
Copyright © 2006 by the Association for Computing Machinery, Inc. 

Permission to make digital or hard copies of part or all of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for commercial advantage and that copies bear this notice and the full citation on the 

first page. Copyrights for components of this work owned by others than ACM must be 

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on 

servers, or to redistribute to lists, requires prior specific permission and/or a fee. 

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail 

permissions@acm.org. 

© 2006 ACM 1-59593-295-X/06/0003 $5.00 
I3D 2006, Redwood City, California, 14–17 March 2006. 

Interactive Image-Space Techniques for Approximating Caustics
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Figure 1: Our approach to interactive caustics builds off work for interactive reflections and refractions. The first pass renders
(a) the view from the light, (b) a depth map for shadow mapping, and (c) final photon locations into buffers. The second pass
gathers the photons and (e) renders a result from the eye’s point of view. The result significantly improves on (d) existing
interactive renderings, and compares favorably with (f) photon mapping.

Abstract

Interactive applications require simplifications to lighting,
geometry, and material properties that preclude many ef-
fects encountered in the physical world. Until recently only
the most simplistic reflections and refractions could be per-
formed interactively, but state-of-the-art research has lifted
some restrictions on such materials. This paper builds upon
this work, but examines reflection and refraction from the
light’s viewpoint to achieve interactive caustics from point
sources. Our technique emits photons from the light and
stores the results in image-space, similar to a shadow map.
We then examine various techniques for gathering these pho-
tons, comparing their advantages and disadvantages for ren-
dering caustics. These approaches run interactively on mod-
ern GPUs, work in conjunction with existing techniques for
rendering specular materials, and produce images compet-
itive with offline renderings using comparable numbers of
photons.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism

Keywords: interactive rendering, caustics, image-space
techniques, hardware

1 Introduction

Interactivity constraints in many applications limit rendered
realism to those effects that run efficiently on graphics hard-
ware. Unfortunately, efficient algorithms often must make
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significant simplifications to the underlying physical mod-
els. These simplifications typically restrict the global inter-
actions that can occur between objects, and dynamic spec-
ular interactions are frequently eliminated first.

While perfect specular interactions are easily modeled us-
ing a ray tracing paradigm, these techniques do not apply
well to the GPU pipeline. Brute-force ray tracing for main-
stream applications seems distant (either via parallel imple-
mentations [Wald et al. 2002], ray tracing accelerators [Woop
et al. 2005], or GPU ray tracing [Purcell et al. 2002]), but
techniques for applying rasterization to interactively approx-
imate specular effects are beginning to emerge (e.g., the work
of Wyman [2005a; 2005b] and Yu et al. [2005]). Building off
these techniques allows the consideration of more complex
light interactions, such as caustics.

In this paper, we present an interactive image-space tech-
nique for approximating caustics. Our technique is physi-
cally based, though we introduce numerous steps in the pro-
cess where approximation can reduce resource usage. The
limitations include: restriction to point lights, no volumetric
scattering effects, GPU numerical inaccuracies and aliasing,
and deficiencies inherited from the underlying interactive re-
flection or refraction techniques. However, since humans
miss many details of indirect effects such as shadows, color
bleeding, and caustics, the results of our technique look quite
compelling (see Figure 1).

The rest of the paper is organized as follows: Section 2 out-
lines related work on interactive reflections, refractions, and
caustics. Section 3 describes our two stage process: emit-
ting and storing photons from the light, and gathering and
rendering these photons from the eye’s point of view. Im-
plementation details and results are outlined in Section 4,
followed by discussion and conclusion.

2 Previous Work

One of the biggest challenges in interactive graphics is deal-
ing with specular effects. These are particularly challeng-
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ing as they require global knowledge of the scene. Even
in ray and path tracing global knowledge comes at a cost,
but for rasterization-based applications access to such data
is severely restricted. Until recently, only rendering reflec-
tions or refractions through a few planar surfaces remained
interactive [Diefenbach and Badler 1997]. Kay and Green-
berg [1979] allowed slightly more complex geometry, but only
under fairly severe restrictions.

