CHAPTER 23

RENDERING MANY LIGHTS WITH
GRID-BASED RESERVOIRS

Jakub Boksansky, Paula Jukarainen, and Chris Wyman
NVIDIA

ABSTRACT

Efficient rendering of scenes with many lights is a longstanding problem in
graphics. Sampling a light to shade from the pool of all lights, e.g., using next
event estimation, is a nontrivial task. Sampling must be computationally
efficient, must select lights contributing significantly to the shaded point, and
must produce low noise while introducing little or no bias. Typically, the light
pool is preprocessed to create a data structure that accelerates sampling
queries; this may be complex to implement, build, and update.

This chapter builds a new sampling algorithm, ReGIR, based on a simple
uniform grid structure and the recent screen-space resampling algorithm
ReSTIR, which we extend to sample secondary rays in world space.

23.1 INTRODUCTION

Real-time ray tracing enables us to render more realistic images in games
than was possible before. Accurate shadows, indirect illumination, and
reflections have already been implemented in recent games. In combination
with suitable denoisers, we can use ray tracing to render scenes lit by many
more lights, without precomputing the static lighting, and with support for
dynamic worlds. This is an attractive goal that can differentiate ray traced
games from rasterized games in a significant way. Furthermore, we do not
have to rely only on analytic lights, as we can also use emissive geometry
for lighting.

This is possible by using shadow rays instead of shadow mapping to resolve
visibility, avoiding the performance cost of preparing a shadow map for every
light source, but also introducing the cost of a denoiser to filter the results.
Though shadow rays are a much more flexible approach than shadow
mapping, rendered images will be inherently noisy when Lit by many
different lights.

© NVIDIA 2021

A. Marrs, P. Shirley, I Wald (eds.), Ray Tracing Gems II, https:/doi.org/10.1007/978-1-4842-7185-8 23 1

https://doi.org/10.1007/978-1-4842-7185-8_23

RAY TRACING GEMS I

23.2

352

Figure 23-1. The Amazon Lumberyard Bistro [1], containing 65,535 emissive triangles, rendered
with our ReGIR method using Falcor’s [2] path tracer and denoised.

In this chapter, we focus on a problem of selecting the best light for shading in
a way to reduce noise and ensure consistent results.

PROBLEM STATEMENT

In virtual scenes, there are usually multiple lights simultaneously
illuminating each point. (See, for example, Figure 23-1). But when scenes
have hundreds or thousands of lights, identifying those actually contributing
is a difficult task. Without evaluating the bidirectional reflectance distribution
function (BRDF) and visibility of all lights, any one is a potential candidate.

An approach that simply selects a random light without considering visibility
gives noisy images, as occluded or distant lights are as likely to be sampled

as nearby, visible lights. Importance sampling improves the results (see the
pseudocode in Figure 23-2), as the light selection probability varies based on
its contribution, selecting lights with higher contribution more often.

Ideally, this probability varies based on the full BRDF and a visibility test; this
gives outstanding samples, but is expensive to evaluate (i.e., as expensive as
using all lights to shade). Good results are achievable by skipping the
expensive visibility test and only evaluating the geometry term (cosine term
and distance-based attenuation). This quickly discards backfacing lights and
those that are dim or distant. Artists can also design scenes with this in mind,

23.2.1

CHAPTER 23. RENDERING MANY LIGHTS WITH GRID-BASED RESERVOIRS

function directLighting(Point p, Direction wo)
result = 0;
foric {1...SAMPLE_COUNT} do
light, pdfLight = SampleLight(p);
if ShadowRayl(p, light] then
| result += Brdfllight, p, wo) / pdfLight;

| return (result / SAMPLE_COUNT];

Figure 23-2. Importance sampling loop taking the selected number of light samples at point p,
observed from direction wo, and averaging them. A basic implementation might select a light
randomly from the light pool and set pdfLight = 1/LIGHTS_COUNT.

using lights with limited emission profiles for quick culling, e.g., spotlights.
Because typical distance-based attenuation never reaches zero, modifying
attenuation functions to quickly reach zero helps limit light range and further
improves performance.

With importance sampling, we can reduce noise by selecting highly
contributing lights more often, but basic implementations must still evaluate
the probabilities of all the lights to determine which to sample.

