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Abstract

Interactive applications typically rely on local models for
lighting, occasionally augmented by GPU-friendly methods
for approximating global illumination. Caustic mapping ap-
proximates the specular focusing of light using a light-space
image, akin to a shadow map, which is projected onto the
scene during final rendering. Unfortunately, existing caus-
tic map implementations must choose between quality and
speed. Quickly generated maps use few photons and look
extremely blurry, while sharper maps created from millions
of photons only render at a few frames per second. This
paper introduces a number of hierarchical enhancements to
caustic mapping that allow real-time rendering with high
quality caustic maps, even when using maps from multiple
light sources. These techniques utilize the geometry process-
ing stage of recent GPUs to avoid processing every photon
and to render a pyramidal caustic map that allows photon
splats of varying diameters without the increased costs in-
herent in rasterizing large splats.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism

Keywords: interactive rendering, caustics, hardware

1 Introduction

While speed takes precedence over realism in most interac-
tive applications, the desire to improve graphics quality has
motivated the development of various fast approximations
for realistic lighting. Simple shadows, now common in such
applications, are typically rendered using some variant of
shadow mapping [Williams 1978] or shadow volumes [Crow
1977], and various methods allow shadows from larger area
lights [HasenFratz et al. 2003]. Diffuse global illumination
can be stored in textures, approximated via ambient occlu-
sion [Bunnel 2005], or dynamically computed with precom-
puted radiance transfer [Sloan et al. 2002; Ng et al. 2004] or
splatting techniques [Dachsbacher and Stamminger 2006].

One challenging problem has been rendering perfectly
specular materials. For such materials, specific geometry
is reflected or refracted at each surface point, so approxi-
mations that boost speed by blurring are unacceptable. A
decade ago, only environment mapped reflections [Greene
1986] and planar specular effects [Diefenbach and Badler
1997] were feasible, but more recent work can approximate
more complex reflections [Estalella et al. 2006; Umenhoffer
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Figure 1: This scene contains 560k triangles and two lights
emitting 4 million photons each, yet hierarchical caustic
maps still remain interactive, running at 9 fps for a reso-
lution of 20482.

et al. 2007; Yu et al. 2005] and refractions [Oliveira and
Brauwers 2007; Davis and Wyman 2007; Wyman 2005].

Building on these interactive approximations for specular
materials, caustic mapping [Shah et al. 2007; Szirmay-Kalos
et al. 2005; Wei and Kaihuai 2007; Wyman and Davis 2006]
follows specularly reflected and refracted photons backwards
from the light, as in photon mapping [Jensen 2001], storing
their hit positions into a photon buffer. A second pass then
reorganizes and splats these stored photons into a caustic
map, which is projected onto the scene similar to a shadow
map. Effectively, shadow maps allow a binary light visibility
test at geometry in the scene, whereas caustic maps account
for multiple paths from the light to each surface.

Two major problems limit the applicability of caustic
mapping, however.

1. Each photon in the photon buffer must be processed, so
developers must choose between severely undersampled
caustics or a large speed penalty to use enough photons
for caustics comparable to offline methods.

2. Complex specular interactions cause oversampling in
bright focal regions while other areas of the caustic map
remain undersampled and noisy.

This paper introduces a number of hierarchical improve-
ments to existing caustic mapping techniques that address
these issues. First, the photon buffer is processed in a hi-
erarchical manner, allowing many irrelevant photons to be
discarded simultaneously. Second, during this hierarchical
processing, clusters of converging photons are identified and
combined into a single splat. This significantly reduces the
cost of oversampling focal regions. Finally, using informa-
tion about the convergence or divergence of neighboring pho-
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tons, we use photon splats of varying sizes to reduce un-
dersampling noise. A render-to-mipmap technique virtually
eliminates the cost of rasterizing large splats, and also al-
lows photon splats to exceed the hardware point size limits.
Section 4 discusses numerous implementation-specific opti-
mizations that significantly improve caustic mapping perfor-
mance, even without these hierarchical techniques.

2 Previous Work

Graphics researchers have investigated caustics for more
than twenty years, starting with Kajiya’s [1986] work on
the rendering equation. More recent work can, broadly, be
split into wavefront, beam, and particle techniques.

Wavefront techniques trace waves of light, i.e., the surfaces
perpendicular to light rays, through the scene. Mitchell and
Hanrahan [1992] first applied wavefronts to the computation
of caustics. Ihrke et al. [2007] precompute a volumetric rep-
resentation of a specularly deformed wavefront, allowing the
interactive rendering of specular effects including complex
volumetric caustics. Unfortunately, significant precomputa-
tion costs preclude application in dynamic scenes.