More recent work by Ofek and Rappoport [1998] created
virtual reflected geometry based on curved reflectors and
Schmidt [2003] examined a similar approach for refraction.
Yu et al. [2005] developed a technique for indexing reflection
directions into a light field compressed into GPU memory.
This allows for dynamically changing reflections as the re-
flector moves within a constrained region.

Wyman [2005a] offered a new technique for rendering refrac-
tive geometry inside an infinite environment using a two-pass
image-space approach. While this method works best for
convex geometry, use on concave refractors gives generally
plausible results. An extension to this approach [Wyman
2005b] approximates refraction of nearby geometry via an
additional pass.

These methods pertain to caustic research, as bright caustic
regions occur where light focuses due to reflection or refrac-
tion. Another set of researchers have examined techniques
explicitly for interactive caustic generation. One subset fo-
cuses on rendering caustics via photon tracing. This idea
originates from backwards ray tracing [Arvo 1986], which
stored contributions from photons in textures mapped onto
scene geometry. A more flexible approach, photon map-
ping [Jensen 2001], stored photons in a three-dimensional
kd-tree that allows for fast access during rendering. Interac-
tive ray tracers [Parker et al. 1999; Wald et al. 2002] allowed
distributed approaches to caustic generation using photon
tracing methods (e.g., Günther et al. [2004] and Wyman et
al. [2004]). Purcell et al. [2003] examined GPU-accelerated
photon mapping, but concluded a uniform grid was better
than a kd-tree for GPU-based computations.

Another approach to interactive caustics stems from re-
search into beam tracing [Heckbert and Hanrahan 1984].
Watt [1990] applied backwards beam tracing to generate
caustic polygons and used these to render caustics focused
through a water surface. Nishita and Nakamae [1994] used a
similar technique but account for volumetric effects by con-
sidering the entire prism-shaped caustic volume, and Iwasaki
et al. [2002] outlined details necessary for an interactive
GPU-based implementation. Ernst et al. [Ernst et al. 2005]
improved the rendering of caustic volumes by using warped
volumes instead of prisms.

Wand and Straßer [2003] uniformly sampled reflective ob-
jects, treating each sample as a point light source, and used
commodity graphics hardware to perform a gather of the
contributions from each sample. This technique generates
caustics from complex and environmental light sources in-
teractively, but as many of the other techniques described
is limited to single-interface reflections. Additionally this
gather operation becomes quite expensive, especially when
finely sampling geometry.

Our approach utilizes a photon emission stage similar to
backwards ray tracing and uses an image-space photon
gather, inspired by the work on GPU-accelerated diffuse
interreflection [Dachsbacher and Stamminger 2005]. One
problem with any gathering approach is correctly weighting

Figure 2: Direct illumination (left) occurs when light reaches
a surface, as opposed to shadows (center) where the light
is blocked. Caustics (right) occur in regions where multiple
paths from the light, focused via specular reflection or refrac-
tion, converge.

the contributions, and we use a Gaussian filter, reported by
various researchers to work well for photon counting [Jensen
2001; Russ 2002].

Concurrently and independently of our work, Shah and
Pattanik [2005] developed a similar method for interac-
tive caustics. Their technique emits light using a vertex-
tracing approach, similar to that of Ernst et al. [2005] and
Ohbuchi [2003], gathers the results in a light-space texture,
and performs some form of filtering. They also build on
the refraction work of Wyman [2005a] and intersect back-
ground geometry similarly to the approach proposed by
Ohbuchi [2003].

3 Image-Space Caustics

The typical approach to efficiently rendering caustics utilizes
a two pass approach: emitting particles or beams from the
light and gathering their contributions as viewed from the
eye. Our method is no different, however the two passes have
been modified to leverage the efficiencies of modern graphics
accelerators.

3.1 Photon Emission

Traditional stochastic rendering techniques such as path
tracing [Kajiya 1986], Metropolis sampling [Veach and
Guibas 1997], and photon mapping [Jensen 2001], compute
random paths of light through the scene or emit photons ran-
domly from the light sources. While this eliminates aliasing
artifacts seen with more regular sampling, rendering single
rays in arbitrary directions is difficult to perform efficiently
on current graphics cards. Thus we choose to emit photons
in a regular pattern, defined by the image pixels in a ren-
dering from the light’s viewpoint.

