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Abstract

Order independent transparency (OIT) proves challenging for modern rasterization-based renderers. Rendering without trans-
parency can limit the quality of visual effects, so researchers have proposed various algorithms enabling and approximating
OIT. Unfortunately, this work generally has restrictions limiting its applicability.

To identify directions for improvement, we performed an in-depth categorization of existing transparency techniques and placed
them on a multi-dimensional continuum. This categorization shows how prior published techniques relate to each other and
highlights unexposed parts of the continuum where further research may prove beneficial. We also describe two new OIT
algorithms that occupy previously unexplored regions of this continuum.

These novel algorithms include stochastic layered alpha blending (SLAB), which provides a parameter to explicitly transi-
tion along the continuum between stochastic transparency and k-buffers, and multi-layered coverage blending (MLCB), which
explicitly decorrelates visibility and opacity in multi-layered alpha blending.

1. Introduction

Transparency involves partial occlusion of one surface by another,
leading to a final pixel color combining contributions from two or
more surfaces. The opacity of fragment i is often represented by an
alpha value αi [Gla15], and its transparency is 1−αi. Porter and
Duff [PD84] introduced a standard set of compositing operators
that allow various combinations of transparent fragments. Com-
monly, Porter and Duff’s over operator is used:

cresult = α0c0 +(1−α0)α1c1. (1)

But most compositing operators require order-dependent process-
ing in a consistent order, usually back-to-front, to achieve the de-
sired result. Typically, renderers either sort geometry in advance
(e.g., [GHLM05]) and render using the painter’s algorithm or sort
on a per-pixel basis using an A-buffer [Car84].

Both lack appeal for interactive applications. The painter’s al-
gorithm fails with complex models and requires an expensive per-
frame geometry sort prior to rendering. A-buffers store lists of frag-
ments affecting each pixel, consuming a significant, variable, and
unbound amount of memory and requiring per-pixel sorts.

These issues have spurred research on order-independent trans-
parency (OIT) techniques with deterministic memory consumption
and computational costs. Order-independent algorithms consume
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arbitrarily-ordered primitives yet give identical results for all or-
derings. While designed for rasterizers, OIT algorithms also apply
to ray tracing when acceleration structures, like bounding volume
hierarchies, do not guarantee ordered ray intersections.

But current OIT techniques still have undesirable properties
(see [And15]). Developers would prefer they better fit in existing
pipelines and easily coupled with other algorithms, e.g., for an-
tialiasing, depth of field, volumetric media, and deferred shading.
Existing techniques often require separating opaque and transpar-
ent geometry into separate passes and can require (partial) sorting
of transparent geometry. Essentially, transparency must be handled
as a special case rather than just adding another triangle to render.

While exploring potential new approaches for order-independent
transparency to address these issues, we revisited the literature and
realized prior techniques have much more in common than usually
recognized. During categorization, a number of holes in the algo-
rithmic continuum became obvious. This paper describes our cat-
egorization, outlines some non-obvious ways prior techniques are
related, and presents two new OIT algorithms with different trade-
offs than prior work. This paper’s explicit contributions include:

• outlining a multi-dimensional space of order independent trans-
parency techniques,

• exploring new regions of this space, introducing two novel order-
independent transparency algorithms,

• introducing stochastic layered alpha blending (SLAB), which
provides a parameter that continuously transitions from stochas-
tic transparency [ESSL10] to hybrid transparency [MCTB13],
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• and introducing multi-layered coverage blending (MLCB),
which lies between multi-layered alpha blending [SV14] and
stochastic transparency [ESSL10] on our continuum.

Note we do not claim to provide best practices for OIT; devel-
opers are generally unhappy with all existing algorithms, and we
aim improve understanding of the space hoping to provide insights
helpful for designing new approaches.

On applicability of our new algorithms, SLAB’s continuous tran-
sition from hybid to stochastic transparency could empower faster
predictive renderers that use biased k-buffering methods for speed
then dial back to consistent and unbiased results for final renders.
MLCB potentially provides additional insight into combining an-
tialiasing and transparency in a single algorithm.

2. A Continuum for Order-Independent Transparency

Given that GPU-accelerated A-buffers (e.g, [YHGT10]) and A-
buffer variants (e.g. [MP01, Wit01]) have unbound per-pixel mem-
ory consumption, the first question for a new OIT algorithm is
how to restrict memory usage to a deterministic amount. There are
three popular approaches: limiting the number of fragments stored
per pixel (e.g., k-buffers [BCL∗07]), fitting fragments to per-pixel
transmission functions (e.g., deep shadow maps [LV00]), and trad-
ing storage for more rendering passes (e.g., depth peeling [Eve01]).
Since unknown numbers of rendering passes and unbounded mem-
ory are equally unappealing, few renderers perform full depth peel-
ing except as an incremental implementation of A-buffering.

Given limited storage, we need to somehow incorporate an in-
coming fragment into an existing pixel representation. This inser-
tion heuristic varies between OIT techniques. Multi-layered depth
peeling approaches [LHLW09, MB07] conditionally insert a frag-
ment if it is one of the closest k fragments yet seen. Z3 [JC99] and
k-buffer variants (e.g. [BCL∗07, SML11]) always account for each
fragment, but merge less important fragments together to maintain
a fixed memory footprint. Stochastic transparency [ESSL10] proba-
bilistically inserts fragments into its stochastic pixel representation.

