
The Soft Shadow Occlusion Camera

Qi Mo

University of Iowa

qmo@cs.uiowa.edu

Voicu Popescu

Purdue University

popescu@cs.purdue.edu

Chris Wyman

University of Iowa

cwyman@cs.uiowa.edu

Abstract

A fundamental challenge for existing shadow map based

algorithms is dealing with partially illuminated surfaces.

A conventional shadow map built with a pinhole camera

only determines a binary light visibility at each point, and

this all-or-nothing approach to visibility does not capture

penumbral regions. We present an interactive soft shadow

algorithm based on a variant of the depth discontinuity oc-

clusion camera, a non-pinhole camera with rays that reach

around blockers to sample normally hidden surfaces. Our

soft shadow occlusion camera (SSOC) classifies a fragment

on a continuum from fully visible to fully hidden, as seen

from the light. The SSOC is used directly in fragment il-

lumination computation without building an explicit “soft

shadow map.” This method renders plausible soft shadows

at interactive speeds under fully dynamic conditions.

1 Introduction

Soft shadows play an important role in rendering, as

they provide an increased sense of realism, produce object-

object contact cues [19], and improve spatial percep-

tion [22, 33]. However efficient soft shadow rendering

proves difficult, as computation involves visibility queries

from every point in the scene to potentially complex light

sources. Thus, most interactive applications today rely on

hard shadows arising from a simple point light. For such

lights, only a single binary visibility query is necessary.

While this enables quick renderings, the resulting shad-

ows lack penumbra, the regions of transition between full

shadow and full illumination.

As real-world lights have a non-negligible area, realistic

shadow renderings must compute how much of the light is

visible, leading to regions of full illumination, partially illu-

minated penumbra, and fully shadowed umbra. Generally,

these computations cannot be solved analytically or deter-

mined via a single visibility query. Offline renderers often

generate soft shadows by numerically integrating visibility

by averaging over many binary queries.

Figure 1. Interactive soft shadows using the

soft shadow occlusion camera run at 85 fps
for this scene. Note the self-shadowing and

the varying size of overlapping penumbrae.

While interactive applications can repeatedly sample the

light [1, 16, 18], the costs increase linearly with the sam-

pling rate, quickly limiting shadow quality and scene com-

plexity. Thus, a variety of researchers have sought to ap-

proximate the soft shadow computation using a single sam-

ple [8, 14, 27, 36]. These techniques add penumbral regions

to an existing hard shadow. As the light grows, these tech-

niques exhibit artifacts due to the fixed umbra size. Cai et

al. [7] extended these methods to reduce this problem, at the

cost of storage for more map layers.

This paper presents a new soft shadow approach in-

spired by a non-pinhole camera introduced by Popescu

and Aliaga [28], the depth discontinuity occlusion camera

(DDOC). A DDOC camera bends light around depth dis-

continuities to allow “nearly visible” points to appear in the

final rendering. When positioned at the light, this camera

allows both fully and partially illuminated points to be visi-

ble in a single rendering.

We introduce the soft shadow occlusion camera (SSOC),

a non-pinhole camera constructed from the center of the

light that efficiently provides a quality penumbral approx-

imation. The partial visibility queries for these penumbrae

are answered directly, bypassing the need of costly aggrega-

tion of multiple point-to-point visibility queries and avoid-

ing construction of a reference image to serve as a soft

shadow map. The SSOC enables rendering realistic soft

shadows at interactive rates (see Figure 1) and requires no

precomputation, thus supporting fully dynamic scenes.

2 Previous Work

Efficiently rendering shadows has long been an active

area of research. We refer readers to comprehensive sur-

veys on shadows [35] and soft shadows [15] for detailed

discussion of prior work. We focus our discussion on non-

pinhole cameras and soft shadow methods most relevant to

our method.

2.1 Interactive Shadows

Today’s applications rely on either shadow maps [17,34]

or shadow volumes [10, 30] to provide interactive shadows.

Shadow mapping requires a depth map rendered from the

light position, and scene points are projected onto this depth

map to decide visibility from the light. Shadow volumes de-

scribe virtual geometry that bounds shadowed regions; ob-

jects inside these volumes are shadowed while those outside

the volumes are illuminated.

Interactive soft shadow techniques typically build on

one, or both, of these methods. Penumbra wedges [3, 4]

extend shadow volumes by replacing each virtual shadow

quad with a penumbra wedge that provides a gradual change

from fully illuminated to fully shadowed regions. While

this method is the most realistic interactive soft shadow al-

gorithm, its cost grows linearly with the number of wedges

and becomes fill-rate limited as wedge geometry increases.

Clipping and culling techniques can significantly reduce the

necessary fill rate [2, 9, 23], though perhaps not enough for

complex scenes.