Next we observe that caustics, like most global illumination
problems, boil down to an issue of visibility. Caustic focal
points occur where multiple paths from the light converge.
In other words, if rendering from the light, locations visi-
ble multiple times belong to caustic regions just as shadows
occur in areas not visible (see Figure 2).

This observation provides the motivation for our technique.
Using recent work on reflections and refractions, we can rel-
atively accurately render the light’s view of a scene with
complex specular geometry. Counting how many times the
light sees a particular region is equivalent to counting how
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Figure 3: In addition to the depth buffer and photon location
buffer shown in Figure 1, buffers storing (left) attenuated
photon intensity and (right) incident photon direction allow
physically accurate caustic rendering.

many photons hit that region, allowing an accurate deter-
mination of that region’s intensity. This is similar to the
concept of an illumination map [Arvo 1986], which counts
how many photons hit each texel of a diffuse object. Since
counting texel accesses is not straightforward on the GPU’s
streaming architecture, we instead chose to store the loca-
tions where photons land and perform the counting opera-
tion in a separate gather pass. This idea is similar to that
of photon mapping [Jensen 2001], which stores photons in a
relatively complex kd-tree structure.

Our photon emission stage can be summed up simply as a
render pass as seen from the light. Instead of storing colors,
we store the location of the first diffuse surface encountered
in each pixel, as shown in Figure 1c. This process is anal-
ogous to shadow mapping, except as photons may change
course via specularities, x and y values for intersections must
be stored in addition to a z value.

In order to generate physically accurate renderings, other
buffers storing the incident photon direction and attenuated
photon intensity must be rendered (as in Figure 3), though
not all applications will require this accuracy. Furthermore,
omnidirectional lights may result in caustics in many direc-
tions, so multiple renderings from the light may be neces-
sary due to field-of-view limitations. For surfaces scattering
photons multiple directions (e.g., via both reflections and
refractions), multiple rendering passes would be required.

3.2 Photon Gathering

After storing photons in a buffer, modern graphics cards
allow direct photon visualization relatively easily. For in-
stance, a render-to-vertex-array approach can utilize these
photon buffers as a vertex array of locations to directly visu-
alize photons in a second pass (see Figure 4). Unfortunately,
this approach generally leads to noisy images and coherency
issues when animating the light or specular objects, partic-
ularly when the number of photons used (i.e., light-space
image resolution) is small. The rest of this section describes
the two techniques we examined for rendering photons, im-
provements on each, and discusses various tradeoffs inherent
in the choice used to render.

Figure 4: Direct visualization of (left to right) 5122, 10242,
or 20482 photons results in noisy images, particularly no-
ticeable during animation, even for relatively dense photon
samplings. Furthermore, using fewer photons results in each
representing more energy, often causing pixels to burn out.

Opaque Sphere

Beam Bi

Refractive

~ωBi

~ωPi

Pi

Sphere

Figure 5: Light-space pixels represents photons (dots), and
can be connected into caustic polygons Pi that approximate
the filled regions. The beam Bi covering polygon Pi contains
a portion of the light’s energy proportional to the solid angle
~ωBi

it subtends. The polygon Pi on the right would originally
(without caustics) have received energy proportional to the
solid angle ~ωPi

it subtends but now receives that plus the
energy from beam Bi

3.2.1 Caustic Rendering Using Quads or Triangles

The major problem with rendering photons as simple points
is that photon energy is gathered into a single pixel instead
of being spread over some larger finite area. This problem
becomes worse when using fewer photons, as each carries a
higher energy that often burns out the color as seen from
the eye.

Our first, most straightforward approach solves this problem
by rendering caustic polygons formed by connecting photons
adjacent to each other in the light-space photon buffer. This
is similar to the techniques of Watt [1990], Nishita and Naka-
mae [1994] and Ernst et al. [2005], which trace “beams” of
light by connecting rays through adjacent vertices, except we
determine beams based on image-space adjacencies rather
than object-space ones.