Beam techniques arise from the application of beam trac-
ing [Heckbert and Hanrahan 1984] to energy leaving the
light source. Watt [1990] traces light beams through a wa-
ter surface to generate underwater caustics. Nishita and
Nakamae [1994] use beams for the same purpose while also
accounting for volumetric scattering inside the water, and
Iwasakai et al. [2002] outlined a GPU-accelerated underwa-
ter caustic technique using beams. Using warped caustic
volumes and an improved intensity interpolation, Ernst et
al. [2005] further improve caustic quality.

Arvo [1986] suggests emitting rays from light sources
and accumulating them in illumination maps. Besides
eliminating the need for per-object illumination textures,
Jensen’s [2001] photon mapping also renders other global il-
lumination effects. As most photon mappers accelerate pho-
ton gathering using kD-trees, a difficult data structure to ef-
ficiently implement using GPUs [Foley and Sugerman 2005],
researchers have only had limited success utilizing photon
mapping in an interactive context [Purcell et al. 2003].

Other interactive techniques capture caustics from single
reflective interfaces. Wand and Straßr [2003] subdivide re-
flective surfaces, treating each sample as a point light source
and using the GPU to gather energy from each. Dachs-
bacher and Stamminger [2006] note that surfaces visible in
a shadow map reflect light towards other surfaces. By in-
telligently splatting photons representing a subset of shadow
map texels, they approximate indirect illumination including
caustics from simple surfaces.

Recent work proposes creating a projective light-space il-
lumination map called a caustic map that can be projected
onto a scene to render realistic caustics. Researchers con-
currently developed a whole class of caustic mapping tech-
niques, which all follow the basic three-step process illus-
trated in Figure 2. The first step emits photons from the
light by rendering the scene from the light position, storing
the locations where photons first intersect with diffuse ma-
terials into an photon buffer. The second pass treats these
photons locations as point primitives, transforms them via
vertex shaders, and splats them into a caustic map. The
third step projects the caustic map onto the scene similar to
(and often in conjunction with) a shadow map.

Szimay-Kalos et al. [2005] use a low resolution light image
and large Gaussian splats. This very quickly produces very
blurry caustic maps. Wyman and Davis [2006] suggest using

Render from Light

Refracted Photon

Standard Rendering

Depth Map

Caustic Map Project Caustic Map

Locations

Figure 2: Caustic mapping is a three-pass process. The first
pass renders from the light, creating a photon buffer that
stores locations where photons are absorbed. The second pass
reorganizes these photons into a caustic map, which is pro-
jected onto the scene in the third pass in conjunction with a
shadow map.

many more photons and explore a variety of ways to gather
photons into the caustic map. Their approaches produce
higher fidelity caustics, but at much slower framerates. Wei
and Kaihuai [2007] propose using per-object instead of per-
light caustic maps, similar in spirit to illumination mapping.
Shah et al. [2007] introduce a vertex tracing technique for
the first pass, instead of a full-fledged rasterization pass.
This can improve performance, but caustic quality becomes
dependent on the refractor’s tessellation level.

Kruger et al. [2006] improve caustic map quality by using
surface-aligned splats and additionally propose a line trac-
ing technique that enables volumetric caustics. Wyman and
Dachsbacher [2007] vary splat sizes to reduce undersampling
noise when caustic photons diverge. A per-photon thin lens
model approximates photon divergence. They further reduce
noise by rendering multiple splat sizes and interpolating be-
tween them during caustic map projection.

2.1 Caustic Map Limitations

Unfortunately, caustic mapping still has limitations in inter-
active contexts. Previous work remains real-time only with
around 10,000 photons. As only some of these photons inter-
act with specular surfaces to focus into a caustic, the results
are extremely blurry. Shah et al.’s vertex tracing method
uses exclusively relevant photons, but geometry tessellation
affects caustic quality, requiring the use of more complex
models. Wyman and Dachsbacher achieve high quality re-
sults using a million photons, but with that many photons
framerates never exceed 10 Hz.

Even with millions of photons, undersampling and over-
sampling are evident in the caustic maps. A regular photon
sampling, inevitable given that photons are emitted by ras-
terizing the scene, exacerbates the problem. Varying the
splat sizes reduces noise but slows rendering. During anima-
tion, this noise becomes particularly objectionable.