Another possibility is to sample the light at multiple

points, creating a shadow map for each, and to average

over queries from all maps [16]. Alternatively, multi-

ple light samples could be merged into a layered shadow

map [1, 20, 32] to reduce per-pixel lookup costs. In return,

however, this method adds an expensive preprocess that pre-

cludes dynamic scenes. Both methods produce realistic soft

shadows, but usually at a prohibitive cost.

Projecting occluders onto the light surface allows ana-

lytically determining light visibility. While accurate, this

backprojection [11] process becomes quite costly in com-

plex scenes. Recent work [5, 6, 13] speeds backprojection

by treating shadow map texels as the occluders, instead of

using explicit geometry. This significantly increases back-

projection speed, but is prone to cracking artifacts.

Other approaches [8, 14, 36] augment the shadow map’s

hard shadow with a plausible looking penumbra. These

methods observe that objects visible from the light center

fall into two categories: fully illuminated or partially shad-

owed. By augmenting the shadow map with a second map

(a smoothie buffer or penumbra map), plausible soft shad-

ows can be rendered by identifying completely shadowed

points and consulting the secondary map to determine the

light contribution for all other points. Unfortunately, these

techniques break as the light size increases, when the umbra

should shrink. Cai et al. [7] note that for complex scenes a

single map is not sufficient to store all penumbral regions,

so they propose a multi-layered approach.

2.2 Non-Pinhole Cameras

Although camera models are essential components of

the graphics pipeline, relatively little research effort has

explored alternatives to the pinhole camera. Exceptions

include non-pinhole cameras developed in the context

of image-based modeling and rendering, such as light

fields [12, 24], which are 2D arrays of planar pinhole cam-

eras; layered depth images [31], which are planar pinhole

cameras that store a variable number of samples along each

ray; and multiple center of projection images [29], which

are obtained by moving a slit camera along a path.

These camera models capture more than the surface sam-

ples visible from a single viewpoint and therefore could be

used, in principle, in the context of soft shadows. How-

ever, rendering with such cameras implies a large number of

feed-forward passes, making them too slow for the dynamic

scenes in interactive applications. For example, an LDI con-

structed from the center of the light source provides hidden

samples from the inner penumbra, but construction requires

rendering from several viewpoints and merging the results.

Unlike earlier non-pinhole cameras, the depth discontinuity

occlusion camera [28] provides fast, unambiguous projec-

tion, which allows rendering using the feed-forward graph-

ics pipeline. The soft shadow occlusion camera described

in Section 3.2 adapts the DDOC to the context of soft shad-

ows.

3 Occlusion Camera Soft Shadows

Standard depth maps, as used in shadow mapping, store

a concise representation of a scene as an image—every

texel stores the distance from the light to the nearest object

along the texel ray. This image-based representation typi-

cally scales better with geometric complexity than object-

space representations. But this approach implicitly assumes

the use of a point light source, as traditional hardware-

accelerated rendering relies on a pinhole camera to render

the depth map.

Previous shadow map based soft shadows attempt to

overcome the point light limitation in one of two ways:

by augmenting a shadow map with additional maps storing

penumbra information or by backprojecting shadow map

texels onto the light. Neither approach truly solves the prob-

lem, namely the need for scene information missing due to

occlusions in the shadow map.

Interestingly, image-based rendering by 3D warping [25]

performs a similar task to soft shadow rendering, namely

recreating scenes rendered from arbitrary viewpoints based

upon a small number of images. While many of the solu-

tions (e.g., multisampling and layered depth images) have

been explored by both communities, rendering researchers

have generally avoided exploring the use of non-pinhole

cameras.

One camera model in particular, the DDOC, captures

needed information about barely hidden samples close to

depth discontinuities. In the context of image-based render-

ing, the DDOC enables rerendering a scene within a small

locus of viewpoints based upon a single reference image.

Our key observation is that a small area light source is the

light-space analogy of this locus of viewpoints. Thus, plac-

ing a DDOC at the center of the light provides the informa-

tion necessary to compute soft shadows directly, in a single

image.

Section 3.1 reviews the non-pinhole DDOC model, fol-

lowed by a description of our soft shadow occlusion camera

in Section 3.2.

3.1 The Depth Discontinuity Occlusion
Camera

Image-based rendering aims to capitalize on previously

acquired or computed color data to expedite rendering of a

scene from novel viewpoints. A single reference image is

not sufficient, as even small viewpoint translations expose

new surfaces not sampled by the reference image. Avoid-

ing these disocclusion errors by processing additional ref-

erence images has high and unpredictable cost, which de-

feats the purpose. The DDOC avoids disocclusion errors by

constructing single-layer depth images that sample not only

visible surfaces but also surfaces “nearly visible” from the

reference viewpoint.