For algorithms that merge fragments, we need an appropriate
merging heuristic. Possibilities include merging the furthest two
fragments [JC99,SV14], identifying a combination with the small-
est error [SML11], and fitting functional representations of the
transmission [JB10, LV00, MB13]. To combine fragments, vari-
ous operators can be used, including the standard over opera-
tor and approximate order-independent operators, like a weighted
sum [Mes07] or weighted average [BM08].

Algorithms that discard fragments need to consider a similar
question, whether to normalize contributions to account for dis-
carded fragments. In stochastic transparency [ESSL10], adding a
depth and alpha normalization reduces variance. Typically normal-
ization terms use order-independent operators like weighted sum or
weighted average to account for discarded fragments. Of the papers
we reviewed, only stochastic transparency clearly discusses such
a “normalization” or “correction factor.” However, hybrid trans-
parency [MCTB13] and McGuire et al.’s phenomenological mod-
els [MB13, MM16] perform mathematically equivalent operations.

A final consideration is if compositing uses a continuous alpha

Symbol Meaning
fi Fragment i in the current pixel
zi Fragment i’s depth
ci Fragment i’s color (not pre-multiplied with alpha)
αi Fragment i’s alpha
mi Fragment i’s coverage mask
j Indices for sorted fragments, i.e., z j−1 < z j < z j+1
n # of fragments in a pixel, i.e., i, j ∈ [0 . . .n−1]
b # of bits in a coverage mask
||mi||1 `1-norm, i.e., # of bits set in a mask (equiv to bi)
bi # of bits set in a mask (i.e., bitCount(mi) or ||mi||1 )
bi # of bits not set in a mask (i.e., b−bi)
| Bitwise binary OR
& Bitwise binary AND
∼ Bitwise binary negation∨t

s=0 mi Bitwise OR of a sequence: m0 | m1 | . . . | mt

bxc, dxe Floor and ceiling of x

Table 2: A summary of symbols and mathematical notation.

or discrete coverage mask to represent transparency. Usually, the
decision between alpha or coverage defaults to alpha composit-
ing. But screen-door transparency [FGH∗85] via alpha-to-coverage
[MGvW98] and stochastic transparency [ESSL10] use coverage
masks, which better integrate with multisampling to represent
transparency from partial occlusion (instead of translucency).

To summarize, current OIT techniques vary along these axes:

• how they restrict memory usage per-pixel,
• the insertion heuristic selecting fragments that affect pixel color,
• the merge heuristic controlling which fragments to combine if

limited resources are oversubscribed,
• how to normalize contributions if discarding fragments,
• and whether to use alpha or coverage to represent transparency.

2.1. Derived Properties of OIT Techniques

While not explicitly chosen by developers, the parameters de-
scribed above affect if an algorithm has strict order independence,
is unbiased, or consistently converges as the number of layers and
samples increases.

Algorithms that merge fragments reintroduce weak order de-
pendence if their merge uses order-dependent operators. Some re-
searchers define weak order dependence to mean that algorithms
provide stable results if geometry order remains consistent between
frames. This often suffices in games, rather than requiring strict or-
der independence.

Todays only consistent and unbiased algorithms with strict or-
der independence are simple variants of stochastic transparency
[ESSL10]. Though, unlike in predictive rendering, many interac-
tive applications need not produce unbiased or even consistent re-
sults. All modern algorithms, except empirical and phenomenolog-
ical models, converge to A-buffering if given infinite resources.

3. Categorizing Prior OIT Work

To understand the space of real-time OIT approximations, we cate-
gorize existing techniques according to which choices they make on

c© The Eurographics Association 2016.



C. Wyman / Exploring and Expanding the Continuum of OIT Algorithms

Memory Insertion Use Alpha
Algorithm Limit Heuristic Merge Heuristic Normalize? or Coverage?
A-buffer [Car84] none always no merging no either†

Alpha Testing 1 layer if α > thresh discard furthest no alpha
Alpha Compositing [PD84] 1 layer always over operator no alpha
Screen-Door Transparency [FGH∗85] k z-samples always z-test, discard occluded no coverage
Z3 [JC99] k layers always merge w/closest depths no alpha
Deep Shadow Maps [LV00] k line segments always merge w/smallest error no alpha
Depth Peeling [Eve01] 1 layer if closest discard furthest no either†

Opacity Shadow Maps [KN01] k bins always α-weighted sum no alpha
Density Clustering [MKBVR04] k bins always k-means clustering no alpha
k-Buffers [BCL∗07] k layers always merge closest to camera no alpha
Sort-Independent Alpha Blending [Mes07] 1 layer always weighted sum no alpha
Deep Opacity Maps [YK08] k bins always α-weighted sum no alpha
Multi-Layer Depth Peeling [LHLW09] k layers if in k closest discard furthest no either†

Occupancy Maps [SA09] k bins always discard if bin occupied renormalize alpha alpha
Stochastic Transparency [ESSL10] k samples stochastic z-test, discard occluded α-weighted average coverage
Fourier Opacity Maps [JB10] k Fourier coefs always sum in Fourier domain no alpha
Adaptive Volumetric Shadow Maps [SVLL10] k layers always merge w/smallest error no alpha
Transmittance Function Maps [DGMF11] k DCT coefs always sum in DCT basis no alpha
Adaptive Transparency [SML11] k layers always merge w/smallest error no alpha
Hybrid Transparency [MCTB13] k layers always discard furthest α-weighted average alpha
Weighted Blended OIT [MB13] empirical func never discard all α-weighted average alpha
Multi-Layer Alpha Blending [SV14] k layers always merge furthest no alpha
Phenomenological OIT [MM16] empirical func never discard all α-weighted average alpha
(NEW) Stochastic Layered Alpha Blending k layers stochastic discard furthest α-weighted average either‡

(NEW) Multi-Layer Coverage Blending k layers always merge furthest no coverage
† Data structure does not rely on storing opacity, so developers can use either. ‡ Algorithm has different variants that either use alpha or coverage.