3 Hierarchical Caustic Maps

Previous caustic mapping techniques all use a constant num-
ber of photons. Either a fixed photon buffer resolution is
chosen a priori or one photon is emitted per refractor ver-
tex. In either case, once a photon count is fixed all photons
are processed throughout the entire caustic map creation
process. This leads to three problems:
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Figure 3: (Left) Many irrelevant photons (white) are typ-
ically processed in caustic mapping. By first transforming
a reduced resolution photon buffer, most irrelevant photons
are discarded cheaply. (Right) A reduced resolution photon
buffer overlaid on the original buffer, showing that most ir-
relevant photons can be discarded at quite low resolutions in
a hierarchical photon buffer.

1. Wasted computation when processing irrelevant pho-
tons (those not encountering a specular surface),

2. Oversampling in regions where photons converge, and

3. Undersampling in regions where photons diverge.

Only the last problem has been addressed previously. Most
researchers simply splat photons into the caustic map with a
large enough Gaussian splat to eliminate objectionable noise,
though this comes at a cost of blurring the caustics. Wyman
and Dachsbacher [2007] use a varying splat size to reduce un-
dersampling while maintaining crisp caustics, though their
work does not address the other problems and their splat
sizes are determined using empirical methods. We address
all three of these problems using hierarchical techniques, us-
ing hardware generated mipmaps and a render-to-mipmap
technique.

3.1 Eliminating Irrelevant Photons

Because photons are generated by rasterizing a light view
and treating each pixel as an emitted photon, they are ar-
ranged in a regularly sampled 2D buffer. Many photons will
not hit a specular surface. Since, by definition, caustics only
involve photons that interact with specular surfaces, other
photons should ideally be discarded immediately.

One solution would resize the light view each frame to
tightly bound the specular object. This significantly reduces
the problem, but many extraneous photons still exist for
concave objects. Also, a fixed size photon buffer generally
allows a tight bound in only one dimension, e.g., for a long
narrow object. For many implementations bounding the ob-
ject will be infeasible, due to a coupling of photon buffer and
shadow map view parameters to allow combining their ren-
dering passes. In our implementation the refraction quality
also varies slightly with field-of-view, so tight bounds are not
desirable.

Existing implementations process all photons via a vertex
shader that repositions caustic photons to their appropriate
location in the caustic map. Typically, irrelevant photons
are moved to locations outside the view frustum, so they
are culled prior to rasterization. With the introduction of
geometry shaders, these photons can be explicitly discarded
before culling. We found this does improve performance, but
only by a few percent, as invoking a geometry shader for the
extra photons has similar cost to hardware culling.

Since we cannot simply ignore irrelevant photons, our ap-
proach attempts to discard them as cheaply as possible.

To do this, we observe that irrelevant photons tend to be
grouped together. Thus, a hierarchical approach should al-
low us to discard large groups of unnecessary photons at
once. Figure 3 shows the relevant and irrelevant photons
(black and white, respectively) from the photon buffer in
Figure 2. By creating a mipmap hierarchy and first process-
ing the low resolution buffers, we can discard texels whose
children contain no valid photons. Each discarded texel from
a 162 mipmap level eliminates 1024 unnecessary photons in
the corresponding 5122 buffer. To discard these texels, we
use a geometry shader that discards unnecessary photons
and streams others back as input into the pipeline.

Note, however, that texels in the low resolution photon
buffers are only discarded if none of its children are valid
photons. This means a texel might contain only a single
valid photon, resulting in wasted processing for thousands
of others. To reduce this problem, we discard photons in
a recursive manner, traversing the mipmap quadtree in a
breadth-first manner:

PhotonList photonsForLevel[maxMipLevels+1];

// Only one texel in top mipmap level!

photonsForLevel[maxMipLevels].Add( root );

for (i=maxMipLevels down to 1) do

for all (photons p ∈ photonsForLevel[i]) do

if ( IsInvalid( p ) ) then

continue;

photonsForLevel[i-1].Add( p.Child(0) );

photonsForLevel[i-1].Add( p.Child(1) );

photonsForLevel[i-1].Add( p.Child(2) );

photonsForLevel[i-1].Add( p.Child(3) );

TransformPhotons( photonsForLevel[0] );

We found that beyond the first few levels, processing at
each mipmap level discards roughly 5% to 30% of the re-
maining photons. Obviously, earlier levels tend to discard a
larger percentage. To avoid processing mipmaps containing
only a handful of photons, our implementation starts with a
mipmap of resolution 162.