RESAMPLED IMPORTANCE SAMPLING

To reduce this cost, we use resampled importance sampling (RIS) [5], a
powerful technique to numerically sample distributions that are difficult to
analytically sample. RIS is a two-step process. First, we select M candidates
from the pool of all N samples using a cheap-to-evaluate source probability
density function (PDF), e.g., uniformly. Then we resample from the M-element
subset according to a more expensive target PDF. The target PDF may be the
ideal distribution discussed previously, or it could include some mixture of
BRDF, visibility, geometry, and light contributions. Note that the target PDF is
only evaluated for M samples, which is significantly less than N. Resampling
can be efficiently implemented using weighted reservoir sampling (WRS),
described in Chapter 22, and is summarized in Figure 23-3.

Resampling is a key building block of the recently introduced ReSTIR
(reservoir spatiotemporal importance resampling) algorithm [3], designed to
render scenes with many lights without maintaining a complex data structure.
ReSTIR maintains a subset of light samples (called a reservoir) per pixel. The
algorithm starts by sampling lights in an inexpensive way, then uses

353

RAY TRACING GEMS I

23.2.2

354

Struct LightSample
| uint lightID;

Struct Reservoir
LightSample sample;
uint M;
float totalWeight;

float sampleTargetPdf;

function sampleLightRIS(Point p)

Reservoir r;

foric{1...M}do

candidate, sourcePdf = sampleFromSourcePool(];

targetPdf = PartialBrdf(candidate, p);

risWeight = targetPdf / sourcePdf;

r.totalWeight += risWeight;

r.M++;

if rand() < [risWeight / rwSum)] then
r.sample = candidate;

L r.sampleTargetPdf = targetPdf;

resultWeight = (r.totalWeight / M) / r.sampleTargetPdf;
return r.sample, resultWeight;

Figure 23-3. Basic RIS using weighted reservoir sampling to sample lights. This example calls
sampleFromSourcePool to draw samples using an inexpensive method and resamples according
to PartialBrdf for the shaded point p. The weight of the selected sample resultWeight is used as
the inverse PDF in importance sampling, during shading. The reservoir structure stores the
selected sample and metadata about its construction as explained in Section 23.2.2. The
LightSample structure simply references a sampled light by its index.

resampling to spatially and temporally reuse neighbor samples. ReSTIR
further improves samples by combining existing reservoirs into new ones, a
key component to continuously improve the reservoir in any pixel over
many frames.

RESERVOIR

A reservoir, as defined by Bitterli et al. [3], is a data structure that holds one
or more samples selected from a larger set (our implementation uses
reservoirs of one light sample). A reservoir also stores metadata about how it
was constructed, specifically the number of candidates evaluated during its
construction M, their total weight, and the target PDF of the selected sample

CHAPTER 23. RENDERING MANY LIGHTS WITH GRID-BASED RESERVOIRS

(see the pseudocode in Figure 23-3). This data is needed for using the
reservoir to perform unbiased sampling.

There are multiple ways to construct a reservoir; the first that we will cover is
based on the RIS algorithm. Going back to our description of RIS, we can see
how they are related: a reservoir is a structure holding a subset of a larger
set, and RIS is the algorithm producing such a subset. The reservoir
metadata are a byproduct of the resampling process; i.e., the number of
candidates M, their total weight, and the target PDF of selected samples are
all used in the code in Figure 23-3 when running a RIS algorithm, and they
can be stored in the reservoir directly.

Another way to create a reservoir is by merging multiple reservoirs into one
using the procedure shown in Figure 23-4. As mentioned in the problem
statement of this section, this is a key component of ReSTIR and a powerful
tool enabling us to construct large numbers of independent reservoirs in
parallel using RIS and to merge them to obtain even higher quality

sample sets.

The original ReSTIR algorithm works in screen space, meaning it samples
lights for pixels on screen and hence only works for primary rays. Our method
adapts the ideas in ReSTIR to work in world space. Instead of maintaining a
reservoir per pixel, we create a coarse world-space grid and maintain a
number of independent reservoirs in each voxel.

function updateReservoir(Reservoir result, Reservoir input)

result.totalWeight += input.weight;

result.M++;

if rand() < (input.weight/result.totalWeight) then
result.sample = input.sample;

L result.sampleTargetPdf = input.sampleTargetPdf;

return result;

function mergeReservoirs(Reservoir r1, Reservoir r2)
Reservoir merged;

updateReservoir(merged, r1);
updateReservoir(merged, r2J;

merged.M =r1.M + r2.M;

return merged;

Figure 23-4. A process that merges two reservoirs into one. Note that by calling
updateReservoir multiple times, we can merge any number of reservoirs.