To compute the intensity inside a caustic polygon Pi, we
must consider the initial energy of the beam Bi (see Figure 5)
bounded by the set of adjacent light-space pixels:

EBi
=

~ωBi

4π
EL, (1)

where ~ωBi
is the solid angle subtended by the beam, as seen

from the light, and EL is the total energy emitted by the light
source. Note that this step is important, as the pixels in our
image plane cover different solid angles. If photons could
be emitted uniformly then EBi

= 1

#photons
EL, though for

some interactive applications, such an approximation may
still prove acceptable.
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Figure 6: The Beethoven scene without caustics (left) and
with caustics (center). Note that these additional polygons
can consume substantial fill-rate. The right image shows the
depth complexity of the caustic polygons.

This beam gets distorted due to specularities before reach-
ing its final destination at the caustic polygon, defined by
adjacent points in our photon buffer. Since interactive ap-
plications built on APIs such as OpenGL and DirectX often
use arbitrary units for light intensity, the important quantity
is the ratio R of beam energy EBi

to the energy incident on
that polygon EPi in absence of the specular object:

EPi =
~ωPi

4π
EL, (2)

where ~ωPi is the solid angle Pi subtends as seen from the

light. Thus our ratio is simply R =
~ωBi

~ωPi

, the ratio of solid an-

gles. The beam solid angles ~ωBi
can easily be precomputed

for a specific resolution photon buffer, and computations for
~ωPi can be performed in a relatively complex shader. We
chose to approximate ~ωPi by projecting the polygon vertices
onto the unit sphere and computing the area of the projected
polygon, which accurately approximates the solid angle due
to their relatively small size. If the standard lighting compu-

tation L(~V , ~N, ~L) takes a viewing vector ~V , surface normal
~N , and light direction ~L then the intensity of the caustic
polygon IPi can be computed (either once per polygon or
per vertex) as:

IPi = L(~V , ~N, ~Ldirect) + R ∗ L(~V , ~N, ~Lphoton)

= L(~V , ~N, ~Ldirect) +
~ωBi

~ωPi

L(~V , ~N, ~Lphoton) (3)

≈ (1 + R) ∗ L(~V , ~N, ~Ldirect) (4)

where ~Ldirect is the direction from Pi to the light, and
~Lphoton is the direction the photons of Bi arrive at the poly-
gon. To avoid storing the incident directions, Equation 4
often provides a reasonable approximation.

The resulting polygons can easily be alpha blended into an
eye-space view of the scene rendered without caustics, shown
in Figure 6. Caustic polygons that stretch between differ-
ent surfaces can either be culled or treated the same as other
polygons, as their intensity contributions are quite small. As
in shadow volumes [Crow 1977], the fill rate consumed by
these additional polygons can significantly reduce rendering
performance. Another approach renders these caustic poly-
gons into a light space buffer, analogous to a shadow map,
that is later projected onto the environment to determine
light intensity.

Rendering into a light-space map increases performance, as
these polygons need not be rendered when the viewpoint
changes. Projecting a light-space caustic map onto the

scene, however, causes caustic aliasing based on the buffer
resolution, just as in shadow mapping.

Another optimization only renders caustic polygons where
photons encountered a specular surface. In Figure 1c, each
set of adjacent pixels in the photon buffer represent one poly-
gon, but many photons directly hit the background geometry
or environment map. In these regions no caustics exist, so
standard OpenGL lighting is accurate and much more effi-
cient.

3.2.2 Caustic Rendering Via Nearby Neighbor Gathering

The second alternative is based off counting photons rather
than drawing and blending the contributions of multiple
polygons. The motivation for this approach comes from
techniques such as illumination mapping [Arvo 1986] and
photon mapping [Jensen 2001]. Illumination mapping incre-
ments the count in a texture based on final photon loca-
tion, and photon mapping stores photons in a 3D kd-tree.
Neither the increment operation nor the kd-tree seamlessly
map to the GPU, though Purcell et al. [2003] perform non-
interactive GPU-based photon mapping using a regular grid.

We suggest avoiding both object-space texture increments
and complex 3D data structures by utilizing an image-space
photon count. This has an advantage over the polygon ren-
dering method of Section 3.2.1, as each pixel is considered
only once, potentially reducing the fill rate considerably. Us-
ing a stencil operation to confine this gather to regions with
visible photons could improve our rendering speeds further.