Table 1: Categorizing transparency algorithms based on their choices along the axes of our continuum, as described in Section 2.

the axes described in Section 2. We summarize this categorization
in Table 1, with further details provided below. Table 2 highlights
the notation we use throughout the rest of the paper.

3.1. Depth-Peeling Approaches

Depth-peeling [Mam89] is essentially multi-pass z-buffering. It re-
stricts memory by storing a single fragment per pixel. In pass p,
fragment j is conditionally inserted if and only if p = j. No merg-
ing of fragments occurs, and no normalization occurs to account for
discarded fragments. Multi-layer peeling techniques [MB07] work
identically, except they peel k layers simultaneously, so for pass p
conditional insertion occurs if k · p ≤ j < k · (p+ 1). As k→∞
(or the number of passes increases), these converge to A-buffering.
Since transparency has no influence while peeling, either alpha or
discrete coverage masks can represent opacity.

3.2. k-Buffer Approaches

k-buffers [BCL∗07] act like multi-layer peeling techniques, stor-
ing only k layers, but accumulate these layers in a single pass. All
incoming fragments are inserted but once k fragments have been
added, different algorithms vary in their merge criteria.

Bavoil et al. [BCL∗07] merge the closest two fragments, assum-
ing geometry is rasterized in approximately front-to-back order.
Salvi et al. [SVLL10,SML11] merge the two fragments that, when
combined, introduce the smallest error in the pixel’s visibility func-
tion. Jouppi and Chang [JC99] attempt to merge fragments nearby

in depth, assuming they belong to a continuous surface. Salvi and
Vaidyanathan [SV14] merge the two furthest fragments using an
over operator.

To our knowledge, all k-buffer techniques represent transparency
via an alpha term, converge as k → ∞, and are biased in var-
ious ways. Except the few algorithms that merge using order-
independent operators, like the weighted average, k-buffers are not
strictly order independent.

3.3. Methods Approximating the Transmittance Function

k-buffers approximate the transmission along a pixel using a dis-
crete approximation to its transmittance function (sometimes called
its visibility function). Salvi et al. [SML11] explicitly try to mini-
mize the error of their approximation, but a separate class of work
explores alternate transmission function representations, mostly in
the context of casting shadows from transparent occluders.

Deep shadow maps [LV00] approximate the transmittance func-
tion for shadows using a piecewise linear sampling, with vertices
generated at geometric boundaries and by regular piecewise sam-
pling of volumetric media. Jansen and Bavoil [JB10] project the
function into the frequency domain, Delalandre et al. [DGMF11]
project onto a discrete cosine basis, and Gautron et al. [GDML13]
add bounds to the projected bases to limit ringing in regions with
no transparent media. With simplifications designed to accelerate
rendering shadows in hair, Kim and Neumann [KN01] bin occlud-
ers into a small number of layers, Yuksel and Keyser [YK08] clus-
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ter hair into bins with bounds extracted from geometric depth, and
Mertens et al. [MKBVR04] use k-means clustering. Sintorn and
Assarsson [SA09] use a bitmask to locate occlusion events along
the transmission function.

Since they were designed for shadowing, rather than OIT, these
techniques have slightly different characteristics. However, they
all store a finite number of layers (or coefficients), merge layers
with heuristics described above, and use alpha rather than cover-
age. Moreover, Sintorn and Assarsson [SA09] implicitly discard
fragments that collide in their bitmask representation of the trans-
mittance function, so they renormalize their final contributions.

Beyond discretely sampling via k-buffers, real time OIT tech-
niques have largely ignored other representations of the per-
pixel transmission function. The only exceptions are McGuire et
al.’s [MB13,MM16] phenomenological models, which impose em-
pirically determined transmittance functions for all pixels rather
than deriving or approximating the function from scene geometry.

Approximate samplings of transmittance functions all converge
as k→∞, are biased, and maintain strict order independence when
using order-independent merges and normalization.

3.4. Stochastic Visibility Sampling

Rather than using deterministic sampling, like k-buffering, an al-
ternative is to integrate transmittance via Monte Carlo sampling.
Stochastic transparency [ESSL10] probabilistically renders frag-
ments into the z-buffer based on surface opacity; a surface with
opacity α emits an average of α ·s random samples into an s-sample
framebuffer. This introduces noise, but is unbiased and converges
with increasing sample count. Stratified sampling [LK11] improves
the convergence rate, but remains noisy even with 64 samples.

Enderton et al. [ESSL11] observe that, just like the methods in
Section 3.3, the stochastic samples can act as an oracle in a second
geometry pass, reducing noise in exchange for bias. This acts as a
normalization pass.

In the context of our axes from Section 2, stochastic transparency
is layered, i.e., with s stochastic samples. Pixels store at most s frag-
ments. Insertion occurs probabilistically based on α, and fragments
are never merged, only discarded. Color can be renormalized to im-
prove quality in exchange for bias, and transparency is stored as a
(stochastic) coverage mask rather than a continuous alpha.

