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Abstract

Generating soft shadows quickly is difficult. Few techniques have enough flexibility to interactively render soft
shadows in scenes with arbitrarily complex occluders and receivers. This paper introduces the penumbra map,
which extends current shadow map techniques to interactively approximate soft shadows. Using object silhouette
edges, as seen from the center of an area light, a map is generated containing approximate penumbral regions.
Rendering requires two lookups, one into each the penumbra and shadow maps. Penumbra maps allow arbitrary
dynamic models to easily shadow themselves and other nearby complex objects with plausible penumbrae.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and framebuffer operations, I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

Keywords: Soft shadows, shadow map, graphics hardware, shadow algorithms

1. Introduction

Shadows provide cues to important spatial relationships. By
changing shadow size, position, or orientation in an image,
an object can appear to change size or location21. Similarly,
soft shadows give contact cues. As an occluder approaches
a shadowed object, its soft shadow becomes sharper. When
objects touch the shadow is completely hard.

Many recent interactive applications have incorporated
real-time shadows. Generally, these applications use shadow
volumes6, shadow maps23, or related techniques. These
methods use point light sources which only cast hard shad-
ows. Since real world lights occupy not a point but some
finite area, realistic images require soft shadows. Thus, as
interactive graphics systems become more realistic, methods
for quickly rendering soft shadows are needed.

Shadows consist of two parts, an umbra and a penumbra.
Umbral regions occur where a light is completely occluded
from view and penumbrae occur when a light is partially
visible. Until very recently the only techniques to compute
these regions involved either evaluating complex visibility
functions10 or merging hard shadows rendered from vari-
ous points on the light11. Evaluating visibility is slow, and
sampling techniques produce banding artifacts unless many
samples are used. Other approximations have emerged, but

most do not allow dynamically moving objects to shadow
arbitrary receivers.

We introduce the penumbra map, which allows arbi-
trary polygonal objects to dynamically cast approximate
soft shadows onto themselves and other arbitrary objects.
A penumbra map augments a standard shadow map with
penumbral intensity information. Our shadows (see Fig-
ure 1) harden when objects touch, avoid banding artifacts in-
herent in sampling schemes, and are generated interactively
with commodity graphics hardware. Additionally, penum-
bra maps can leverage existing research on shadow maps
(e.g. perspective shadow maps19 or adaptive shadow maps8

to help reduce shadow aliasing). On the other hand, our ap-
proach breaks down when the umbra region significantly de-
creases or disappears. This happens for very large area light
sources or as an occluder moves away from the objects it
shadows.

The next section describes related work followed by a dis-
cussion of our algorithm in section 3. Section 4 discusses
some implementation specifics and outlines the limitations
of our technique. Section 5 presents our results, after which
we conclude.
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Figure 1: With two penumbra maps, this scene runs at 11
fps for 1024x1024 images (left). Compare to shadow maps
(right) which only render hard shadows.

2. Previous Work

This section provides an overview of previous work in ren-
dering interactive shadows. As complete coverage of other
shadow techniques is beyond the scope of this paper, refer
to Woo et al.24 and Akenine-Möller and Haines3 for a more
complete review.

Researchers have proposed soft shadow techniques which
run quickly, but do not handle dynamic scenes interactively.
For instance, Soler and Sillion18 convolve images of hard
shadows and the light source to approximate soft shadows
for nearly parallel configurations. Stark and Riesenfeld20

use vertex tracing to compute exact shadows for polygo-
nal scenes. Various backprojection techniques7 can gener-
ate soft shadows via discontinuity meshing. Using layered
depth images1 allows rendering soft shadows interactivity,
but moving lights or objects requires costly recomputation.

Parker et al.15 use a point light source and a “soft-edged
object” to raytrace soft shadows using only a single sam-
ple. They created this technique for interactive raytracing,
limiting use to applications with significant computational
resources.

The two most common techniques for real-time shad-
ows are shadow volumes and shadow mapping. Shadow
volumes6 create a polygonal shadow model based on object
silhouettes as seen from the light. Heidmann12 implements
this technique in hardware using a stencil buffer. Shadow
mapping23 renders the light’s view of a scene into a depth
map. When rendering, each fragment’s depth is compared to
the depth map to determine its visibility from the light. Segal
et al.17 show a hardware implementation of shadow maps.

As used today, shadow volumes and shadow mapping
only allow hard shadows. However, various researchers have
proposed extensions which allow them to render soft shad-

ows in certain cases. Reeves et al.16 introduce percent-
age closer filtering, which reduces aliasing by blurring the
shadow map. This blurring can give the impression of softer
shadows. Heidrich et al.13 use the two end points of a lin-
ear light to compute a non-binary visibility map of a scene,
allowing for soft shadows. However, computing a visibility
map can take a couple seconds.