The rationale is simple. Dachsbacher and Stamminger [2005]
noted that points nearby in world-space tend to clump to-
gether in image-space and neighboring pixels in image-space
often prove close in world-space. Thus a nearest neighbor
search in image-space should return results similar to those
of a 3D nearest neighbor gather.

Two possibilities also exist for this gather operation, it can
be performed either in a light- or eye-space image. As when
rendering caustic polygons, the tradeoff is aliasing due to
light-space texture resolution versus speed gained by avoid-
ing the gather when only the viewpoint changes.

This image-space gather approach proceeds as follows:

1. Render photons (from Figure 1c) into a eye- or light-
space buffer.

2. Perform a pass that counts contributions of photons in
neighboring texels.

3. Render the final scene, adding lighting contributions
from step 2.

In the case of the eye-space gather, steps 2 and 3 can be
combined. Combining steps 1 and 2 using splatting should
improve performance, though we did not implement this ap-
proach.

Consider the situation shown in Figure 7. Each pixel pi in
step 2 above will contain a number of photons αj that hit the
corresponding region Api , and the final color of pi depends
on the photons arriving in Api and nearby regions.

Assuming that the object visible in pixel pi is a distance
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Ap

~Np

~ωα

~Vp

~Lp

Figure 7: Each pixel p, as seen from the viewer, has some

viewing direction ~Vp, normal ~Np, direction to the light ~Lp,
and represents a finite area Ap. This pixel subtends a solid
angle of ~ωV

p (green region) from the viewer and ~ωL
p (blue

region) from the light. In this case, a photon α emitted by
the light has been refracted so it contributes to pixel p.

from the viewer of dV
pi

, we can approximate Api by:

Api ≈

~ωV
pi

(dV
pi

)2

−
~Vpi ·

~Npi

, (5)

where ~ωV
pi

is the solid angle the pixel subtends from the

viewpoint, ~Vpi is the direction from the eye through the

pixel, and ~Npi is the normal at the visible surface. Given
this area, we can perform a similar computation to determine
the solid angle ~ωL

pi
subtended as seen from the light:

~ω
L
pi

≈

Api(−
~Lpi ·

~Npi)

(dL
pi

)2

≈

~ωV
pi

(dV
pi

)2(−~Lpi ·
~Npi)

(dL
pi

)2(−~Vpi ·
~Npi)

(6)

where dL
pi

is the distance from the light to the surface visible

in pixel pi, and ~Lpi is the incident direction of the light.

Again, since interactive applications often use arbitrary val-
ues for light intensities, the ratio of the energy Eαj carried
by photon αj to the energy Epi arriving at Api in absence of
the specular object is more important than absolute energy.
As in the polygonal case, Eαj depends on the solid angle
~ωαj subtended by the photon:

Eαj =
~ωαj

4π
EL. (7)

Similarly, the energy directly reaching Api in absence of the
focal object depends on the solid angle it subtends from the
light’s viewpoint:

Epi =
~ωL

pi

4π
EL ≈

~ωV
pi

(dV
pi

)2(−~Lpi ·
~Npi)

4π(dL
pi

)2(−~Vpi ·
~Npi)

EL (8)

The solid angles ~ωαj and ~ωV
pi

can be precomputed for specific
resolutions of the caustic and view images, respectively. The

direction from the light to the pixel ~Lpi and the distance
dL
pi

can be computed from the photon locations stored in

the photon buffer (Figure 1c), and the normal ~Npi is passed

to OpenGL during rendering. The values of ~Vpi and dV
pi

are
determined during the eye-space gather.