3.5. Bridging k-Buffers, Visibility Functions, and Stochasm

In Section 3, we largely kept the traditional rendering labels applied
to these techniques. However, various algorithms fit into multiple
categories, blurring the traditional labels.

We suggest depth-peeling and k-buffering techniques form a sin-
gle category. Depth peeling is simply k-buffering that discards ex-
cess fragments, rather than merging them.

We also view stochastic transparency quite similarly to k-
buffering. They both store a discrete number of samples per pixel
(see Figure 1). Both techniques can be renormalized; in fact, we
found the processing of hybrid transparency’s "tail" (fragments af-
ter the kth, see [MCTB13]) to be a renormalization equivalent to

1.0       0.5        0.5        1.0

0.5       1.0        0.5        0.5

1.0       0.5        1.0        1.0

0.5       1.0        1.0        0.5

0.7       0.5        0.5        0.7

0.5       0.7        0.5        0.5

1.0       0.5        0.7        1.0

0.5       1.0        0.7        0.5

0.7       0.5        0.5        0.3

0.5       0.3        0.5        0.5

0.3       0.3        0.7        0.3

0.5       0.3        0.7        0.3

0.7       0.5        0.5        0.3

0.5       0.3        0.5        0.5

0.3       0.3        0.7        0.3

0.5       0.3        0.7        0.3

Figure 1: Stochastic transparency renders to a multi-sample z-
buffer, shown as a 4×4 sample grid for illustration. (Left) The pixel
is first covered by a red fragment with z and α of 0.5; it randomly
gets written to 8 of 16 sub-pixel samples. (Left center) A blue frag-
ment with z = 0.7 and α = 0.5 is rendered next; it gets written to
8 random subsamples, but the red fragment occludes a few. (Right
center) Next is a green fragment with z = 0.3 and α = 0.5, writ-
ing 8 random samples. (Right) A yellow fragment with z = 0.9 and
α = 0.5 has no effect, being fully occluded. In theory, a pixel stores
up to 16 fragments per pixel, but in our example it can only store 3.

Enderton et al.’s [ESSL11] depth and alpha correction. The key dif-
ference is s-sample stochastic transparency probabilistically inserts
fragments into a k-buffer, with k = s; standard k-buffer techniques
insert with probability 1.

Screen door transparency with alpha-to-coverage can also be
seen bridging this gap. It can be viewed as stochastic transparency
using fixed, instead of random, coverage masks for each α value.
Alternatively, it can be viewed as a k-buffer with k = 1, using z-
buffering to merge incoming fragments.

Our continuum from Section 2 has axes for merge heuristics
and normalization. Enderton et al. [ESSL10] and Maule et al.
[MCTB13] consider all discarded geometry as part of normaliza-
tion; a k-buffer with normalization can be viewed as a k+1 buffer
using an order-independent merge heuristic to combine “discarded”
fragments into a new k+1st layer. In this context, McGuire et
al.’s [MB13, MM16] phenomenological models are k-buffers (with
k = 0) that merge into the k+1st layer via weighted sums.

All techniques we cite build some model of the transmittance
function. Stochastic transparency builds this stochastically, adap-
tive transparency tries to minimize error, Fourier opacity mapping
projects onto a suitable set of basis functions, phenomenological
models derive a transmittance function empirically, and k-buffers
capture or merge into a piecewise constant representation. This
transmittance function can then be used as an oracle to generate
color in a second geometry pass or directly visualized as a sequence
of transparent surfaces.

3.6. Holes in the OIT Continuum

Looking at our continuum tabulated in Table 1, one poorly explored
area jumps out—virtually all prior techniques uses alpha to rep-
resent opacity. The only exceptions are screen-door transparency,
which has such poor quality that few use it for rendering complex
transparent interactions, and stochastic transparency, which is high
quality but noisy and somewhat expensive. This leaves a wide mid-
dle ground for alternative coverage-based transparency techniques.
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Figure 2: Stochastic layered alpha blending (SLAB) decouples
storage of depth and coverage samples. Here we show the same se-
quence of fragments and random coverage samples as in Figure 1,
but explicitly store them in a layered representation. Since we no
longer store one depth value per subpixel sample, this can reduce
memory consumption. If we used k = 2, only the top two layers in
each stack would be retained; the rest would be discarded.

4. Stochastic Layered Alpha Blending

We describe a new algorithm using coverage masks, stochastic lay-
ered alpha blending (SLAB), that connects stochastic transparency
and k-buffering. In fact, it has an explicit parameter that, by vary-
ing the value, gives results identical to both stochastic transparency
and a k-buffer variant (hybrid transparency [MCTB13]). We present
two different variants of SLAB that expose this parameter, the num-
ber of visibility bits b per layer, in different ways. The simple ap-
proach explicitly stores a b-bit visibility mask per layer, and our
more complex approach stores a single alpha value per layer and
computes a combinatoric insertion probability based on b virtual
visibility bits.

Our stochastic approach has other benefits. It better stratifies
samples along depth in stochastic transparency. This reduces noise,
particularly in the presence of nearly opaque surfaces. Additionally,
it decouples the size of the stochastic coverage mask b from the
number of layers k, allowing an increase in b without significantly
bloating memory consumption and bandwidth. However, this intro-
duces bias in exchange.