Haines9 presents a technique to render a shadow texture
on a receiving plane. He suggests approximating umbral re-
gions using standard hard shadow techniques and extending
these regions with an approximate penumbra. These penum-
brae are computed using the following process (see Fig-
ure 2). From the center of the light, object silhouettes are
found and a hard shadow is rendered onto the texture plane.
Next, through each silhouette vertex a cone is drawn with
the tip at the vertex and the base at the plane. Finally, hy-
perboloid sheets are drawn connecting each silhouette edge
and the adjacent cones. The radii of the cones are based
on the distance between the silhouette and the plane, and
the color rendered in the shadow texture ranges from black
(fully shadowed) to white (fully illuminated) as the cones
and sheets approach the plane.

Figure 2: Haines generates soft shadows by (left) rendering
a hard shadow, (middle) rendering cones at each silhouette
vertex, and (right) rendering sheets connecting the cones.

Akenine-Möller and Assarsson2 extend the shadow vol-
ume technique using a method similar to Haines. Instead
of computing a shadow sheet at each silhouette edge, they
generate a penumbra wedge consisting of four planar sides.
A per-fragment program renders these wedges to a light
buffer, which can be used to render the scene with various
shadow intensities. To get sufficient intensity gradations in
their penumbrae, however, they need a 16-bit stencil buffer
for use as a light buffer. Such stencil buffers are not avail-
able on current generations of graphics cards, though the
functionality can probably be emulated. Additionally, they
are limited to occluders whose silhouettes form closed loops,
with exactly two silhouette edges per vertex. Arbitrary, non-
closed objects can have more complex silhouette behavior.
We found that vertices with three or four adjacent silhou-
ettes edges are not uncommon in typical models, and some
pathological vertices can have up to eight.

Brabec and Seidel4 approximate soft shadows using a sin-
gle depth map. They transform an eye-space coordinate to
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light-space using the standard shadow map technique, then
search a neighborhood around the transformed point to find
nearby objects which may partially occlude the light. This
technique can generate approximate soft shadows quickly,
but since it uses object IDs, soft self shadowing is not possi-
ble. Additionally, the neighborhood search may not be plau-
sible for high resolution depth maps.

3. Penumbra Maps

As people are often poor judges of soft shadow shape22,
plausible soft shadows should suffice in interactive envi-
ronments. Haines’9 shadow plateaus give compelling shad-
ows quickly enough to use with dynamic occluders, but lack
the ability to shadow arbitrary surfaces. The penumbra map
technique draws heavily from this work.

Two observations allow us to develop an algorithm to
shadow arbitrary surfaces. First, a shadow map can easily
create the hard shadow used to approximate an umbra. Sec-
ond, if one assumes this hard shadow approximates the um-
bra, then the entire penumbra is visible from the point on the
light used for the hard shadow. This allows the penumbra in-
formation to be stored in a single texture we call the penum-
bra map. This texture stores the penumbral intensity on the
foremost polygons visible from the light, just as a shadow
map stores depth information about these surfaces. These
observations led to similar, concurrent work by Chan and
Durand5, allowing them to render approximate soft shadows
using new geometric primitives called smoothies.

Rendering with penumbra maps is a three-pass process.
The first pass renders a standard shadow map from the view-
point of a point light source at the approximate center of the
light. The second pass renders the penumbra map. The third
pass combines depth information from the shadow map and
intensity information from the penumbra map to render the
final image.

Let V ≡ {v1,v2, . . .} and E ≡ {e1,e2, . . .} be the set of
silhouette vertices and edges, as seen from the light. Let Lr

be the light radius, Zvi the depth value of vertex vi from the
light, and Z f ar be the distance to the light’s far plane. Then,
to generate a penumbra map (such as in Figure 3):

• Clear the penumbra map to white.

• Find V and E for the current light.

• ∀vi ∈ V , draw a cone with tip at vi and base at the far

plane (see Figure 4). The cone radius Cri =
(Z f ar−Zvi )Lr

Zvi
.

We subdivide each cone into a number of triangles with
one vertex at vi and two on the far plane.

• ∀ei ∈ E , draw a sheet connecting adjacent cones. Depend-
ing on the cone radii, this quad may be non-planar. We
subdivide extremely non-planar quads to avoid artifacts.