3.2 Reducing Oversampling

Oversampling occurs where many photons converge to a sin-
gle texel in the caustic map (as in Figure 4). Unlike photon
mapping, where a k-nearest neighbor search averages pho-
tons over an arbitrary region, the smallest neighborhood dis-
cernible using caustic mapping is a single caustic map texel.
One photon contributing to a texel is treated the same as
any other contributing photon, and after noise in the texel
is eliminated (with roughly a dozen photons) any additional
contributions mainly affect the texel intensity.

Due to the regular sampling of photons, attempts to re-
duce objectionable undersampling noise by increasing the
number of emitted photons simultaneously increase over-
sampling. While this oversampling does not reduce caustic
quality, it does introduce photons that needlessly increase
computational costs.

We propose augmenting the hierarchical process employed
above to avoid repeatedly splatting converging photons into
a single texel. If convergence is detected at a coarse reso-
lution, all child photons can be treated as a single photon
with a corresponding increase in intensity. For scenes such
as Figure 4 that exhibit severe oversampling, as many as
256 photons can be treated as a single bright photon, signif-
icantly reducing the cost of oversampling when using high
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Figure 4: A scene with severe oversampling in the caustic
map. The central image shows the photon buffer, where the
darker photons roughly correspond to the bright central re-
gion of the caustic map, shown to scale at right. Using 32

photon splats, roughly 90 photons contribute to each texel in
the focal region.

resolution photon buffers. The algorithm from Section 3.1
changes as follows:

PhotonList photonsForLevel[maxMipLevels+1];

// Only one texel in top mipmap level!

photonsForLevel[maxMipLevels].Add( root );

for (i=maxMipLevels down to 1) do

intensityModifier = 4i

for all (photons p ∈ photonsForLevel[i]) do

if ( IsInvalid( p ) ) then

continue;

if ( DoChildrenConverge( p ) ) then

photonsForLevel[0].Add( p, intensityModifier );

else

photonsForLevel[i-1].Add( p.Child(0), 1 );

photonsForLevel[i-1].Add( p.Child(1), 1 );

photonsForLevel[i-1].Add( p.Child(2), 1 );

photonsForLevel[i-1].Add( p.Child(3), 1 );

TransformPhotons( photonsForLevel[0] );

Due to the behavior of geometry shaders, photons cannot
be emitted in two different streams as suggested by this al-
gorithm. Instead, our implementation emits all photons to
a single stream and a flag identifies if a photon is ready to
transform or if further hierarchy recursion is needed.

We found a simple convergence test worked reasonably
well. If all child photons project to the same texel in the
caustic map, we count the children as converging. While
conservative, this test requires little additional state to be
passed from level to level. In fact, we store the intensity
modifier in the (unused) alpha component of the photon
position. More complex tests could determine if photons
converge primarily in one dimension, which may allow more
aggressive photon clustering.

Always checking for photon convergence proves costly, es-
pecially for low resolution mipmap levels where essentially
incoherent photons are unlikely to be clustered. We also
implement a modified approach, where convergence is only
tested at the last mipmap level (e.g., for the 5122 resolution
level when using a 10242 photon buffer). This reduces the
shader cost for processing most mipmap levels, in exchange
for missing some converging photons.

3.3 Reducing Undersampling

Perhaps the biggest obstacle to attaining high quality inter-
active caustics is difficulty eliminating undersampling noise.
A simple way to remove this noise is to shoots more photons.

Undersampled

Oversampled

Figure 5: Even after emitting millions of photons, caustic
maps contain undersampled regions where lack of photons
leads to noise. Due to the regularly sampled photon buffer,
increasing photon count to reduce undersampling simultane-
ously worsens oversampling.

Unfortunately, only parts of the caustic map are undersam-
pled. In the same caustic map, there may be as many over-
sampled regions as undersampled regions (e.g., Figure 5).
While the technique discussed in Section 3.2 reduces the
costs associated with oversampling, it still incurs a penalty.
Furthermore, even with millions of photons many caustics
still contain undersampling noise. More than 16 million
photons are infeasible using current hardware, and memory
requirements for large buffers will inhibit the use of more
photons on future hardware.

Once crisp caustics have been obtained in focal regions,
blurring caustics in slowly changing regions should be ac-
ceptable in lieu of emitting more photons. Wyman and
Dachsbacher [2007] take this approach, suggesting the use
of variable-sized photon splats during caustic map creation.
Their first approach interpolates between splats with four
different radii, but this requires all photons to be rasterized
with the largest splat size. Their second approach varies each
photon’s splat size individually, approximating photon diver-
gence using a per-pixel thin-lens model. Unfortunately, this
still requires costly rasterization of extremely large splats.