If the photon gather occurs in light-space instead of eye-
space, Equation 8 is unnecessary, as ~ωL

pi
can be precomputed

and used directly. In either case, the intensity computation
at each pixel Ipi proceeds similar to Equation 3:

Ipi = L(~Vpi ,
~Npi ,

~Lpi) +
X

αj∈Api

Eαj

Epi

L(~Vpi ,
~Npi ,

~Lαj ) (9)

≈ L(~Vpi ,
~Npi ,

~Lpi) + L(~Vpi ,
~Npi ,

~L
avg
αi

)
X

αj∈Api

Eαj

Epi

(10)

≈

0

@1 +
X

αj∈Api

Eαj

Epi

1

A L(~Vpi ,
~Npi ,

~Lpi), (11)

where L(~V , ~N, ~L) again represents the standard lighting

computation given a viewing direction ~V , surface normal
~N , and direction to the light ~L. The photon αj is incident

upon the region Api from direction ~Lαj , which can be stored
when shooting photons (as in Figure 3b). To avoid storing
the incident directions for each photon, the approximations
in Equations 10 and 11 can be used. Equation 10 uses an av-

erage incident photon direction ~Lavg
αi

for each pixel, whereas
Equation 11 approximates the direction without any addi-
tional storage requirements. We use Equation 10.

As described so far, Equation 9 computes the intensity for
photons hitting the surface inside a single pixel, so it leads
to the results shown in Figure 4. Ideally, we should consider
photons hitting nearby pixels as well. To handle photons
in surrounding regions, our gather pass (step 2 from the
previous page) proceeds as follows:

• For each pixel:

1. Search the 7 × 7 pixel neighborhood.

2. Directly compute the area Ap covered by nearby
pixels (using the world-space locations that map
to neighboring pixels), instead of via Equation 5.

3. Perform the lighting operation L(~Vpi ,
~Npi ,

~Lavg
αi

)
from Equation 10 once for each neighbor.

4. Weight the neighbor contributions using a Gaus-
sian (reported by Jensen [2001] and others [Russ
2002] to work well for photon counting) and add
in direct lighting.

5. To reduce noise, discard contributions where fewer
than three photons hit the neighborhood.

3.2.3 Filtering for Noise Reduction and Improved Co-
herency

A number of problems exist in both the techniques above.
First, even with relatively dense 20482 light-space sam-
plings, noise and other artifacts can still appear. While
Jensen [2001] can reduce noise by discarding photon gathers
averaging fewer than nine photons, discarding similar gath-
ers with less dense sampling eliminates important parts of
the caustic. Furthermore, Moiré artifacts can arise due to
our regular sampling.

Both approaches lead to problems during animation. Nei-
ther approach enforces frame-to-frame coherency, which
gives rise to typical popping artifacts. To maintain co-
herency in our gathers, we store photon counts from the
previous three frames and utilize them in conjunction with
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Figure 8: Effects of temporally filtering caustics. (Left) Un-
filtered caustics from the Beethoven bust with 2562, 5122, and
10242 photons. (Right) Filtered caustics using 2562, 5122,
and 10242 photons per frame.

photons from the current frame (see Figure 8). The addi-
tional data allows us to filter additional noise without elim-
inating valid caustic regions, helps reduce regular sampling
artifacts, and maintains coherency across frames. Obviously
fast moving objects and lights can cause ghosting artifacts,
though an adaptive filter length could be used in such cir-
cumstances.

Note that we only store photon data (e.g., hit locations,
incident directions, attenuation) for the current frame. We
assume reusing this data for photons from all four frames
provides a reasonable approximation; again, quickly moving
lights and geometry break this assumption, probably calling
for an adaptive-length filter. Note that we did not implement
temporal filtering for the caustic polygons of Section 3.2.2,
but it should provide similar benefits.

4 Results and Discussion

We implemented these techniques in OpenGL on an nVidia
GeForce 7800 GTX with 256 MB memory. Our shaders were
compiled using Cg’s vp40 and fp40 profiles. For refraction,
we build off the work of Wyman [2005a; 2005b] to determine
where photons hit the background geometry. For reflection,
we reflect about the surface normal and perform a ray-plane
intersection with a single background plane. Again note that
the environment maps do not contribute caustics in our re-
sults; caustics are generated from a single point light source
in the scene.

The timings cited in Table 1 come from a 3.2 GHz Pentium
4 Xeon with 2 GB of memory. We optimized for display
of intermediate results rather than speed, resulting in ad-
ditional rendering passes of background geometry. We use
EXT framebuffer object with multiple 16-bit floating point
buffers storing photon location, incident directions, and fi-
nal scene color (to allow additive alpha blending of small
photon contributions). An optimized implementation could
eliminate many of our intermediate buffers and reduce the
bit-precision on others.