RAY TRACING GEMS I

23.3

23.3.1

23.3.2

356

GRID-BASED RESERVOIRS

Our main idea is to split light sampling into two steps. First, we create a pool
of samples likely to contribute to a certain area (i.e., the region in a grid cell).
In this step, we resample the initial samples according to the grid cell position
by estimating light intensity at its area. Here, we can also cull lights that have
no contribution to the grid cell. In the second step, we resample according to
the BRDF contribution at the shaded point. Both steps produce high-quality
samples using RIS to quickly draw samples using a cheap source PDF, but in
the second step we sample from the smaller pool. This chains resampling
steps, evaluating a more expensive target PDF in the second step but working
from the smaller sample count provided by the first step.

SELECTING LIGHT SAMPLES FOR THE GRID

The first step draws samples uniformly from the pool of all lights, a constant
time operation, and then resamples according to the target probability based
on the light intensity at the grid cell's position (attenuated due to squared
distance). It is important to clamp the light distance to the cell borders,
otherwise lights inside the cell would be incorrectly prioritized. Note that any
method for drawing samples can be used to select initial candidates, e.g., the
efficient alias method discussed in Chapter 21. Our method works for any light
type, as we only evaluate the light intensity for the first step and the BRDF in
the second step.

SAMPLING THE LIGHT FOR SHADING

Now, the selected samples in each grid cell can be seen as a pool of
single-light reservoirs created by RIS, as shown in Figure 23-5. We can merge
these into a single reservoir for shading. Looping over all reservoirs

Cell with a Pool
of Reservoirs

Grid <

 Light Sample
* Sampling Weight

Reservoirs

Figure 23-5. A depiction of grid cells, each storing reservoirs of light samples.

23.4

23.4.1

CHAPTER 23. RENDERING MANY LIGHTS WITH GRID-BASED RESERVOIRS

exhaustively, however, results in poor performance when the number of
reservoirs per grid cell is large (we use 512 as a default], and we still need to
resample these lights again to account for the BRDF.

To solve both issues, we use the resampling procedure from Figure 23-3 again
to merge reservoirs and resample according to the BRDF at the same time.
Here, the BRDF is also multiplied by light intensity at the shaded point when
calculating the target PDF for RIS. Reservoir merging selects one best light
from many reservoirs, whereas resampling implements this merging
efficiently, without the need to iterate over all input reservoirs. This time, the
resampling target probability is set to the partial BRDF for a given shaded
point. The source pool is the set of reservoirs we want to merge. The source
PDF is more complex and is described in Section 23.4.2.

Note that the first and second steps are decoupled and do not depend on the
screen resolution, world complexity, or number of lights. We can draw any
number of lights from the pool in the grid cell once it is built, and we can build
pools of lights corresponding to any area in the scene, as we will discuss in
Section 23.4.1.

This concludes the high-level description of our algorithm; we cover
important implementation details in the next section.

IMPLEMENTATION

CONSTRUCTION OF THE GRID

To construct our grid, we must first decide on the grid dimensions and how
many light samples to store per cell. There will be multiple reservoirs in each
grid cell, which we call light slots, each storing one light sample. Parameters
can be established by experimentation, potentially varying with scene light
count, scene extent, visibility range, and desired performance. Our default
allocates a grid with 163 cells, giving 4096 cells in total. We also default to 512
light slots per grid cell, but depending on the scene lighting complexity,
values from 64 to 1024 give good results. As virtual worlds are often flat,
allocating a grid with fewer cells along the vertical axis is often advisable.

Using these parameters, we can allocate a GPU buffer of the necessary size.
Each light is represented by the Reservoir structure, which can use 16-bit
precision numbers for all fields except totalWeight to reduce memory
requirements. As an optimization, we need not explicitly store the number of

357

RAY TRACING GEMS I

358

Figure 23-6. Left: our Burger Restaurant scene. Right: an illustration of the world-space grid
cell placement. Individual cells are highlighted by random colors.

seen candidates M in the reservoir, as it is only used to normalize
totalWeight, which can be precalculated. This also prevents M from growing
to infinity as the number of seen samples grows over time. With these
optimizations, the memory requirements for the default setting are

only 16 MB.