We observe that photon convergence and divergence is
already implicitly stored in the photon buffer (similar to
discussion by Collins [1995]), so a fragile thin-lens model
is unnecessary; the photon buffer may be directly used to
compute a photon’s splat size based on the amount of mag-
nification caused by specular interactions. Each photon pi

in the photon buffer actually represents a beam with solid
angle ωi emitted from the light. We compute a beam’s mag-
nification using a ratio of areas: the area of an splat from a
theoretical unoccluded beam to the actual area spanned by 4
adjacent photons. The magnification gives the multiplicative
factor applied to photon intensity, whereas the inverse of the
magnification modifies the splat size (i.e., high magnification
implies convergence, where photon energy is distributed over
a smaller region).

Photon pi hits a surface a distance di from the light. An
unoccluded beam from the light would affect an area of size
ωid

2

i (i.e., the surface area on a sphere of radius di). If the
photons adjacent to pi form a quadrilateral of area Ai, the
ratio of areas (ωid

2

i /Ai) describes the photon’s intensity and
the photon should be splatted into the caustic map with a
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Figure 6: High frequency regions of caustics, generated with
small photon splats, are stored in the highest resolution
mipmap level of the caustic map to preserve detail. Pro-
gressively lower frequency caustics are stored in lower res-
olution levels, where the large splats required to eliminate
noise are cheaper to rasterize. Because energy from texels
in lower resolution mipmap levels are spread over larger re-
gions, contributions from mipmap level i must be scaled by
( 1

4
)i. Summing contribution from all mipmap levels gives the

final caustic map intensity.

splat of radius ri of

ri =

s

Ai

ωid2

i

. (1)

Note that the square root accounts for using a ratio of areas
rather than a ratio of lengths. Consider the effect of surface

orientation on intensity. If pi hits a surface with normal ~N

from direction ~Di, then an unoccluded photon beam would

illuminate an area of size
ωid

2

i
~N·

~Di
, leading to splat radius of:

ri =

s

Ai(~N ·
~Di)

ωid2

i

. (2)

We found beam area computations lack robustness due to
numerical precision errors on the GPU, so we use an approx-
imation based on the maximum distance between adjacent
photons rather than area. This slightly enlarges splats in re-
gions where photons diverge more strongly in one direction.

This method for computing splat radii generates splat
sizes that reduce virtually all noise, whereas Wyman and
Dachsbacher’s [2007] thin-lens approach still has undersam-
pling noise. However, since photons can diverge arbitrarily
far, our technique generates photon splats of arbitrarily large
dimensions. These are often significantly larger than those
generated by the thin lens method. Larger splats cost more
to rasterize, with expense growing proportional to the square
of the radius.

Our initial varying splat implementation reduced render-
ing speeds by an order of magnitude compared to simply
using techniques from Sections 3.1 and 3.2. Here we apply a
second observation. Extremely large Gaussian photon splats
are very blurry and very dim. Thus, there is no need to ras-
terize them into a full resolution caustic map. A splat of
radius 5 in a 1282 buffer appears similar to a splat of radius
20 in a 5122 buffer after scaling and normalization, yet the
smaller splat costs significantly less to rasterize.

Instead of rendering our caustic map as a single image
with a large variation of splat sizes, we propose rendering the
caustic map as a large number of varying resolution images
each with a small variation of splat sizes. If these splat sizes
are all relatively small, the cost will be similar to generating
a caustic map with small, fixed size splats. This can be seen

as an image hierarchy, with high frequency caustics stored
at the highest resolution and lower frequency caustics stored
at progressively coarser resolutions. To make calculations
simple, we use a mipmap image pyramid to halve the image
dimensions with each level of coarsening (see Figure 6).

Given new functionality in DirectX 10 [Blythe 2006] class
hardware, GPUs can render to multiple images simultane-
ously and each primitive independently selects its desired
output image. Our implementation uses this feature to di-
rectly render all levels of the caustic hierarchy in a single
pass. While current hardware requires all images to have
the same resolution, the OpenGL specifications suggest this
limitation will be lifted eventually, allowing direct render-
to-mipmap. For now, we use render targets of the same
resolution, using progressively smaller regions of each.

Our TransformPhotons() routine mentioned in Sec-
tions 3.1 and 3.2 must change from a simple projection of
photons into the caustic map, as it must now calculate splat
size and corresponding map level:

for all (photons pi to transform) do

Lookup solid angle ωi

di =
p

dot(pi, pi)

Find adjacent photons pj,k,l

Find area Ai of pi,j,k,l

Find ri as in Equation 2.