Figures 1, 9, 10, 11, and 12 show results of our technique
on a variety of geometry, both with complex and simple
backgrounds. Figure 9 shows examples of reflective caustics,
and Figure 10 shows the caustic cast by a simple, unsub-
divided octahedron using both a metal and glass material.
Figure 11 compares our results to photon-mapping, and Fig-

Figure 9: Reflective caustics from a metal ring and dragon.

Figure 10: An octahedron shown both (left) reflective and
(center) refractive. Rotating around (right) shows the re-
fractive caustic more clearly.

ure 12 shows complex background geometry. Our results
differ from photon mapping mainly because we use a static
search radius, causing blurriness in areas of high photon den-
sity and noise in low density regions. Additionally, our use
of per-pixel (instead of per-photon) incident directions can
cause final intensity values to vary slightly.

Just as in stochastic renderers, the number of photons re-
quired increases as geometry becomes more complex and the
caustic more intricate. In the case or reflective objects where
light diverges, instead of converging into a caustic, our tech-
nique requires significant numbers of samples to eliminate
artifacts. In the ring video, for instance, Moiré patterns are
evident in the reflections from the ring exterior even with
10242 photons and temporal filtering.

A number of features and issues become apparent when an-
alyzing the timings. While our techniques are independent
of scene complexity, the reflection and refraction techniques
depend on model size, particularly when using complex back-
ground geometry. Using 20482 photons, however, all scenes
run at roughly the same speed. While we render the points
(and quads) from the eye’s viewpoint each frame, the pho-
ton buffer does not need rerendering under static lighting.
This render-to-vertex-array step appears quite slow, so ex-
amining other approaches to access photon data (such as
vertex shader texture accesses) might significantly improve
performance.

Additionally, we observe a large drop in performance of com-
plex scenes as we move from 10242 to 20482 even when
simply visualizing photons as points. This suggests that
texture memory swapping occurs between rendering steps
at high sampling rates, so optimizing texture usage could
significantly improve performance. Another anomaly oc-
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# Static Lighting Dynamic Lighting

Scene Photons Points Quads Gathereye Gatherlight Points Quads Gathereye Gatherlight

Ball & Dragon 5122 73.2 30.6 38.4 41.8 27.1 1.6 19.2 17.0

(251,000 triangles) 10242 40.2 10.3 27.5 41.5 10.5 0.4 11.4 7.0

20482 3.9 n/a 13.1 41.3 2.7 n/a 4.4 2.5

Beethoven 5122 123.1 29.7 47.7 53.5 35.8 1.5 30.9 17.5

(5000 triangles) 10242 52.8 9.7 32.7 52.8 12.1 0.4 14.3 8.1

20482 17.9 n/a 14.5 52.5 2.7 n/a 4.7 2.6

Metal Ring 5122 151.2 39.6 52.8 59.3 40.3 1.5 34.7 18.9

(6300 triangles) 10242 57.6 11.7 35.4 59.0 12.5 0.4 16.0 8.4

20482 18.8 n/a 15.2 58.3 2.8 n/a 5.0 2.6

Metal Dragon 5122 98.3 17.2 43.9 48.5 32.1 1.5 26.6 16.1

(250,000 triangles) 10242 46.0 9.0 31.0 48.4 11.3 0.4 14.2 7.8

20482 4.4 n/a 14.2 48.0 2.8 n/a 4.9 2.7

Octahedron 5122 159.1 38.1 53.9 61.1 38.9 1.5 33.7 18.8

(10 triangles) 10242 58.4 11.4 35.1 60.8 12.4 0.4 15.3 8.3

20482 18.1 n/a 14.7 60.5 2.7 n/a 4.8 2.6

Two Dragons 5122 41.4 12.3 27.5 29.4 14.5 1.4 13.3 10.1

(500,000 triangles) 10242 28.6 5.5 21.7 29.3 7.7 0.4 8.1 5.6

20482 4.3 n/a 11.7 29.2 2.3 n/a 3.4 2.2

Table 1: A sampling of timings for scenes used in the paper and accompanying video. Values are frames per second using a
5122 image resolution, with the light emitting either 5122, 10242, or 20482 photons in a 90◦ field-of-view. Caustic rendering
was performed by rendering points or quads each frame, doing an eye-space nearest-neighbor gather each frame, or gathering
in light-space whenever the lighting changed. Our implementation was unable to perform caustic polygon rendering at 20482.