POSITIONING THE GRID

Deciding how to place our grid in the scene depends largely on the rendered
content. The simplest approach stretches the grid so that it spans all
geometry (see, e.g., the Figure 23-6). This works well for relatively small
scenes of known size, but many games feature open-ended worlds with
dynamically loaded content, where scene size constantly changes.

For these cases, we recommend one of two approaches. A scrolling clipmap
can be used, which ensures that individual grid cells seemingly stay in place
and their positions are given by the window into a clipmap centered around
the camera. In this case, the range of the grid (or size of the cell) has to be
determined, which prevents our light sampling from being used outside of
this range.

Another possible approach is to implement a sparse grid, where the positions
of individual cells are determined using a hash map. In this case, we map
each point in world space to a grid cell in the hypothetical infinite uniform
grid as:

1 return int3(worldCoords / gridCellSize);

Once we try to sample from a grid cell at given coordinates, we store these
coordinates into the map, at a position determined by the hash. Note that
conflicts must be resolved at this point. When we construct the grid, we first

CHAPTER 23. RENDERING MANY LIGHTS WITH GRID-BASED RESERVOIRS

. 60 ':C_):'
4 1 -
//Q/
Cell
Center in WS

Figure 23-7. Construction of the grid. RIS selects a number of candidates and resamples them
according to the light intensity at the cell center.

read the map to determine which cells in the world space are used, map them
back to world space, and create reservoirs only for them.

BUILDING CELL RESERVOIRS

To fill the grid with light samples, we apply the RIS algorithm (see

Figure 23-3) for each entry (light slot] in a grid. Remember that each grid cell
contains multiple light slots, i.e., multiple light samples that were created by
running the RIS algorithm.

Because selecting a per-slot light sample is done independently of other
slots, even from the same cell, sampling can be parallelized, making grid
construction very fast. This procedure first maps thread ID to the
corresponding grid cell (see Figure 23-7), which is in turn used to map the cell
position to world space:

int gridCellLinearIndex = threadID / gGridLightsPerCell;
int3 cellCenterCoords = linearToCoords3D(gridCellLinearIndex) ;

float3 gridCellCenter = mapGridToWorld(cellCenterCoords);

© ©® N o G AW N -

Reservoir lightSlotReservoir = sampleLightRIS(gridCellCenter);

By default, the number of initial RIS candidates (M) we use is eight. Increasing
it quickly encounters the law of diminishing returns. As mentioned in

359

RAY TRACING GEMS I

360

Section 23.3.1, the target PDF in sampleLightUsingRIS only depends on the
intensity of the light at the grid center, as follows. Note the clamping that
ensures that lights inside the cell have the same probability:

1 float3 lightVector = candidate.position - gridCellCenter;

2 float lightDistanceSquared = max(gMinDistanceSquared, dot(lightVector,
lightVector));

3 float sourcePdf = <Source PDF as described, e.g., uniform sampling>;

4 float targetPdf sample.intensity / lightDistanceSquared;

This code assumes a typical distance-based attenuation function for all lights,
i.e., attenuating intensity with the distance squared, but any type of light can
be supported. Most notably, directional lighting from the sun has the same
intensity everywhere in the scene.

To ensure that each reservoir’s running count M of the light candidates that it
incorporates does not grow to infinity, we normalize it before storing the
reservoir in the grid. This also enables removing M from the reservoir, as it is
always one at this point:

1 lightSlotReservoir.totalWeight = lightSlotReservoir.totalWeight /
lightSlotReservoir.M;
2 lightSlotReservoir.M = 1;

Note that using this process, a light can end up in any grid cell where it has a
nonzero probability of contribution. Thus, our grid is not a spatial subdivision
structure, but rather a data structure to store samples and their probabilities.

Finally, an important optimization is to only update grid cells that are used.
Cells covering empty space will never be used for shading, so we can skip
filling their light slots. We implement a cache where each cell stores a frame
number for when it was last accessed. This information is cached by the
sampling routine. During per-frame construction, we first check whether
each cell has been recently accessed [e.g., in the last eight frames) and only
update cells in active use.

TEMPORAL REUSE

The construction process just described is repeated each frame, rebuilding
the grid from scratch. However, we can use reservoirs of lights from previous
frames to continuously improve the grid in the most recent frame using the
reservoir merging process described in Section 23.3.2. This is an important
technique also used in the original ReSTIR implementation [3] that achieves
much more stable results.