The DDOC model renders images identically to a stan-

dard pinhole camera, except near discontinuities. In those

regions, rays “bend” around the discontinuity to view geom-

etry hidden in standard pinhole renderings (see Figure 2).

The resulting images appear similar to standard renderings,

except in neighborhoods around discontinuities which con-

dense the visible and nearly visible samples.

Popescu and Aliaga [28] set a user parameter to define

the maximum image-space distortion allowable near dis-

continuities. This specified magnitude controls the locus

size around the reference view where novel views exhibit

minimal disocclusion errors.

Building a DDOC requires creation of an image-space

(a) (b) (c)

Figure 2. Ray behavior near edge disconti-
nuities: (a) rays from a pinhole camera con-

sist of a single line segment, whereas (b) rays
from a DDOC model consist of two line seg-

ments. (c) The DDOC distortion increases lin-
early from the occluder to the occluded sur-
face, and allows image-based rendering from

various nearby virtual viewpoints.

distortion map to describe which regions of a standard pin-

hole rendering require geometrical distortion. Map cre-

ation involves first identifying discontinuities, finding the

discontinuity edge normals, and finally splatting this infor-

mation throughout potential distortion regions. The result-

ing DDOC is used to create a reference image by distorting

each vertex based on data found by projecting it into the dis-

tortion map. This process effectively pulls out nearly visible

samples for imaging by the camera (see Figure 3).

3.2 The Soft Shadow Occlusion Camera

A camera that pulls out nearly visible samples fits nat-

urally with soft shadow algorithms, particularly with tech-

niques such as penumbra maps [36] and smoothies [8] that

only act on geometry visible in the shadow map. These

techniques approximate only the outer penumbra simply be-

cause they lack information about the inner regions. By ex-

tending the shadow map to show normally hidden geometry,

the extra information allows the trivial extension of these

techniques to approximate both inner and outer penumbra.

While building a DDOC model is interactive, rendering a

reference image with the camera is not, so trivial shadow

extensions that rely on these images are currently infeasi-

ble.

Creating a reference image involves the classic feed-

forward steps of vertex projection followed by rasterization.

Although DDOC vertex projection is inexpensive, rasteriza-

tion in the distorted domain is not. As distortion occurs on

a per-fragment basis, triangles may no longer have straight

edges. For offline DDOC reference image construction, ras-

Figure 3. Using a pinhole camera to capture
a reference image for image-based rendering
via warping leads to novel views with signif-

icant missing information. A DDOC camera
distorts some of this missing geometry so it
is visible in the reference. Note how the infor-

mation still missing looks remarkably similar
to the umbra of a shadow under illumination
from a small area light.

terization in the distorted domain relies on subdividing the

scene until edge deformation is insignificant, allowing tri-

angles to be rasterized conventionally. For most interactive

applications, such extensive subdivision is infeasible. Note

that for the simpler single pole occlusion camera [26] the

distortion function is invertible, enabling efficient rasteriza-

tion in the distorted domain. However, that camera model

is too simple to model penumbral effects.

We observe that an actual occlusion camera reference

image is unnecessary for rendering shadows. In an image-

based rendering context, the reference image provides a

compact and high-quality scene approximation that remains

valid over a continuum of viewpoints around the reference

viewpoint. In the context of shadows, the scene is rendered

in the usual undistorted domain defined by the eye’s pin-

hole camera. All that is needed is a fast and high-quality

approximation of a fragment’s light exposure.

We achieve this with a soft shadow occlusion camera

placed at the center of the light. A distortion map speci-

fies the SSOC and acts like a regular shadow map, except

in the vicinity of depth discontinuities. By associating the

sizes of distortion regions with light and occluder size and

placement, we can construct the SSOC so that a fragment

that projects to an undistorted region can be ruled as fully

lit or shadowed as per standard shadow mapping. Illumina-

tion for other fragments directly corresponds to the distor-

Figure 4. Consider the views from Figure 3.
A pinhole camera only images half the geom-
etry from penumbral regions. With a SSOC

camera, all the geometry in the penumbra
is warped so it is visible near silhouettes.
Points A, B, C, D, and E are distorted vary-

ing amounts by the SSOC or processed with
standard shadow mapping, depending on
where they fall in the distortion map.

tion magnitude specified in the SSOC distortion map.

Figure 4 illustrates usage of the distortion map for a por-

tion of the occlusion camera reference image from Figure 3.

Pixels outside the edge region are set to black, and those in-

side the inner penumbra appear in red. We provide the oc-

clusion camera reference image for illustration purposes; it

is not needed for shadow computations. An occluded point

A that projects between the umbral and penumbral regions

is distorted the most, to Ad . Points B and C are progres-

sively more illuminated, and are distorted less, to points Bd

and Cd . Points D and E fall outside the distortion region and

are therefore processed by conventional shadow mapping.