Find diameter Di = 2ri.

// Max splat diameter in any level is 5.0

photonMipLevel = trunc( log
2
( max( 1,

Di
5.0

) ) )

splatSize = Di / pow( 2, photonMipLevel )

SplatPhoton( pi, photonMipLevel, splatSize )

This approach gives results like the hierarchy shown in
Figure 6. However, texels in lower resolution caustic images
cover larger regions of space than high resolution texels. This
means their energy is spread over larger regions, and must be
renormalized. Texels in the 1st level are 4 times too bright,
texels at the 2nd level are 16 times too bright, and texels
at the ith level are 4i times too bright. Utilizing the multi-
resolution caustic map costs more than a simple caustic map,
as contributions from multiple levels must be renormalized
and summed. To compute the caustic intensity C:

C =
N

X

i=0

Ci

4i
, (3)

where Ci is the intensity in mipmap level i and N is the
number of mipmap levels used.

We found that few splats are large enough to render to the
4th and higher mipmap levels, as such splats would have a
diameter of more than 40 pixels. Furthermore, such photons
contribute little to final caustic intensity. We discard such
photons before splatting them into the caustic map, and only
sum contributions from the base caustic map and the first 3
mipmap levels.

4 Implementation Issues

As shown in Figure 2, caustic mapping takes three passes:
render a photon buffer, create a caustic map, and apply
the caustic map in a final render. Commonly, implementa-
tions use the render-to-vertex buffer technique described by
the GL ARB pixel buffer object OpenGL extension to send
photons from the photon buffer back through the pipeline
during caustic map creation. Unfortunately, this approach
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# Render Photon Copy to Splat Eye

Photons Buffer Vertex Array Photons Render

2562 3.2 ms 4.8 ms 4.9 ms 8.2 ms

5122 3.7 ms 15.5 ms 10.4 ms 8.2 ms

10242 5.2 ms 56.0 ms 35.8 ms 8.1 ms

20482 10.4 ms 215.5 ms 142.9 ms 8.0 ms

40962 31.7 ms 861.5 ms 777.4 ms 8.4 ms

Table 1: Costs for the caustic mapping phases of Wyman and
Davis [2006] for the scene in Figure 7. Note that rendering
to a vertex buffer currently requires an internal copy from
the framebuffer to a buffer object.

# 16-bit FBO 32-bit FBO 16-bit FBO

Photons to 32-bit VBO to 32-bit VBO to 16-bit VBO

2562 4.8 ms 1.0 ms 0.5 ms

5122 15.5 ms 3.6 ms 1.8 ms

10242 56.0 ms 14.0 ms 6.9 ms

20482 215.5 ms 57.6 ms 27.4 ms

40962 861.5 ms 244.9 ms 120.6 ms

Table 2: Data type significantly affects copy costs. Naive use
of a standard 32-bit float vertex buffer and a space-saving
16-bit float framebuffer gives extremely poor performance.
Using identical data types on both sides of the copy allows
the GPU to avoid conversion, speeding performance.

requires a copy from framebuffer memory into a vertex
buffer. As shown in Table 1, this copy cost dominates ren-
dering time, especially as photon count increases. These
timings describe render times for the image in Figure 7.

Fortunately, careful consideration shows a number of sim-
ple ways to reduce this cost. First, data type dramatically
affects copy cost. To reduce framebuffer memory and allow
larger photon buffers, one might use a 16-bit floating point
buffer to store photon hitpoints. Using glReadPixels() to
copy photons into a floating point vertex buffer gives the re-
sults in Table 1. However, this requires the GPU to convert
from 16- to 32-bit floats. Using a consistent 16- or 32-bit
data type on both sides of the copy eliminates this conver-
sion and reduces copy time by a factor of 4 to 8 (see Table 2).

However, even these savings do not completely eliminate
copy cost. In the past this copy was necessary, as a ver-
tex shader texture lookup to find a photon’s location was,
collectively, more costly than even a naive copy. DirectX
10 class GPUs largely eliminate differences between vertex
and fragment shaders, making direct texture lookups feasi-
ble and completely eliminating the need to copy framebuffer
data to a vertex buffer.

Interestingly, by using the Shader Model 4.0 built-in vari-
ables gl VertexID or gl PrimitiveIDIn, no data need be
passed to the pipeline; even the photon’s vertex location is
superfluous, as the shader can fetch the photon position from
texture based upon the photon’s ID. Unfortunately, OpenGL
requires vertex data for each point, even if it remains unused.