23.4.2

CHAPTER 23. RENDERING MANY LIGHTS WITH GRID-BASED RESERVOIRS

To handle temporal reuse, we also retain grids from previous frames (eight by
default). During grid construction, we compute each reservoir as previously
described, but before storing it into the grid, we merge this new reservoir (see
Figure 23-4) with the reservoirs from prior frames (corresponding to the
same light slot):

1

2 for (int i = 0; i < GRIDS_HISTORY_LENGTH; i++) {

3 lightSlotReservoir = mergeReservoirs(lightSlotReservoir,
glightGridHistory[i][lightSlotIndex]);

lightSlotReservoir.totalWeight /= lightSlotReservoir.M;
lightSlotReservoir.M = 1;

© N o o~

}

Because good light samples have higher weight, it is likely that we keep
reusing them until even better samples are found. This helps to continuously
improve our samples.

DYNAMIC LIGHTS

Our method supports dynamic lights out of the box. We have intentionally
used a light ID in the reservoir structure to reference sampled lights. This
requires indirection to access light properties, but also ensures that every
time we use a light, its current properties are used for shading. However, a
problem can occur with temporal reuse, which does not modify a light's
weight even if it changes. This can introduce excessive noise if the lights
change significantly. As a workaround, we can prevent dynamic lights from
participating in temporal reuse, so they will be replaced by a new sample.
Alternatively, a more expensive reservoir merge can re-weigh dynamic lights
during grid construction.

SAMPLING FROM THE GRID

When sampling lights, we start by finding the grid cell corresponding to the
shaded point (see Figure 23-8). To reduce artifacts from nearest neighbor
lookups [i.e., visible cell boundaries), we first randomize the lookup with an
offset proportional to the cell size. This essentially performs stochastic
trilinear filtering, sampling neighboring cells proportionally to their distance
from the lookup:

1

2 float3 gridLoadPosition = pointPosition+(float3(rand(), rand(), rand()) x*
2.0f - 1.0f) * gHalfGridCellSize;

3

361

RAY TRACING GEMS I

362

M Pixel
Selected cell

Figure 23-8. Sampling from the grid. First, a cell in the neighborhood of the pixel is selected,
then RIS is used to resample lights stored in the cell at the pixel. Light sources indicated in the
image are an example of lights stored in sampled grid cells.

5 int3 gridCellCoords = mapWorldToGrid(gridLoadPosition);
6 uint gridCellIndex = coords3DToLinear (gridCellCoords);
7 uint gridCellStartIndex = gridCelllIndex * gGridLightsPerCell;

This gives us gridCellStartIndex, a position in the grid buffer where the
grid cell's pool of samples starts. Next, as discussed in Section 23.3.2, we
apply RIS again to merge reservoirs in the pool into a final light sample for
shading, and also we resample according to the target PDF (which is based on
the BRDF at the shaded point). Here, RIS draws source samples directly from
the reservoirs of the selected grid cell:

1 float sourcePdf = candidate.sampleTargetPdf / reservoirAverageWeight;
2 float targetPdf = PartialBrdf (candidate, shadedPoint);

We calculate the source probability as the target PDF of candidates from the
first RIS pass (during grid construction) divided by the average weight of all
reservoirs (light slots] in the grid cell. This is an iterative application of RIS,
similar to the approach described in the original ReSTIR article [3]. This
average may be used multiple times, so we precalculate it for each cell in a
separate pass. The function PartialBrdf depends on renderer-specific
BRDFs and light parameters and can be a full BRDF if the cost is reasonable.

Finally, a pixel can be shaded using the light sample and the RIS weight:

1 Reservoir risReservoir = sampleLightUsingRIS(shadedPoint);
2 float lightSampleWeight = (risReservoir.totalWeight / M) / risReservoir.
sampleTargetPdf;

3 LightSample light = loadLight(risReservoir.lightSample);
4 return light.intensity * Brdf(light, shadedPoint) * lightSampleWeight;

23.5

CHAPTER 23. RENDERING MANY LIGHTS WITH GRID-BASED RESERVOIRS

Figure 23-9. A single frame rendered using naive uniform sampling (left] and ReGIR [center] and
the accumulated result (right] of the Burger Restaurant scene. Note the significantly better
sampling around the light source in top left corner using our method.