4.1. Overview

Stochastic layered alpha blending explicitly extracts the layers in
stochastic transparency. Rather than implicitly storing up to s frag-
ments per pixel using s-sample stochastic transparency (as in Fig-
ure 1), SLAB explicitly allocates s layers (as in k-buffering) with
each layer storing a fragment’s depth and coverage (see Figure 2).

When encountering a new fragment, we stochastically insert it
into our layer list based on a random coverage mask. If we have
too many layers, we simply discard the furthest layer. Using k = s
we obtain the exact same results as stochastic transparency, mod-
ulo any subpixel geometric interpenetration that our representation
(with a single z per fragment) cannot handle. A depth plus a ran-
dom coverage mask per layer is the data structure for our simple,
coverage mask implementation of SLAB.

We observed that stochastic transparency only uses a coverage
mask to probabilistically insert fragments into the z-buffer; it con-
verts this mask back to continuous alpha when accumulating color.
By decoupling depth and coverage, our stochastic layered approach

need not maintain an explicit coverage mask if we instead provide
a metric controlling stochastic k-buffer insertion.

4.2. Insertion Probability

When encountering fragment fi, we attempt to insert it into our
layered structure and find j fragments in front of fi. We find the
total occlusion from these surfaces, moccl , by bitwise ORing their
coverage masks:

moccl =
j−1∨
t=0

mt . (2)

Insertion to our subpixel structure occurs if (moccl | mi) 6= moccl
when using explicit coverage masks.

Since the location of coverage bits in mi are randomly selected,
we instead derive a combinatoric probability function Pb(boccl ,bi)
that depends only on the number of random coverage bits in moccl
and mi, not their location. This allows use of a single random num-
ber to stochastically insert our fragment without computing a new
random coverage mask per fragment.

4.2.1. Random Occlusion Probability Function

Given fi with a random b-bit mask mi containing bi set bits that is
potentially occluded by geometry with aggregate mask moccl with
boccl set bits, we want to analytically compute the probability of
insertion Pb(boccl ,bi).

For a naive, unstratified random sampling our mask mi depends
on the surface transparency αi. Each bit in mi is turned on with
probability αi. Fragment fi is occluded if none of the boccl unset
bits in moccl are set in mi. This occurs with probability (1−αi)

boccl .
In a world of discretized visibility, αi = bi/b, so our probability of
insertion (i.e., of our new fragment’s visibility) is:

Pb(boccl ,bi) = 1−
(

1− bi

b

)boccl

= 1−
(
bi

b

)boccl

(3)

4.2.2. Stratified Occlusion Probability Function

With a stratified random sampling, the probabilities of two bits be-
ing set is not independent. Instead, a stratified b-bit coverage mask
of a surface with αi with have either bαibc or dαibe bits set.

A mask mi will be occluded by a mask moccl if all bi bits are oc-
cluded by one of the boccl bits. The first bit will be occluded with
probability boccl/b. Given that bit is occluded, another will be oc-
cluded with probability (boccl−1)/(b−1). Given those occlusions,
a third bit will be occluded with probability (boccl−2)/(b−2), etc.
This gives us a stratified probability of fragment f being visible:

Pb(boccl ,bi) =

{
1− boccl !(b−bi)!

b!(boccl−bi)!
: bi ≤ boccl

1 : bi > boccl
(4)

Where the factorial term is a rearrangement of (s)t/(b)t , where (s)t
is the falling factorial, s(s−1)...(s−t+1) and s=boccl and t =bi.
Equation 4 has factorials that are costly to compute on the fly; we
precompute a (b+1)× (b+1) lookup table for bi,boccl ∈ [0 . . .b].
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4.3. Algorithm: Creating Stochastic Layers

Given these probabilities, creating a stochastic layered buffer is
straightforward. Each incoming fragment traverses the per-pixel
layer list, identifies occluders, and accumulates their occlusion.

Given a number of set bits bi, determined by fragment i’s alpha,
and the number of occluder bits boccl , we take random ξ ∈ [0 . . .1]
and compare to our probability Pb(boccl ,bi). If ξ < Pb(boccl ,bi),
we insert our fragment to our per-pixel layer list. If we have more
than the maximum number of layers k, we discard the furthest.

When storing explicit coverage masks per layer, we count set bits
to find bi and boccl (finding occlusion via Equation 2). If storing
an α per layer, we compute bi by discretizing αib and boccl by
discretizing (1−∏t∈[0... j−1](1−αt))b.

4.4. Algorithm: Rendering Final Colors

We can accumulate final color in exactly the same way as stochas-
tic transparency [ESSL11], in a second geometry pass using the
per-pixel layers to provide the inputs for the Porter and Duff over
operator [PD84]:

C = α1c1 +(1−α1)(α2c2 +(1−α2)(α3c3 + ...)), (5)

which can be rearranged as:

C = ∑
i

(
∏

z j<zi

(1−α j)

)
αici. (6)

αi and ci come directly from the fragment, and ∏(1−α j) is the
probability that fragment i is visible.

We can also perform Enderton et al.’s [ESSL10] depth and alpha
correction by accumulating opacity of all transparent fragments,
αtotal , and the visibility-weighted sum of fragment alphas, αsum:

αtotal = 1−∏
all i

(1−αi), (7)

αsum = ∑
all i

(
∏

z j<zi

(1−α j)

)
αi. (8)

The final normalized color can then be computed as:

Cnorm =
atotal
asum

C (9)

4.5. Further Considerations for Using Continuous α

Decoupling stochastic transparency’s coverage and depth samples
allows us increase the number of coverage samples per layer faster
than the number of layers. In fact, we can increase the number of
bits to “infinity” and use a continuous alpha value.