3.2.1 SSOC Distortion Map Construction

The DDOC distortion map [28] stores a five-tuple

(diru,dirv,zn,z f ,d f) that specifies a maximal distortion in

the direction (diru,dirv) with magnitude varying linearly in
1
z
. The magnitude starts from zero at the near point zn and

reaches a maximal distortion d f at the far point z f . The

maximal distortion dmax(pz) of a point p with an eye-space

z-value of pz can be computed:

dmax(pz) =































0 when pz < zn

(

1/zn −1/pz

1/zn −1/z f

)

d f when zn ≤ pz ≤ z f

d f when pz > z f .

This maximal distortion only occurs for points p at the

innermost edge of the distortion region (e.g., the dotted

line in Figure 2(c) and point A in Figure 4). For rays fur-

ther from the discontinuity, the distortion linearly shrinks to

zero.

Popescu and Aliaga use a six-step process to create this

map. However, we observe this process effectively per-

forms three basic operations: 1) detecting silhouette edges,

2) extruding these edges and splatting them into the distor-

tion map, and 3) cleaning up the distortion map (e.g., splat

resizing). To make this process more amenable to hardware

acceleration and improve robustness for such implementa-

tions, we suggest an implementation different than theirs:

1. Compute silhouette edges on CPU in light-space,

2. Create a standard shadow map z-buffer,

3. Extrude silhouettes along edge normals, creating

quads perpendicular to the light’s viewing direction,

4. Render the quads into the distortion map, storing an

6-tuple specifying the required warp, and

5. Resolve conflicts between overlapping quads using a

depth test based upon the distance to the silhouette.

In particular, by performing silhouette detection on the

CPU our method avoids robustness issues (e.g., thresholds)

with the image-based edge detection used by the original

DDOC model. Along with silhouette detection we explic-

itly determine silhouette normals from the geometry, which

eliminates discretization artifacts introduced by an image-

based approach. Finally, we use silhouette quads instead

of per-pixel silhouette splats to render data into the distor-

tion map. This reduces redundant pixel operations and, we

found, further improves robustness.

The resulting shadow distortion map contains six float-

ing point values: a two-component image-space coordi-

nate for the nearest point on the silhouette edge, a two-

component silhouette edge surface normal, and two val-

ues specifying the magnitude of the discontinuity (znear and

z f ar). The value d f stored in the DDOC distortion map is

unnecessary, as the maximal distortion in the SSOC varies

based upon light radius, znear, and z f ar.

3.2.2 Determining Intensity from the Distortion Map

After creating a distortion map, a per-fragment shader in-

dexes into the map to determine shadow intensity. A

naive approach for this shader is outlined in Figure 5. For

points far from a shadow boundary, we use standard shadow

mapping to quickly identify points inside and outside the

shadow. This restricts the distortion process described be-

low to points inside (or very near) the penumbral regions.

The actual distortion aims to solve the problem with

techniques such as smoothies and penumbra mapping,

namely that they cannot render inner penumbrae due to a

lack of information about which silhouette edges partially

occlude the light. Correctly computing the per-fragment

Near discontinuity?

Use shadow map

Distort, according

to distortion map

Distorted point still

in hard shadow?

In complete shadow

Distorted point still

near discontinuity?

Completely lit

Compute intensity

based on distortion

magnitude

Yes

Yes

Yes

No

No

No

Figure 5. A naive approach to computing soft
shadow intensity from a distortion map.

distortion specified by the SSOC implicitly computes the

information needed for soft shadows—the distance to the

edge occluding the light. Given the distortion d(pz) at point

p found by indexing into the distortion map, the shadow

intensity is simply computed as follows:

Sintensity = 1−
d(pz)

dmax(pz)
. (1)

To intuitively understand the equation, consider the ex-

tremal cases shown in Figure 4. Pixels near the inner edge

of the penumbra, such as A, distort the full dmax. These pix-

els should be fully shadowed, and hence have an intensity

of zero. Pixels at the outer edge of the distortion region cor-

respond to those at the outer edge of the penumbra, distort

not at all, and should be fully lit. As in many previous soft

shadow approximations [7,8,14,27,36], we modify this lin-

ear gradient by using the Bernstein interpolant s = 3t2−2t3

to approximate the sinusoidal falloff of a spherical light

source.