Each pixel in the penumbra map corresponds to a pixel
in the shadow map. Each penumbra map pixel stores the

Figure 3: An example shadow map (top left), corresponding
penumbra map (top right), and the final rendered result.
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Figure 4: Each cone’s tip is located at a vertex vi with the
base located at the far plane (left). Using simple geometry,
we compute the cone radius Cri . Each sheet (right) connects
two adjacent cones.

shadow intensity at the corresponding surface in the shadow
map. A fragment program applied to the penumbra sheets
and cones computes this intensity using the simple geometry
shown in Figure 5. The idea is that by using Zvi , the depth of
the current cone or sheet fragment ZF , and depth of the cor-
responding shadow map pixel ZP, we can compute the light
intensity at point P. Equation 1 specifies this computation.

I = 1−
ZP −ZF

ZP −Zvi

=
ZF −Zvi

ZP −Zvi

(1)

We compute Zvi on the CPU on a per-vertex basis. For cones
Zvi is constant, and for sheets we use the rasterizer to inter-
polate between the Zvi values of the two adjacent cones. ZP
can be computed by referencing the shadow map, and ZF is
automatically computed by the rasterizer when processing
fragment F .
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Figure 5: Each fragment F on a cone or sheet corresponds
to some surface location P visible in the shadow map. By us-
ing Zvi , ZF and ZP, we compute the intensity I using Equa-
tion 1.

This process gives us a linear intensity gradient through
our approximate penumbra. Parker et al. note that for spher-
ical lights this intensity should vary sinusoidally. They ap-
proximate this sinusoidal falloff using the Bernstein inter-
polant s = 3τ2 − 2τ3. We use their approximation in our re-
sults, where we assume spherical light sources.

Pseudocode for a fragment program to compute a penum-
bra map follows:

FragmentProgram( Zvi , F, Smap )
(1) Fcoord = GetWindowCoord( F )
(2) ZP = TextureLookup( Smap, Fcoord )
(3) ZF = Fcoordz

(4) if (ZF > ZP) DiscardFragment()
(5) Z′

P = ConvertToWorldSpace( ZP )
(6) Z′

F = ConvertToWorldSpace( ZF )
(7) I = (Z′

F - Zvi ) / (Z′

P - Zvi )
(8) I′ = 3I2 −2I3

(9) Out putcolor = I′

(10) Out putdepth = I′

Since both the shadow map, Smap, and the penumbra map are
rendered with the same viewing matrices, the window coor-
dinates of fragment F can be used to find its correspond-
ing point P in the shadow map. Due to the non-linearity
of z-buffer values, ZF and ZP must be converted back to
world-space distances (Z′

F and Z′

P) before use. Note that Z′

F
can be computed on a per-vertex basis and can be interpo-
lated by the rasterizer to save fragment instructions. Since
the penumbra map only requires a single color channel, fur-
ther savings can be achieved by storing the shadow map and
penumbra map in different channels of the same image.

Rendering soft shadows with a penumbra map is sim-
ple. For each pixel rendered from the camera’s viewpoint,
a comparison with the depth in the shadow map determines
if the pixel is completely shadowed. If not fully shadowed, a
lookup into the penumbra map gives an approximation of the
light reaching the surface. Like shadow mapping, penumbra

maps work in scenes with multiple light sources. Instead of
computing a single shadow map and penumbra map, each
light requires one of each.

4. Implementation

When writing our application, we made a number of imple-
mentational choices which affect our results. First, we use
a spherical light source because people often cannot distin-
guish between shadows from lights of various shapes. As
Haines9 notes, this algorithm need not be limited to spherical
light sources. For example, in the case of a triangular source
the cones generated for the penumbra map would have trian-
gular bases.

Second, our application detects silhouettes using a brute
force algorithm. We did not use a more intelligent silhou-
ette extraction technique because we expected the graphics
card would be the bottleneck. Surprisingly, we found our sil-
houette code takes 30% of the render time. Obviously, fast
silhouette techniques would be used for interactive applica-
tions.

One detail which complicates implementation is how
to deal with overlapping shadows. Given two silhouette
edges with overlapping penumbral regions, there are mul-
tiple ways of counting their contributions (see Figure 6).
When one shadow completely contains another only the
darkest shadow should be used. If just the penumbrae over-
lap the shadow contributions should be summed. Often when
the object silhouettes intersect, multiplication best approx-
imates the true interaction. Unfortunately, there does not
seem to be a straightforward way to determine which of the
three methods to use on a per-fragment basis during cone
and sheet rasterization. Our implementation uses a modified
depth test to determine which cone or sheet shades a par-
ticular fragment in the penumbra map. As the pseudocode
above shows, we store the penumbra intensity in the depth
channel, and use glDepthFunc( GL_LESS ) to always
choose the darkest shadow in a given pixel. This leads to ar-
tifacts in the shadows. As in Haines’ work, these are most
noticeable at silhouette concavities. Such artifacts worsen as
the size of the penumbra increases.