But the insertion probabilities Pb(boccl ,bi) from Equations 3
and 4 still require discrete values for bi and boccl . For both random
and stratified sampling schemes, we bilinearly interpolate the prob-
ability functions based on the probabilities with the discrete val-
ues bαibc, dαibe, bαocclbc, and dαocclbe based on a user-selectable
number of “virtual bits” b.

Naive random samples could instead be linearly interpolated be-
tween bαocclbc, and dαocclbe using the following probability:

Pb(boccl ,αi) = 1− (1−αi)
boccl (10)

but bilinearly interpolating the stratified probability from Equa-
tion 4 gives better results.

4.5.1. Connecting Stochastic Transparency to k-Buffers

Once storing continuous α, the precision of discretization is simply
a parameter to the algorithm, specifying a number of bits b in our
virtual coverage mask.

Interestingly, the probability functions Pb approach 1 as b→∞
(except if b = boccl , i.e., αoccl = 1). For a k layer stochastic rep-
resentation, b ∈ [k . . .∞] provides a smooth continuum between
stochastic transparency (if b = k) to variants of k-buffering (if b is
large). The k-buffering variant to which SLAB converges depends
on the normalization used. Without stochastic transparency’s depth
and alpha correction, it converges to k-layer depth peeling; with
correction, it converges to k layer hybrid transparency [MCTB13].
In retrospect, this convergence is not particularly surprising. As
stochastic transparency’s per-pixel sample count increases it con-
verges to ground truth (or A-buffering), and we simply limit the
number of layers stored per pixel.

Note that b < k is valid, but uninteresting, as no more than b
layers can be stored per pixel. Each fragment requires at least one
unique bit in its virtual coverage mask to be visible.

5. Multi-Layered Coverage Blending

Integrating multi-layer algorithms with multisampling in a perfor-
mant way is challenging. We could store k layers for each sub-
pixel coverage sample, but this dramatically increases bandwidth
and memory usage. In theory, an alpha value already contains in-
formation about coverage as well as transparency [Gla15], so stor-
ing k alpha values per subpixel potentially duplicates coverage in-
formation already baked into the alpha channel. Instead, as noted
in Section 3.6, we observe that most OIT techniques focus on α-
based representations and propose using explicit coverage to repre-
sent both coverage and transparency.

We introduce multi-layered coverage blending (MLCB), which
is a variant of multi-layered alpha blending (MLAB) [SV14] that
stores per-layer coverage rather than alpha.

5.1. Coverage Mask Computation

At a high level MLAB and MLCB work identically, except MLCB
substitutes a coverage mask for MLAB’s per-layer alpha value.
We compute this coverage mask in two parts. A fragment’s trans-
parency is converted to a coverage mask, mα2c, using alpha-
to-coverage. Each fragment also computes geometric coverage
mgeom based on subpixel coverage from the rasterizer (e.g., from
gl_SampleMask or SV_Coverage). Fragment i’s coverage
mask is computed with a bitwise AND:

mi = mα2c & mgeom
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Techniques using alpha-to-coverage tend to introduce correla-
tion artifacts (e.g., as in screen-door transparency [FGH∗85]). To
avoid that, we randomize the coverage mask for each fragment.
This can introduce noise and flickering, similar to stochastic trans-
parency. If this is objectionable, using the same per-pixel pseudo-
random seed every frame keeps the noise fixed between frames.

5.2. Algorithm: Inserting and Merging Fragments

Multi-layered coverage blending is a straightforward derivative of
MLAB. Each incoming fragment fi gets inserted into a sorted per-
pixel list of fragments. Lists store k fragments, and each fragment
contains a depth zi, color ci, and coverage mask mi. To avoid bak-
ing alpha’s conflated coverage and opacity into the color term, we
explicitly do not use pre-multiplied alpha in ci, below, unlike Salvi
et al. [SV14].

Since we have an explicit coverage mask, we can account for
occlusion from closer fragments as part of insertion, i.e., instead of
storing a fragment’s mask mi, we store a pre-occluded mask m′i :

m′i = mi &∼

( ∨
z j<zi

m j

)
. (11)

If this insertion increases our per-pixel list size beyond the maxi-
mum size k, we merge the two most distant fragments, fk and fk+1,
together into a new fragment f ′′k :

c′′k = wkck +wk+1ck+1 (12)

m′′k = m′k | m
′
k+1 (13)

z′′k = z′k (14)

where wk and wk+1 can be thought of a discrete alpha values:

wk =
b
′
k

b′′k
=

∥∥m′k
∥∥

1∥∥m′k | m
′
k+1

∥∥
1

, wk+1 =
b
′
k+1
b′′k

=

∥∥m′k+1
∥∥

1∥∥m′k | m
′
k+1

∥∥
1

.

Essentially, when merging two fragments we linearly interpolate
the colors with weights based on the number of coverage bits visi-
ble in each fragment. To avoid double counting contributions from
a coverage sample, it is important to use occluded masks m′i rather
than a fragment’s original mask mi.