The two remaining cases in Figure 5 describe boundary

cases for incorrectly classified pixels. The SSOC distortion

map contains a conservative approximation of the penum-

bral region, thus a few pixels distorted by the map may

actually be fully illuminated or fully shadowed. Distorted

points that are visible but lie too far from the discontinuity

were mistakenly classified as penumbral, and are actually

fully illuminated (for us, this arises due to numerical er-

rors). Pixels that never distort enough to be visible from

the light will be fully shadowed. This mainly arises during

self shadowing (see Figure 6), and it prevents light leaks

when points occluded by multiple surfaces are mistakenly

Light

Distortion

Regions
Complete

Shadow

 Falsely distorted region
(remains occluded after distortion)

Figure 6. Light leaks, such as those shown
under the cow, are eliminated by checking

if distorted points are visible in the shadow
map. On the right, a 2D example where
points in the yellow distortion region remain

occluded after distortion, signifying they are
completely shadowed.

distorted by the one closest to the light. In these cases, the

distorted point still lies in the hard shadow and thus is not

visible from the light.

3.2.3 Improving Intensity Determination

Generally the naive approach works well, except where

edge quads overlap. The problems visible in Figure 7 exem-

plify the issues encountered in such cases. These artifacts

typically appear as dark spots in the middle of penumbra

or as overly bright regions where penumbrae overlap. This

arises from indexing into an incorrect edge quad, leading to

inaccurate distortion and intensity. If Figure 7, the dark er-

rors occur where distortion from the bunny’s back (instead

of its ear) is used to compute intensity.

Commonly, other researchers eliminate problems due to

adjacent discontinuities by storing additional information to

identify the correct penumbral region. This often involves

storing multiple layers [1, 7, 32] or explicitly storing geo-

metric representations of the penumbrae (e.g., penumbra

wedges [3,4]). We observe, however, that the distortion map

itself generally stores enough information to identify the

correct penumbra. Instead of storing overlapping penum-

bral data in layers or with explicit geometry, a distortion

map stores this data in different texels. The key is identify-

ing which texels.

When penumbrae overlap the distortion map only stores

one or the other, leaving the distortion regions truncated

(see Figure 8). After distortion a pixel may thus project

into a different distortion quad, which represents another of

the overlapping penumbrae. We propose recomputing the

original fragment’s distortion according to the new silhou-

ette edge. Each time we recompute the distortion, we may

find another overlapping penumbra. Using these successive,

Figure 7. Using the naive approach from Sec-

tion 3.2.2 leads to artifacts when multiple
edge discontinuities affect the same pixels
in the distortion map. Depending on which

edge’s data is stored inaccurate distortion
can occur, resulting in inappropriately dark
or light pixels. On the right is a ray traced

image for comparison.

independent distortion map lookups, we may find:

1. Only one penumbra contains the current fragment,

2. Multiple penumbrae overlap, but only one is relevant

(e.g., one penumbra is completely inside another), or

3. Multiple penumbrae affect the fragment’s intensity.

In either of the first two cases, Equation 1 describes the

shadow intensity, as only one of the overlapping penum-

brae affects the fragment. In the third case, multiple sur-

faces occlude different portions of the light and must be ac-

counted for independently. While there are multiple ways

to approximate this combination, we used a multiplicative

combination of the penumbral intensities in our prototype.

In other words, we independently evaluate Equation 1 for

each penumbra and multiply the results. We found two or

three such steps are generally sufficient, and we implement

them together in a single pass.

4 Implementation Details

We implemented our prototype in OpenGL with vertex

and fragment shaders written in Cg. This required a num-

ber of significant changes from the original DDOC imple-

mentation, which ran as a batch CPU process. Section 3.2.1

outlined the major changes, including the removal of the

image-space edge detector and normal computations. How-

ever, a number of other implementation details affected the

design of our prototype.

One important decision we made was to use two sepa-

rate distortion maps, one for inside and one for outside the

hard shadow boundaries. Initially, this allowed us to better

Figure 8. When distortion regions from adja-

cent silhouette edges overlap (left), only one
may be stored (right). Thus, distortion may

move a fragment into a new region. In such
cases, we know multiple silhouette edges af-
fect the fragment, so we perform additional

distortions based upon newly found silhou-
ette edges. Combining the results gives our
final intensity.

debug the algorithm and identify incorrectly warped frag-

ments. However, this choice also reduces overlaps between

distortion regions, particularly for objects that exhibit self

shadowing, and may thus be important for any implementa-

tion.

All shadow mapping algorithm exhibit numerical preci-

sion issues; adding a small bias during comparisons typi-

cally solves this problem. Our algorithm exacerbates these

issues, simply due to the increased number of depth com-

parisons. The most severe problem arises because the algo-

rithm does not explicitly consider the geometry of occluded

surfaces (see Figure 9). We fix this by adding a rather large

bias, though other solutions are possible. Note that algo-

rithms using DDOC reference images would avoid the prob-

lem, as the camera would distort both surfaces in the refer-

ence.