curs using higher photon counts, where the eye-space gather
runs quicker than a naive photon visualization. This occurs
because we do not compute lighting contributions of each
photon when gathering, but rather perform a single lighting
computation for each pixel in the neighborhood.

Based on the timings in Table 1, it is obvious that for static
lighting a single light-space gather as a projective texture
gives the best performance. However, if aliasing and interpo-
lation between texels is problematic, an eye-space gather still
performs reasonably in static lighting environments. In dy-
namic lighting environments the eye-space gather performs
better than the light-space gather due to the expense of an
added light-space pass and memory buffer.

5 Conclusions and Future Work

This paper presented an adaption of the traditional two-
pass approach for rendering caustics to run interactively on
current graphics accelerators. Our technique is physically
based, though many steps in the process can be approxi-
mated to reduce the required resources. Photon emission
is simulated by storing the locations visible when render-
ing from the light’s viewpoint. Photon gathering can be
performed directly by drawing caustic polygons or by gath-
ering photons using an image-space nearest neighbor search.
This second option can occur in either eye- or light-space.
We also showed that Gaussian filtering over the image-space
neighborhood and temporal filtering over recent frames can
significantly reduce noise and increase coherency.

An advantage of our technique over vertex-tracing tech-
niques [Ernst et al. 2005; Shah and Pattanaik 2005] is that
our models need not be finely tessellated to get high-quality
caustics and our technique is relatively independent of ob-
ject complexity. However since we render photons in a rect-
angular buffer, not all of them intersect the specular sur-
face, so we waste some computations. Unlike Wand and
Straßer [2003], we cannot render caustics from environment
maps, but we seamlessly integrate more complex reflection

and refraction models without adding the additional passes
required by their dense object sampling.

Our interactive technique is limited to point light sources,
though it could help accelerate photon emission from more
complex sources. Additionally, the current approach does
not consider volumetric scattering effects. Divergent “caus-
tics,” such as those from a metal ball, also prove problem-
atic for our image-space gathering techniques as our neigh-
borhoods do not dynamically expand to examine enough
photons. Finally, as we build on interactive techniques for
rendering reflections and refractions, our technique inherits
their limitations.

Some interesting areas for future work include applying
shadow mapping variants (e.g., adaptive shadow maps [Fer-
nando et al. 2001] and perspective shadow maps [Stam-
minger and Drettakis 2002]) to focus computation on spec-
ular geometry, filtering techniques to further reduce noise
and improve coherency, creating efficient data structures to
hold photon data (e.g., Ma and McCool [2002]), and opti-
mizing the pipeline to avoid vertex and fragment processing
on uninteresting photons.
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Figure 1: Our approach to interactive caustics builds off work
for interactive reflections and refractions. The first pass ren-
ders (a) the view from the light, (b) a depth map for shadow
mapping, and (c) final photon locations into buffers. The
second pass gathers the photons and (e) renders a result from
the eye’s point of view. The result significantly improves on
(d) existing interactive renderings, and compares favorably
with (f) photon mapping.

Figure 9: Reflective caustics from a metal ring and dragon.

Figure 10: An octahedron shown both (left) reflective and
(center) refractive. Rotating around (right) shows the re-
fractive caustic more clearly.

Figure 11: Our results are on the left, with photon mapped
comparisons on the right. The Beethoven bust uses 5122 pho-
tons and a light-space gather, the Buddha uses 10242 photons
and a light-space gather, and the Dragon uses 20482 photons
and a eye-space gather. In these cases, roughly 1

4
to 1
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of

the photons hit the refractor. For all three photon maps 106

photons intersect the refracting geometry.

Figure 12: One dragon focuses light onto another dragon.
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