5.3. Algorithm: Rendering Final Colors

Once we have an array of k layers with color, depth, and pre-
occluded coverage masks, our final pixel color can easily be com-
puted as follows:

C =
1
b

(∥∥∥∥∥∼ k∨
i=1

m′i

∥∥∥∥∥
1

cbg +
k

∑
i=1

∥∥m′i
∥∥

1
ci

)
. (15)

This weighs each layer by the number of bits in its coverage mask
and the background based on the number of bits unset in any mask.
This basically rearranges Equation 6 for our discrete sampling.

5.4. Avoiding Banding Artifacts

The major problem moving from α-based algorithms to coverage-
based algorithms is that the number of representable levels of trans-

parency decreases from 2b to b+1. Since the number of bits devel-
opers allocate likely will not change, this may cause banding on
transparent surfaces.

One way to partially mitigate this problem would store both al-
pha and coverage, explicitly representing geometric information as
coverage bits and opacity as alpha. For instance, most engines use
at most 4×MSAA. In such a situation, each of our k per-pixel lay-
ers could store 4 bits of geometric coverage and a 4-bit alpha value,
representing (4+1)×24 = 80 transparent values with an 8-bit field.
Randomization can also replace banding with noise.

5.5. Context of MLCB in the OIT Continuum

By design, multi-layered coverage blending is one step away from
MLAB on our continuum (see Table 1), simply switching out a per-
layer α value for a per-layer coverage value. Once we randomize
the coverage mask to reduce correlation, MLCB starts to resem-
ble stochastic layered alpha blending, with per-layer random cov-
erage masks. The key difference between our new algorithms is that
MLCB uses an order dependent merge, rather than a normalization
term, and always adds a fragment to its per-pixel list (rather than
stochastically inserting them).

One could also view multi-layer coverage blending as an ex-
tension of screen-door transparency, decoupling coverage bits and
depth samples by storing multiple layers per-pixel and randomizing
the generated alpha-to-coverage pattern.

6. Implementation

We implemented our new algorithms, plus various prior techniques,
using OpenGL 4.5 with a few extensions. In particular, we used
NV_shader_atomic_int64 and NV_fragment_shader_interlock for
synchronization.

Our goal with stochastic layered alpha blending and multi-
layered coverage blending is not necessarily to suggest their use
over prior OIT algorithms, but rather to show that exploring the
OIT continuum provides developers tools that give more control
over algorithmic tradeoffs.

One example: while implementing hybrid transparency we made
an interesting observation. Both Maule et al. [MCTB13] and Salvi
et al. [SV14] discuss one-pass versions of hybrid transparency
that only touch the geometry once. As SLAB connects hybrid and
stochastic transparency, this optimization may carry through, rais-
ing the possibility of implementing stochastic transparency in one
pass. We implemented a variant of SLAB derived from one-pass
hybrid transparency. Due to higher bandwidth requirements this
approach does not have competitive performance today. But fu-
ture hardware improvements that provide appropriate granularity
synchronization could enable more competitive performance, po-
tentially providing a big win over multi-pass stochastic techniques.

7. Results

Figure 3 shows geometry from Unity’s Blacksmith demo, with var-
ied amounts of transparency added. This figure compares results
from various algorithms, demonstrating some important qualities.
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Figure 3: Geometry from Unity’s “The Blacksmith” demo under varying OIT algorithms: (a) stochastic transparency with 4 samples, (b)
stochastic layered alpha blending with k = 4 and 4 coverage bits, (c) SLAB with k = 4, b = 16, and continuous α, (d) hybrid transparency
with k = 4, (e) MLAB with k = 4, (f) ground truth, (g) and 8× MSAA with alpha-to-coverage.

Figure 4: The blacksmith model comparing (top) MLCB with 32
coverage samples with (bottom) MLAB. In both cases, we use k = 4.

It compares stochastic transparency and stochastic layered alpha
blending using identical sampling rates, showing equivalent results
modulo varied random noise. It also demonstrates the bias arising
from using only k layers, namely overweighting of background ge-
ometry when overflows occur (see inset where beams on the door
add additional layers). It highlights the catastrophic problems with
fixed alpha-to-coverage dither patterns. Finally, it compares with
a weakly order-independent algorithm; in some circumstances al-
gorithms like MLAB capture details from more than k layers, but
this benefit is nonuniformly distributed and hard to predict. Larger
versions of these images are provided as supplementary material.

Figure 4 demonstrates how multi-layered coverage blending
compares with multi-layered alpha blending. Explicilt coverage
masks enable antialiasing and accumulating transparency simulta-
neously, though even with a 32-bit mask we see noise in the results.
Figure 5 compares the antialiasing abilities in MLAB, MLCB and
MSAA with alpha-to-coverage and demonstrates that MLCB con-

Figure 6: A complex particle system rendered with (a) MLCB us-
ing b = 32, (b) MLCB using b = 128, and (c) MLAB. All use k = 4.

verges to MLAB with sufficient samples and has correlation arti-
facts reminiscent of MSAA without sufficient samples.

Figure 6 shows a complex billboard cloud particle system with
MLAB and MLCB, demonstrating they converge with a large
enough mask. Our supplementary material contains images of this
particle system with other rendering algorithms.