Section 3.2.3 discusses how we combine contributions

from overlapping penumbrae. After warping a fragment,

our implementation determines which of the three cases oc-

curred by comparing the silhouette positions and normals,

as well as the depth range [znear...z f ar]. If pre- and post-

warped fragments belong to the same distortion region, a

simple dot product between the two stored normals returns a

value near unity. If multiple penumbrae collide in the distor-

tion map but have non-intersecting [znear...z f ar] ranges, only

one penumbra is likely to affect the current fragment. In the

third case, where multiple penumbrae interact, the normals,

silhouette positions, and depth ranges will be markedly dif-

ferent.

Figure 9. False shadows may occur when oc-

cluded surfaces vary quickly in z. Here, the
green point is warped under the occluded
surface. Following Figure 5, this point mis-

takenly falls in the umbra. We fix this with a
bias, though constructing a SSOC reference
image would avoid the problem, as the entire

occluded surface would be warped to the left.

5 Results

Our OpenGL prototype was benchmarked at a resolu-

tion of 5122 on a 3.2 GHz Pentium 4 Xeon with 2 GB

of memory and a GeForce 8800 GTX. The timings shown

in Table 1 show the costs involved with various stages of

our prototype. Note that our implementation lacks op-

timizations, providing significant potential for speedups.

In particular, due to issues with texture interpolation in

GL RGBA FLOAT32 ATI buffers used as vertex textures,

we independently compute shadow intensity four times per

fragment and linearly interpolate, to eliminate aliasing from

nearest-neighbor sampling.

Table 1 shows that costs for silhouette extraction and

SSOC creation vary roughly linearly with the complexity of

the scene. As we explicitly check each edge every frame to

determine if it appears as a silhouette when viewed from the

light, this process becomes the bottleneck for more complex

models. Using more efficient approaches [21] or identify-

ing these edges using the GPU’s geometry processor should

improve performance.

On the other hand, the cost to render from the eye varies

mainly based upon the number of pixels covered by penum-

brae, not by scene complexity. This is a significant advan-

tage of image-based techniques such as our SSOC model,

which is essentially a compact image-based approximation

of the scene. In regions far from a penumbra, we can rely

on a cheap shadow map to control shadows, and only for re-

gions near penumbrae must we rely on the distortion map.

Figure 10 shows the effect of varying the size of the

spherical light source from a radius 0.0 to 0.1 and 0.3. Note,

in particular, the reduced size of the umbra as the light

5122 10242

Scene Silhouette Create Shadow Create SSOC Render from Framerate Framerate

(and triangle count) Extraction Map Eye

Bunny (70k) 8.0 ms 0.8 ms 1.7 ms 8.2 ms 85.4 fps 41.6 fps

Cow and Sphere (26k) 2.6 ms 0.5 ms 0.6 ms 5.0 ms 135.1 fps 68.9 fps

Dragon and Sphere (270k) 27.7 ms 1.8 ms 5.3 ms 16.5 ms 29.6 fps 24.5 fps

F-16 (4.5k) 0.4 ms 0.4 ms 0.4 ms 4.7 ms 180.2 fps 58.6 fps

Two Teapots (13k) 1.2 ms 0.4 ms 0.5 ms 4.9 ms 186.6 fps 76.5 fps

Venus and Sphere (64k) 6.2 ms 0.6 ms 1.4 ms 7.7 ms 84.7 fps 39.6 fps

Table 1. Computation costs for the scenes shown in Figures 1, 10, 11, and 12. We have timed individ-
ual steps of the algorithm at 5122 resolution, and final framerates are given for both 5122 and 10242.

Due to overhead for timing individual steps, summing step costs does not exactly equal the stated
framerate.

Figure 10. An F-16 model rendered using a point light and two sources of increasing area.

increases in size. Varying the penumbra size does affect

runtime costs, as larger penumbrae require more fragments

to index into the distortion map. For the penumbra sizes

shown in Figure 10, the framerate varies from 175 to 185

frames per second at 5122. Figures 1 and 11 focus on more

complex examples involving self shadowing and multiple

occluders. Note that the SSOC camera model correctly han-

dles the sharpening of shadows near contact points as well

as overlapping penumbrae of various sizes.

6 Discussion

While the soft shadows generated using the SSOC model

are quite plausible, there are a couple of limitations that

should be mentioned. These issues arise in situations where

the SSOC distortion map becomes heavily populated. In

such cases we may miss overlapping penumbra, because we

only store one distortion value per texel and search for al-

ternate distortions using a small number of point queries (as

per Section 3.2.3). More exhaustive object-space [11] and

image-space [13] searches avoid these problems.

