approach.

Consider the case of convex objects, where we can ras-
terize all the geometry using two passes: once culling front
faces and once culling back faces. If we render the first pass
to texture using the surface normal as the color (as in Fig-
ure 3d), then during the second pass we can project our

approximate exitant point P̃2 into texture space and index
into the texture to find the normal.

Extending this approach beyond convex objects proves
problematic, as multiple surfaces can project to the same z-
buffer texel. Our approach may extend via more textures for
additional refractions, but it is unclear how to approximate
further intersection locations (e.g., P3, P4 in Figure 2). Fur-
thermore, two refractive interfaces give plausible results for
many complex objects.

Without extending our approach for additional interfaces,
two ways exist to handle concave objects: compute the sec-
ondary refraction point P̃2 based on the distance to either
the furthest surface from the eye or the second surface (i.e.,
first backfacing surface) from the eye (the yellow or black
point in Figure 2). The only difference lies in which surface
is rendered to texture in the first pass and later used for

computing d~V and ~N2. Figures 4 and 5 show the difference.
When rendering objects with high depth complexity, using
the furthest polygon shows geometry users may expect to
see, whereas using the second polygon gives smoother results
while ignoring more distant polygons. For nearly convex ob-
jects, this difference is barely noticeable.

3.3 Problem Cases

This approach has three problems: there is no built-in way
to deal with total internal reflections, P̃2 may not project
onto a backfacing polygon, or P̃2 may project onto the wrong
polygon due to concavity.

Fragment shaders could handle total internal reflection

Figure 5: Two views of a horse. References are ray traced
with 64 samples per pixel, the right insets compare our
method with secondary refractions at either back faces or sec-
ond surfaces and ray tracing with one sample per pixel.

(TIR) using a loop to bounce between front and back faces.
However, this significantly slows the code in addition to mul-
tiplying errors inherent in an image-space approach. Our
implementation disallows angles θi greater than the critical
angle θcrit, and clamps θi to θcrit. Effectively, such rays ”re-
fract” tangent to the exitant surface. TIR regions tend to be
noisy with only a single sample; for complex objects, such
as the Buddha in Figure 1, raytracers require 16 or 64 sam-
ples per pixel in these regions for noise free results. While
not physically accurate, our approach to TIR gives plausible,
relatively smooth results with one sample per pixel.

Consider the case where d̃ is too large. This causes P̃2

to fall outside the refractive object’s silhouette, in a black

texel in Figure 3d. Conceptually, this means ~T1 intersects
the object’s side. This problem occurs infrequently, gener-
ally for concave objects with indices of refraction above 1.5.
To avoid artifacts in our results, we set the exitant normal

perpendicular to the camera’s lookat vector ~Lat. In particu-

lar, we project ~T1 onto the plane perpendicular to ~Lat (i.e.,
~N2≡ ~T1−(~Lat· ~T1)~Lat). Improving d̃ reduces this problem.

The final problem occurs for concave refractors, near re-
gions where the object’s depth complexity rises above two.
As shown in Figure 5, the approximate point P̃2 from a view
ray that initially hits the horse’s body may project onto the
leg even though P2 actually lies on the far side of the body.
This can occur despite the choice of surface for the secondary
refraction, and it is an artifact of our approach that becomes
objectionable mainly for highly concave objects.

The supplementary DVD contains an additional figure ex-
amining these errors on a per-pixel basis.

4 Results

We implemented this approach in OpenGL on an AGP 8x
nVidia GeForce 6800 with 128 MB memory, using Cg vertex
and fragment shaders (available on the DVD as supplemen-
tary material). The algorithm requires two passes. The first
pass renders the distance to back facing polygons and stores
their normals, as in Figure 3a, d. The second pass renders
front facing polygons and computes refractions with a frag-
ment shader.

Assuming BackfaceZBuf and BackfaceNormals are the
textures computed in the first pass, pseudocode for this frag-
ment shader follows:

for all fragments F (given P1, ~V , and ~N1), do

~T1 = Refract(~V , ~N1)

d~V
= DistanceFrontFaceToBackFace(F , BackfaceZBuf)

1052

Polygon 2-Sided 1-Sided Ray Traced

Count Refraction Refraction Scene

Buddha 50,000 53.3 fps 136.8 fps 121.9 s

Cow 5,804 122.9 fps 295.7 fps 31.6 s

F-16 4,592 149.2 fps 395.9 fps 26.8 s

Sphere 1,600 164.3 fps 323.5 fps 6.1 s

Teapot 6,320 115.7 fps 306.9 fps 49.3 s

Venus 100,000 37.9 fps 112.2 fps 147.2 s

Table 1: Comparison of framerates and ray tracing time for
models of varying complexity.

Figure 6: Refraction through only one interface (top), using
our technique (center), and ray traced (bottom). The indices
of refraction are 1.2 for the jet and 1.5 for the ball.

d ~N
= DistanceAlongNormal(P1)

d̃ =WeightDistance(− ~N1 ·
~T1, ~V · ~T1, d~V

, d ~N
)

P̃2 = P1 + d̃ ~T1

texfar = ProjectToScreenSpace(P̃2)
~N2 ≈ TextureLookup(texfar, BackfaceNormals)
~T2 ≈ Refract(~T1, ~N2)

return IndexEnvironmentMap(~T2)

Running on a 3.0 GHz Pentium 4 with 2 GB of memory,
we get the running times shown in Table 1 for 10242 images.
Our code for all three techniques is unoptimized, yet we
achieve high speeds even for complex models. Note that
some timings are for scenes in the accompanying video but
not depicted here.