4.1. Discussion of the Penumbra Maps

Before discussing our results, we note what limitations
the assumptions inherent in the penumbra map technique
impose. We assume that silhouettes of an object remain
constant over the area of a light and that the umbra can
be approximated by a hard shadow. Akenine-Möller and
Assarsson2 and Haines9 also use silhouettes computed at a
single point on the light. Brabec and Seidel’s4 technique im-
plicitly makes this assumption by using only a single depth
map. Obviously as an area light increases in size, silhouettes
vary more over the light so the generated shadows will be-
come less realistic.

c© The Eurographics Association 2003.



Wyman and Hansen / Penumbra Maps

Figure 6: These pathtraced images show three different
types of interactions between overlapping penumbra. At
left, only the darkest contribution is needed. In the center,
shadow contributions should be summed. At right, multiply-
ing the contributions from the two polygons best approxi-
mates the result.

We believe approximating the umbra by a hard shadow is
reasonable in many cases, as most people are poor judges of
soft shadow shape22. If plausible soft shadows are required
in an interactive application, using a hard shadow for the
umbra may be sufficient. As a shadow’s umbra size shrinks,
our approximation leads to noticeably larger, darker shad-
ows. Shadow umbras shrink as light size grows and as oc-
cluders and receivers move further apart. Thus, our method
works best for relatively small light sources and objects oc-
cluding nearby objects.

5. Results

We implemented penumbra maps in an interactive appli-
cation using OpenGL. Our results were obtained using a
Windows 2000 system with a 2.0 GHz Pentium 4 proces-
sor and an ATI Radeon 9700 PRO graphics accelerator. We
use OpenGL ARB vertex and fragment program extensions
for our shaders. Both the shadow and penumbra maps are
rendered into p-buffer textures so they can be used directly
without reading them back into main memory.

All our scenes are rendered at 1024 x 1024 with shadow
and penumbra maps of the same size. For complex models
such as the bunny, buddha, and dragon we found we could
get equivalent quality shadows with simplified models, as
soft shadows effectively blur detail. This increases aliasing
artifacts, though we reduce them by adding a larger bias.
We used 10,000 polygons to generate shadows for the bunny
and the dragon (Figures 7 and 8). Buddha’s shadow (Fig-
ure 1) uses 5,000 polygons. Table 1 shows framerates for
these models using penumbra and shadow maps. Note that
for comparison purposes, the hard shadows were timed us-
ing a fragment program similar to the one used for penum-
bra maps. This program computes the Phong lighting and
performs the lookup into the shadow map, which is signif-
icantly slower than using other capabilities of the hardware
designed specifically for those operations.

Thirty percent of our computation time is used by our
brute force silhouette extraction code. Thirty-five percent is
spent rendering the penumbra map and the remaining time

Bunny Dragon Buddha Buddha
(1 light) (2 lights)

Penumbra Maps 18.1 14.5 18.3 11.0
Shadow Maps 42.0 48.1 48.1 27.4

Table 1: Framerate comparison between soft shadows using
penumbra maps and hard shadows using shadow maps.

is used during the render pass. Note that the render pass in-
cludes fragment code to perform lighting computations and
check light visibility using the shadow map. These opera-
tions take 15 of the 22 instructions in our ARB fragment
program. To render penumbra maps, we use a fragment pro-
gram with 24 assembler instructions.

6. Conclusions and Future Work

In this paper, we presented the penumbra map, a new tech-
nique for rendering approximate soft shadows in real-time.
Penumbra maps allow dynamically moving polygonal mod-
els to cast soft shadows onto themselves and other complex
objects. These results work best for relatively small penum-
brae. Penumbra maps provide a simple multi-pass exten-
sion to shadow mapping for easy incorporation into existing
shadow map-based systems.

While penumbra maps give plausible results, there are still
areas we wish to improve in future work. First, we believe it
may be possible to approximate a full penumbra using vertex
programs to adjust the silhouette edge positions. However,
this is complicated by the fact that penumbrae will no longer
lie on the foremost polygons in the shadow map.

We also wish to explore the possibility of moving the en-
tire algorithm into hardware. Future graphics accelerators
will have the ability to render to a vertex array. If this allows
us to create new primitives, we believe we can combine our
work with that of McCool14 to move the silhouette extrac-
tion and cone and sheet generation onto the graphics card,
greatly reducing the burden on the CPU.
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