In particular, the DDOC and SSOC models provide an

Figure 12. A comparison of our approach
(left) with a ray traced reference (right).

approximation to the scene geometry in a small locus of

views around a reference viewpoint. As the size of this lo-

cus increases, typically the errors do as well. This means

a single SSOC image is only effective for relatively small

lights, such as those shown in Figure 10. Objects with many

small concavities (e.g., a fork) also lead to heavily popu-

Figure 11. Soft shadows on objects of varying complexity. In particular, note the self shadowing and

multi-layered shadows.

lated distortion maps, as multiple penumbrae interact in a

small region. Finally, scenes with high depth complexity,

as seen from the light, increase the complexity of the dis-

tortion map. Unlike many methods, our technique is not

limited by depth complexity per se. Rather, the SSOC has

difficulty when multiple edges collide in the distortion map.

Effectively, only two or three silhouette edges can overlap

in the distortion map before artifacts start to appear.

For cases of large lights, small object concavities, and

high depth complexity, such a highly populated distortion

map leads to incorrectly shaded regions and discontinu-

ities between correctly and incorrectly shaded regions, as

shown in Figure 13. A number of solutions may alleviate

the problem, including performing a more expensive search

for overlapping penumbral regions in the distortion map. A

hierarchical distortion map may help reduce the overhead of

a more extensive search. Another possibility would utilize

a multiple layered distortion map, though this defeats the

purpose of the depth discontinuity occlusion camera model.

Another issue we ignored for our prototype was the

shape of the light source—we assume it is spherical. While

this is not an inherent limitation of the SSOC, as the SSOC

is valid for any shaped locus of points around the center

of the light, it allowed our prototype to use a simple inten-

sity determination. We hope to address this limitation in fu-

ture work, so that the SSOC can be used with varied shaped

lights and those with non-constant emission.

7 Conclusions and Future Work

We introduced the soft shadow occlusion camera, a non-

pinhole camera model inspired by the depth discontinuity

occlusion camera that samples geometry normally hidden

by occluders in standard shadow maps. While reconstruct-

Figure 13. Small concavities can cause
a highly populated distortion map, which
makes identifying all relevant penumbral re-

gions more difficult. This leads to incorrectly
shaded pixels and discontinuities between
correctly and incorrectly shadowed regions.

ing a warped shadow map interactively is currently infeasi-

ble, we have shown that the camera model may be directly

used to approximate soft shadow at interactive rates. This

is accomplished by correlating the camera’s distortion with

a sample’s location in the penumbra.

In addition to the contribution to shadow rendering, we

hope that our work shows the applicability of non-pinhole

cameras to interactive rendering problems, stimulates the

development of interactive techniques for rendering with

non-traditional camera models, and encourages further re-

search using such cameras for realistic rendering. In par-

ticular, future work could examine alternate ways for im-

proving and utilizing the SSOC model, such as developing

an interactive implementation to reconstruct a reference im-

age (instead of relying only on the distortion map). We also

believe the SSOC model may prove useful for other soft

shadow techniques, including backprojection schemes. Fi-

nally, these camera models seem like a natural fit for other

realistic rendering problems such as depth-of-field, motion

blur, and glossy reflections, which all need information

about fragments nearly visible in a static pinhole camera

image.

References

[1] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll.

Efficient image-based methods for rendering soft shadows.

In Proceedings of SIGGRAPH, pages 375–384, 2000.

[2] T. Aila and T. Akenine-Moller. A hierarchical shadow vol-

ume algorithm. In Proceedings of the Graphics Hardware,

pages 15–23, 2004.

[3] T. Akenine-Möller and U. Assarsson. Approximate soft

shadows on arbitrary surfaces using penumbra wedges.

In Proceedings of the Eurographics Rendering Workshop,

pages 309–318, 2002.

[4] U. Assarsson and T. Akenine-Möller. A geometry-based soft

shadow volume algorithm using graphics hardware. ACM

Transactions on Graphics, 22(3):511–520, July 2003.

[5] L. Atty, N. Holzschuch, M. Lapierre, J.-M. Masenfratz,

C. Hansen, and F. Sillion. Soft shadow maps: Efficient sam-

pling of light source visibility. Computer Graphics Forum,

25(4):725–741, 2006.

[6] L. Bavoil, S. Callahan, and C. Silva. Robust soft shadow

mapping with depth peeling. Technical Report UUSCI-

2006-028, University of Utah, 2006.

[7] X.-H. Cai, Y.-T. Jia, X. Wang, S.-M. Hu, and R. Martin.

Rendering soft shadows using multilayered shadow fins.

Computer Graphics Forum, 25(1):15–28, 2006.

[8] E. Chan and F. Durand. Rendering fake soft shadows with

smoothies. In Proceedings of the Eurographics Symposium

on Rendering, pages 208–218, 2003.