Most of our results use an index of refraction of 1.2, with
the exception of the sphere in Figure 6 and the teapot in the
video, which both have an index of 1.5. Complex geometry
typically leads to chaotic and noisy-appearing refractions for
moderate to high indices of refraction, even in antialiased ray
traced images. In such cases a single sample per pixel, ei-
ther ray traced or using our approach, leads to objectionable
flickering noise during animation. We found supersampling
in OpenGL helps alleviate this problem, though more than
the 4 samples per pixel we tried are probably required.

5 Conclusions

This paper presented a simple, image-space approach for
generating plausible interactive refractions through two sur-
faces. This method runs interactively on current GPUs, even

for fairly complex models. The biggest limitation, which
we plan to address in the future, restricts refraction to infi-
nite environments maps, disallowing refraction of one object
through another. Furthermore, we wish to better handle
concave objects. Another avenue for future work examines
applying interactive refractions to quickly generate caustics.

Acknowledgments: Thanks to Paul Debevec for the light
probes and to Jim Cremer and the anonymous reviewers for
their constructive feedback. This work was partially sup-
ported by a University of Iowa Old Gold Fellowship.

References
Assarsson, U., and Akenine-Möller, T. 2003. A geometry-based soft

shadow volume algorithm using graphics hardware. ACM Trans-
actions on Graphics 22, 3, 511–520.

Chan, E., and Durand, F. 2003. Rendering fake soft shadows with
smoothies. In Proceedings of the Eurographics Symposium on
Rendering, 208–218.

Diefenbach, P., and Badler, N. 1997. Multi-pass pipeline rendering:
Realism for dynamic environments. In Proceedings of the Sympo-
sium on Interactive 3D Graphics, 59–70.

Guy, S., and Soler, C. 2004. Graphics gems revisited: Fast and
physically-based rendering of gemstones. ACM Transactions on
Graphics 23, 3, 231–238.

Hakura, Z. S., and Snyder, J. M. 2001. Realistic reflections and
refractions on graphics hardware with hybrid rendering and layered
environment maps. In Proceedings of the Eurographics Rendering
Workshop, 289–300.

Heidrich, W., Lensch, H., Cohen, M. F., and Seidel, H.-P. 1999. Light
field techniques for reflections and refractions. In Proceedings of
the Eurographics Rendering Workshop, 171–178.

Kautz, J., Lehtinen, J., and Aila, T. 2004. Hemispherical rasteriza-
tion for self-shadowing of dynamic objects. In Proceedings of the
Eurographics Symposium on Rendering, 179–184.

Kay, D. S., and Greenberg, D. 1979. Transparency for computer
synthesized images. In Proceedings of SIGGRAPH, 158–164.

Lindholm, E., Kligard, M. J., and Moreton, H. 2001. A user-
programmable vertex engine. In Proceedings of SIGGRAPH, 149–
158.

Ng, R., Ramamoorthi, R., and Hanrahan, P. 2004. Triplet product
wavelet integrals for all-frequency relighting. ACM Transactions
on Graphics 23, 3, 477–487.

Ofek, E., and Rappoport, A. 1999. Interactive reflections on curved
objects. In Proceedings of SIGGRAPH, 333–342.

Ohbuchi, E. 2003. A real-time refraction renderer for volume objects
using a polygon-rendering scheme. In Proceedings of Computer
Graphics International, 190–195.

Oliveira, G., 2000. Refractive texture mapping, part two.
http://www.gamasutra.com/features/20001117/oliveira 01.htm.

Praun, E., and Hoppe, H. 2003. Spherical parameterization and
remeshing. ACM Transactions on Graphics 22, 3, 340–349.

Purcell, T., Donner, C., Cammarano, M., Jensen, H. W., and Han-

rahan, P. 2003. Photon mapping on programmable graphics hard-
ware. In Proceedings of the SIGGRAPH/Eurographics Confer-
ence on Graphics Hardware, 41–50.

Schmidt, C. M. 2003. Simulating Refraction Using Geometric Trans-
forms. Master’s thesis, Computer Science Department, University
of Utah.

Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting
environments. ACM Transactions on Graphics 21, 3, 527–536.

Ts’o, P. Y., and Barsky, B. A. 1987. Modeling and rendering waves:
wave-tracing using beta-splines and reflective and refractive tex-
ture mapping. ACM Transactions on Graphics 6, 3, 191–214.

Wald, I., Kollig, T., Benthin, C., Keller, A., and Slusallek, P.

2002. Interactive global illumination using fast ray tracing. In
Proceedings of the Eurographics Rendering Workshop, 15–24.

Wand, M., and Straßer, W. 2003. Real-time caustics. Computer
Graphics Forum 22, 3, 611–620.

Wyman, C., and Hansen, C. 2003. Penumbra maps: Approximate soft
shadows in real-time. In Proceedings of the Eurographics Sympo-
sium on Rendering, 202–207.

1053