Figure 7 shows the Foliage Map from the Unreal Engine SDK,
with α of 0.75 applied to all surfaces, and demonstrates a relatively
continuous transition from stochastic transparency to hybrid trans-
parency. For SLAB, we use explicit coverage masks to demonstrate
the noise reduction with increasing mask size b. We also compare
to SLAB using alpha, rather than a coverage, with b = 64 virtual
bits. This is virtually indistinguishable from our k-buffer. Figure 8
shows how SLAB behaves with increasing layer count.
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Figure 5: Two views of a pine tree with many overlapping alpha textures. Insets rendered using a variety of algorithms: (a) MLAB, (b)
MLCB with 8 geometric samples and a 128 bit coverage mask, (c) MLCB with 8 geometric samples and a 16 bit mask, (d) 8× MSAA with
alpha-to-coverage, and (e) 8× MSAA with alpha testing. Full images for all algorithms are included as supplementary material.

Figure 7: The Unreal Foliage Map, all surfaces α = 0.75, with
insets rendered with various methods: (a) stochastic transparency,
8 samples, (b) SLAB with b = 8 and k = 8, (c) SLAB with b = 32
and k = 8, (d) SLAB with b = 128 and k = 8, (e) SLAB storing
continuous α with k = 8 and b = 32 virtual bits, and (f) k-buffer
with k = 8.

7.1. Performance

Our goal was not identifying a “best” OIT algorithm for any partic-
ular application, nor to suggest either of our algorithms over prior
work. For that reason, we do not provide much comparative perfor-
mance data. With a few exceptions, all the algorithms in Table 1 are
fast enough to ship in modern games when limited to scenes with a
reasonable number of transparent objects. A few algorithms requir-
ing more complex GPU syncronization, e.g., Salvi et al. [SV14],
may not yet be performant on the majority of GPUs.

For development, we used a NVIDIA GeForce Titan X. Rough

Figure 8: The Unreal Foliage Map, all surfaces α= 0.75, rendered
with SLAB using b = 32 and varying numbers of layers.

Algorithm Pine Black- Foliage
Cost in msec / frame Tree Car smith Map

SLAB 8.1 15.6 48.1 89.2
Stochastic transp. [ESSL10] 8.2 21.3 86.6 162.0
Hybrid transp. [MCTB13] 8.7 24.6 91.8 175.9
MLCB 18.4 40.3 89.9 168.1
MLAB [SV14] 29.0 65.7 191.2 346.1

Table 3: Rough, prototype performance numbers on an NVIDIA
GeForce Titan X at 2560× 1440 where all polygons in the scene
are partially transparent. Stochastic transparency uses 8 coverage
samples. Layered techniques use k = 4 layers. SLAB and MLCB
use b = 32 coverage bits. Performance is unoptimized; please see
text for caveats.

performance numbers from our prototype are shown in Table 3.
Please note: performance was not optimized for speed, as our code
was designed to allow tuning knobs to smoothly transition from
one algorithm to another. Not all algorithms have been optimized
an equal amount. In theory, hybrid transparency and stochastic lay-
ered alpha buffering have roughly equivalent performance, though
our SLAB implementation does not keep its k layers sorted, which
significantly reduces work inside the critical section.

For our implementations, SLAB with 4 layers with 32-bit cover-
age requires the same memory footprint as stochastic transparency
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Figure 9: A car rendered using stochastic layered alpha blending
without (left) and with (right) temporal antialiasing.

using 8 samples per pixel. Increasing SLAB’s coverage mask to 96-
bits per layer doubles the memory footprint (to 128 bits per layer).

MLCB and MLAB have more complex critical sections but in
well optimized implementations they should achieve roughly equal
performance. They have larger per-layer storage requirements since
they work in a single pass. This slows performance in comparison
to SLAB or stochastic transparency, especially in simpler scenes.

7.2. Coupling and Decoupling Antialiasing and Transparency

Our initial motivation in developing MLCB was enabling efficient
antialiasing as part of our OIT algorithm. However, pitfalls when
merging fragments that only partially cover pixels complicate this
process, as highlighted by Jouppi and Chang [JC99]. We borrowed
a high quality temporal antialiasing algorithm (e.g., [Kar14]) from
another project and discovered this seamlessly handled sub-pixel
geometric interpenetration that proves difficult in Z3 and MLCB.

Temporal antialiasing’s ability to handle geometric aliasing re-
assured us when decoupling antialiasing from stochastic trans-
parency. By splitting coverage and depth samples in SLAB, we lost
stochastic transparency’s inherent geometric antialising. However,
applying temporal filtering as a post process not only removes this
aliasing but filters much of the noise from the stochastic process
(see Figure 9).

8. Conclusions

We presented a new categorization of interactive order-independent
transparency techniques. Fundamentally, we view all current OIT
algorithms as using simplified representations of the transmittance
function, typically using k layers or samples. Their key differences
lie in how new fragments are inserted into per-pixel structures, how
these fragments are merged together, if normalization occurs, and
whether the transmittance approximation relies on coverage masks
or continuous alpha values.

Categorizing this work enabled us to identify various unexplored

areas. We presented SLAB and MLCB, which both leverage cover-
age masks.

Of our new algorithms, we find the stochastic layered approach
more interesting. It provides a parameter to transition between
stochastic transparency and k-buffering, two algorithms with pre-
viously non-obvious similarities. This might allow professional ap-
plications, like CAD software, that aim for predictive rendering to
add a knob that could dynamically increase bias in exchange for
performance. SLAB also suggests stochastic insertion is a viable
insertion metric for k-buffering, which may provide inspiration for
new Monte Carlo-based interactive rendering approximations.

Combined with the ability to leverage optimizations from one
OIT technique into another, we hope our categorization inspires
future work exploring and optimizing other areas of the OIT con-
tinuum, and perhaps even suggesting new axes for algorithms to
explore.
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