[9] E. Chan and F. Durand. An efficient hybrid shadow render-

ing algorithm. In Proceedings of the Eurographics Sympo-

sium on Rendering, pages 185–196, 2004.

[10] F. Crow. Shadow algorithms for computer graphics. In Pro-

ceedings of SIGGRAPH, pages 242–248, 1977.

[11] G. Drettakis and E. Fiume. A fast shadow algorithm for

area light sources using backprojection. In Proceedings of

SIGGRAPH, pages 223–230, 1994.

[12] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.

The lumigraph. In Proceedings of SIGGRAPH, pages 43–

54, 1996.

[13] G. Guennebaud, L. Barthe, and M. Paulin. Real-time soft

shadow mapping by backprojection. In Proceedings of the

Eurographics Symposium on Rendering, 2006.

[14] E. Haines. Soft planar shadows using plateaus. Journal of

Graphics Tools, 6(1):19–27, 2001.

[15] J.-M. HasenFratz, M. Lapierre, N. Holzschuch, and F. Sil-

lion. A survey of real-time soft shadow algorithms. Com-

puter Graphics Forum, 22(4):753–774, 2003.

[16] P. Heckbert and M. Herf. Simulating soft shadows with

graphics hardware. Technical Report CMU-CS-97-104,

Carnegie Mellon University, January 1997.

[17] T. Heidmann. Real shadows, real time. Iris Universe,

(18):23–31, November 1991.

[18] W. Heidrich, S. Brabec, and H.-P. Seidel. Soft shadow maps

for linear lights. In Proceedings of the Eurographics Ren-

dering Workshop, pages 269–280, 2000.

[19] H. Hu, A. Gooch, W. Thompson, B. Smits, J. Rieser, and

P. Shirley. Visual cues for imminent object contact in real-

istic virtual environments. In Proceedings of Visualization,

pages 127–136, 2000.

[20] Y.-H. Im, C.-Y. Han, and L.-S. Kim. A method to gener-

ate soft shadows using a layered depth image and warping.

IEEE Transactions on Visualization and Computer Graph-

ics, 11(3):265–272, May/June 2005.

[21] T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and

T. Strothotte. A Developer’s Guide to Silhouette Algorithms

for Polygonal Models. IEEE Computer Graphics and Appli-

cations, 23(4):28–37, 2003.

[22] D. Kersten, D. C. Knill, P. Mamassian, and I. Bulthoff. Illu-

sory motion from shadows. Nature, 279(6560):31, 1996.

[23] S. Laine. Splat-plane shadow volumes. In Proceedings of

Graphics Hardware, pages 23–32, 2005.

[24] M. Levoy and P. Hanrahan. Light field rendering. In Pro-

ceedings of SIGGRAPH, pages 31–41, 1996.

[25] L. McMillan and G. Bishop. Plenoptic modeling: an image-

based rendering system. In Proceedings of SIGGRAPH,

pages 39–46, 1995.

[26] C. Mei, V. Popescu, and E. Sacks. The occlusion camera.

Computer Graphics Forum, 24(3):335–342, 2005.

[27] S. Parker, P. Shirley, and B. Smits. Single sample soft shad-

ows. Technical Report UUCS-98-019, University of Utah,

October 1998.

[28] V. Popescu and D. Aliaga. The depth discontinuity occlusion

camera. In Proceedings of the Symposium on Interactive 3D

Graphics and Games, pages 139–143, 2006.

[29] P. Rademacher and G. Bishop. Multiple-center-of-projection

images. In Proceedings of SIGGRAPH, pages 199–206,

1998.

[30] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and

P. Haeberli. Fast shadows and lighting effects using texture

mapping. In Proceedings of SIGGRAPH, pages 249–252,

1992.

[31] J. Shade, S. Gortler, L. wei He, and R. Szeliski. Layered

depth images. In Proceedings of SIGGRAPH, pages 231–

242, 1998.

[32] J.-F. St-Amour, E. Paquette, and P. Poulin. Soft shadows

from extended light sources with penumbra deep shadow

maps. In Proceedings of Graphics Interface, pages 105–

112, 2005.

[33] L. Wanger, J. Ferwerda, and D. Greenberg. Perceiving spa-

tial relationships in computer-generated images. IEEE Com-

puter Graphics & Applications, 12(3):44–58, May 1992.

[34] L. Williams. Casting curved shadows on curved surfaces. In

Proceedings of SIGGRAPH, pages 270–274, 1978.

[35] A. Woo, P. Poulin, and A. Fournier. A survey of shadow

algorithms. IEEE Computer Graphics & Applications,

10(6):13–32, November 1990.

[36] C. Wyman and C. Hansen. Penumbra maps: Approximate

soft shadows in real-time. In Proceedings of the Eurograph-

ics Symposium on Rendering, pages 202–207, June 2003.