Still, it seems wasteful to setup a 10242, 20482, or 40962

array of garbage to bind via glVertexPointer() simply to sat-
isfy the pipeline’s need for vertex data. Instead of using gl-
DrawArrays() or glDrawElements() to plow through such a
buffer, we create a smaller buffer of size 1024, 2048, or 4096
and use glDrawArraysInstancedEXT() to repeatedly draw
the same array of vertex data. This reduces memory over-
head and also simplifies shader computations, as we can use
built-in variables gl InstanceID and gl VertexID as s and

Figure 7: A comparison of the quality of (from left to right)
caustic maps with constant splat sizes, varying splats via a
thin-lens model, interpolating multiple resolution splats, and
our new approach proposed in Section 3.3.

t coordinates into our photon buffer. This speeds results
further, and the numbers reported in the following section
reflect all these improvements.

5 Results and Discussion

We implemented hierarchical caustic maps in OpenGL, with
our test platform running on a 2.6 GHz quad-core Intel Xeon
processor and a GeForce 8800 GTX. All timings quoted
throughout the paper reflect a display resolution of 20482,
which was resampled for an antialiased 10242 final image.

Table 3 compares the single-frame cost for a variety of
steps in the caustic mapping process using hierarchical and
non-hierarchical techniques. Figure 7 shows the frame used
for timing. These results show that our caustic map creation
costs are up to 50 times faster than previous work [Wyman
and Davis 2006], and even after factoring out implementa-
tion optimizations our approaches improve performance as
much as ninefold.

Generally we found the hierarchical gather with converg-
ing photon clustering to be fastest. Except for very high pho-
ton counts, photon convergence need be tested only at the
lowest mipmap level—the additional shader costs for test-
ing convergence are not balanced by a corresponding per-
formance improvement without a very dense photon sam-
pling. However, combining converging photons at just the
final mipmap level improves performance by 30-50% when
using more than 1 million photons.

Creation of a multi-resolution caustic map takes roughly
twice as long due to the slight variation in splat size, though
this is significantly faster than splatting arbitrary sized
splats into a single caustic map. Performance can be im-
proved by changing the threshold where points are raster-
ized into different resolution images. However, we found a
splat size threshold of 5.0 gave the best performance with-
out introducing noticeable aliasing artifacts from using lower
resolution caustic images.

Table 4 provides framerates for the same scene in Fig-
ure 7. Because the framerates were averaged over an anima-
tion while timings in Table 3 came from a single frame, the
numbers are not exactly comparable.

Figures 1, 4, and 8 show more complex scenes, with be-
tween 316k and 560k polygons and two light sources. Table 5
shows framerates for these scenes. Until at least 20482 pho-
tons are used, the pipeline is mostly geometry bound. Keep
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# Render Wyman & W&D After Hierarchical Combinelast Combineall Varying Varying Final Render Final Render

Photons Photon Davis [2006] Improving Gather Converging Converging Splats, Multi- Splats, w/ Caustic w/ Multi-Res

Buffer Gather w/ Sec 4 Gather Gather Res Map Single Map Map Caustic Map

2562 3.2 ms 4.9 ms 1.0 ms 1.3 ms 1.1 ms 1.1 ms 1.5 ms 4.8 ms 8.2 ms 8.3 ms

5122 3.7 ms 10.4 ms 1.9 ms 1.6 ms 1.5 ms 1.5 ms 2.6 ms 12.9 ms 8.2 ms 8.2 ms

10242 5.2 ms 35.8 ms 5.7 ms 3.2 ms 2.3 ms 2.6 ms 5.2 ms 31.6 ms 8.1 ms 8.3 ms

20482 10.4 ms 142.9 ms 20.8 ms 9.8 ms 5.6 ms 5.8 ms 13.3 ms 78.7 ms 8.0 ms 8.3 ms

40962 31.7 ms 777.4 ms 136.0 ms 39.4 ms 16.5 ms 15.1 ms 39.3 ms 330.1 ms 8.4 ms 8.5 ms

Table 3: Costs for various stages of the caustic mapping process for the scene in Figure 7. The gather stages represent the cost
to splat the points from the photon buffer into the caustic map, with Section 3.1 describing the hierarchical gather, Section 3.2
describing the two converging gathers, and Section 3.3 describing the varying gather. During the final render, using the caustic
image pyramid requires slightly more time than using a standard caustic map.