RESULTS

We implemented and evaluated ReGIR (our method) in the Falcor rendering
framework [2]. Compared to naive uniform sampling and basic RIS, we
achieved superior results (see Figures 23-9 and 23-10) with only a small
per-frame performance cost of about 1.5 ms using our default settings.
Performance was measured with a RTX 3090 GPU and 1920 x 1080 resolution

Uniform 1 rpp RIS 1 rpp

-

ReGIR 1 rpp Reference, Accumulated

===

Figure 23-10. Comparison of naive uniform sampling (top left) to only using RIS with
16 candidates [top right]), our ReGIR method [bottom left], and a ground truth [bottom right]. We
use one ray per pixel [rpp).

363

RAY TRACING GEMS I

23.6

364

and is similar across most tested scenes. Of this cost, about 0.3 ms is spent
on constructing the grid. The remaining cost comes from selecting lights
from the grid for shading; this cost depends on the resolution and number of
secondary rays accessing the grid. Our performance depends mostly on how
many light samples we store in the grid and the number of nonempty cells
due to the scene complexity.

Visual quality depends on the number of light samples that we can afford to
store per grid cell, and on the size of the cells in world space. Using smaller
cells can improve visual quality, but can also limit the range of the grid.

We show results of our method applied to primary rays; however, its expected
use case is shading secondary rays and arbitrary points in the scene, whereas
screen-space ReSTIR typically gives better quality on primary hits.

The slight bias of our method can be attributed to the discrete nature of the
grid and the limited number of samples stored in each grid cell. Temporal
reuse can also contribute to the bias. In real-time applications, this should
not pose significant issues as we believe high performance is preferable, and
the presence of a denoiser should smooth out any remaining artifacts.

CONCLUSIONS

In this chapter, we presented our new ReGIR algorithm for many light
sampling, which can be used in real-time ray tracing for both primary and
secondary rays. Because it uses a simple data structure, it is relatively easy to
implement in game engines and provides high performance, although other,
more costly methods can give superior results in terms of lower noise.
However, when using a specialized denoiser, higher performance can be a
more important benefit, assuming input noise is low enough to produce sharp
and stable results after denoising.

Because our world-space method uses a larger granularity than
screen-space ReSTIR, it is not as well suited for shading primary ray hits,
except in scenes with only a few lights. However, it enables shading secondary
hits, and combining these two methods might be a preferred way of using
ReSTIR. ReGIR can also be combined with methods for calculating global
lighting such as dynamic diffuse global illumination (DDGI) [4] or with a path
tracer.

CHAPTER 23. RENDERING MANY LIGHTS WITH GRID-BASED RESERVOIRS

REFERENCES

[1] Amazon Lumberyard. Amazon Lumberyard Bistro. Open Research Content Archive
[ORCA], http://developer.nvidia.com/orca/amazon-lumberyard- bistro, 2017.

[2] Benty, N., Yao, K.-H., Clarberg, P., Chen, L., Kallweit, S., Foley, T., Oakes, M., Lavelle, C.,
and Wyman, C. The Falcor real-time rendering framework.
https://github.com/NVIDIAGameWorks/Falcor, 2020. Accessed August 2020.

[3] Bitterli, B., Wyman, C., Pharr, M., Shirley, P., Lefohn, A., and Jarosz, W. Spatiotemporal
reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 39(4):148:1-148:17, July 2020. DOI:
10/gg8xc7.

[4] Majercik, Z., Guertin, J.-P., Nowrouzezahrai, D., and McGuire, M. Dynamic diffuse global
illumination with ray-traced irradiance fields. Journal of Computer Graphics Techniques
[JCGT), 8(2):1-30, 2019. http://jcgt.org/published/0008/02/01/.

[5] Talbot, J., Cline, D., and Egbert, P. Importance resampling for global illumination. In

o900

Eurographics Symposium on Rendering (2005), pages 139-146, 2005. DOI:
10.2312/EGWR/EGSR05/139-146.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license

and indicate if you modified the licensed material. You do not have permission under this license to share

adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copyright holder.

365

http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10/gg8xc7
http://jcgt.org/published/0008/02/01/
https://doi.org/10.2312/EGWR/EGSR05/139-146
http://creativecommons.org/licenses/by-nc-nd/4.0/