# W/D W/D+ Hier Comblast Comball Varying

Photons (fps) (fps) (fps) (fps) (fps) (fps)

2562 55.2 75.6 70.6 71.6 71.0 69.9

5122 32.9 69.0 66.8 68.1 67.6 62.5

10242 12.8 51.2 55.8 58.2 57.4 47.9

20482 3.6 25.5 32.8 37.9 37.4 27.7

40962 0.6 5.8 12.3 16.7 17.0 11.4

Table 4: Framerates for the techniques listed in Table 3.
Note these are averages over an animation sequence, and
thus are not equivalent to the single-frame values in Table 3.

# Photons

2562 5122 10242 20482 40962

Sphere in Room 32.4 31.8 29.5 24.4 15.5

(316k triangles)

Shark in Room 34.0 32.8 30.5 25.0 13.7

(318k triangles)

Triceratops in Room 33.6 32.4 29.5 22.3 12.3

(318k triangles)

Buddha in Room 25.4 24.8 22.9 17.4 9.9

(365k triangles)

Bunny in Room 19.4 19.2 18.2 14.9 9.3

(385k triangles)

Dragon in Room 9.9 9.9 9.6 8.9 6.3

(565k triangles)

Gargoyle in Room 7.3 7.2 7.0 6.5 4.7

(515k triangles)

Armadillo in Room 7.1 7.1 6.9 6.5 5.2

(530k triangles)

Table 5: Framerates (fps) for the scenes shown in this paper
using hierarchical caustic maps and varying photon counts.
The final rendered images were 20482.

in mind the refractor is rendered 6 times (using [Wyman
2005]) and the rest of the scene is rendered 3 times, so be-
tween 1 and 2.4 million triangles are rasterized in addition to
photon processing. The hierarchical techniques presented in
the paper reduce the number of photons processed by more
than an order of magnitude. For the dragon, even with two
lights emitting 40962 photons, fewer than 2 million points
are processed (in total) during the hierarchical traversal—
this is fewer than the 2.4 million triangles required to simply
draw the scene from the eye and the two lights.

Object size also plays a factor in rendering costs. With
previous techniques, this was not a factor since all photons
were processed without regard to their validity. The ar-
madillo and gargoyle in Figure 8 are significantly larger than

other models, so more photons interact with them and must
be processed. Since both refraction and caustic splatting
costs depend on the object’s pixel coverage, these two mod-
els run slower than the more geometrically complex dragon.

6 Conclusion and Future Work

This paper presented three hierarchical improvements to ex-
isting caustic mapping techniques and discussed a number
of implementation optimizations. This results in up to fifty-
fold speedup for caustic map creation, with up to an order
of magnitude improvement attributable to our hierarchical
work. These speedups allow scenes using a couple million
caustic photons to remain real-time, and even scenes with
more than 32 million photons still remain interactive. This
should allow developers to utilize larger photon buffers for
improving caustic quality without sacrificing too much per-
formance.

Section 3.3 introduced a new method for varying photon
splat sizes based on the local divergence of light. This virtu-
ally eliminates undersampling noise by replacing noise with
large blurry photons, yet it avoids reducing fidelity in suffi-
ciently sampled focal regions. This improves upon the work
of Wyman and Dachsbacher [2007], which still leaves noise
and can introduce blurring or halo artifacts in focal regions.

Our work is generally orthogonal to other caustic map im-
provements; for instance, the line tracing work of Krueger
et al. [2006] should directly benefit from a hierarchical pro-
cessing of photons. However, our work benefits mainly ap-
plications utilizing dense photon samplings, as a hierarchical
traversal of the photon buffer improves performance only for
photon buffers containing more than 5122 photons.

Beyond speed and noise considerations, our work retains
standard caustic mapping problems. In particular, area and
environmental light sources are not handled. Additionally,
interactive reflection and refraction are not solved problems.
Thus, reflected and refracted photons may be incorrectly
traced through the scene, causing the rendered caustics to
exhibit artifacts.

According to the timings in Table 3, the current bottle-
neck during caustic mapping is rendering the photon buffer.
Furthermore, larger photon buffers are simply infeasible due
to hardware memory limits. This suggests a need for more
intelligent photon emission to avoid a full, regularly sampled
framebuffer. Adaptive and perspective shadow maps [Fer-
nando et al. 2001; Stamminger and Drettakis 2002] propose
solutions in the context of shadow mapping, and we believe
similar approaches may prove fruitful for caustics.
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Figure 8: Results using hierarchical caustic mapping with complex refractors and multiple lights.
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