
Copyright is held by the author / owner(s). 
SIGGRAPH Asia 2010, Seoul, South Korea, December 15 – 18, 2010. 
ISBN 978-1-4503-0439-9/10/0012 

Interactive Voxelized Epipolar Shadow Volumes

Chris Wyman∗

University of Iowa

Abstract

Current algorithms for rendering shadows inside participating me-
dia hit a bottleneck when computing light visibility throughout the
media. These algorithms rely either on sampling along viewing
rays, often thrashing memory caches, or slower analytic solutions
using object-space computations, such as shadow volumes.

We present a new cache-coherent sampling technique that com-
putes volumetric light visibility that requires as little as one tex-
ture lookup per pixel. We efficiently voxelize shadow volumes in
epipolar-space using standard parallel scan operations. The only
step dependent on geometric complexity is an image-space vox-
elization [Eisemann and Décoret 2006] that often takes under a mil-
lisecond. This allows us to render shadows in participating media
at up to 300 frames per second.

Keywords: shadows, participating media, interactive, voxeliza-
tion, epipolar space

1 Introduction

While illuminating participating media usually presents a chal-
lenge, commonly-used simplifications reduce this complexity. With
an aim to interactivity, many developers assume homogeneous
single-scattering media, allowing inscattering to be computed as
follows [Nishita et al. 1987]:

Lscatter =

Z ds

0

βκ(α(x))
V (x)I0e

−βd(x)

d(x)2
e−βxdx. (1)

See Figure 1 for definitions. Ignoring visibility (i.e., V (x) = 1)
allows real-time solutions using a table lookup [Sun et al. 2005].
To add visibility researchers have proposed using a geometric rep-
resentation of the shadow volume [Billeter et al. 2010] or sampling
the visibility along each ray [Imagire et al. 2007]. As when shadow-
ing surfaces, analytic shadow volume computations add significant
fill-rate costs, so we do not consider them further in this sketch.

Sampling visibility along each ray transforms Equation 1 to:

Lscatter =

N
X

i=0

βκ(α(xi))
V (xi)I0e

−βd(xi)

d(xi)2
e−βxi , (2)

where xi = dsi/N (see Figure 1), though some work uses adaptive
sampling for somewhat improved performance.

Sampling techniques treat each computation (e.g., at xi and
xi+1) independently, often using shadow mapping to determine
V (xi). Thus, for each pixel hundreds of shadow map queries occur,
without any consideration for cache coherence or potential reuse
between neighboring pixels.

2 Voxelized Shadow Volumes

Instead of independently determining visibility at every sample, we
propose a screen space voxelization of the shadow volume that al-
lows a simultaneous query of the light visibility at all samples along
a view ray. We first describe a simple example in Cartesian space
before moving to epipolar space.

Figure 2 shows the Buddha inside the Cornell Box. We create
a binary screen space voxelization, giving a 3D volume with 1’s

∗E-mail: cwyman@cs.uiowa.edu

Intensity I
0

x
d(x)

α(x)

d
s

Surface Point S

P
x

Intensity I
0

Surface Point S

Figure 1: (Left) Definitions of geometric quantities. V (x) is the
light visibility at Px, β is the scattering coefficient, and κ(α(x)) is
the probability light scatters towards the viewer at Px. (Right) Typ-
ically visibility is sampled independently at multiple points along
each view ray.

Figure 2: (left) The Buddha inside the Cornell Box, (center) a vox-
elized representation, and (right) a voxelized representation of the
shadow volume under a directional light (in the +x-axis). We visu-
alize voxel grids as a count of filled voxels along each view ray.

representing the presence of geometry and 0’s elsewhere. Screen
space voxelization aligns the voxel grid to view rays, allowing us
to simultaneously lookup the presence of geometry for all samples
along a view ray with a single texture lookup.

Imagine adding a directional light source pointing down the pos-
itive x-axis. We voxelize the Buddha’s shadow volume. In this vol-
ume, 1’s represent shadowed regions and 0’s represent lit regions.
This enables queries of light visibility simultaneously at all samples
along a view ray. The key problem is efficient voxelization of the
shadow volume. Clearly, we could voxelize using the shadow vol-
ume quads, but this reintroduces standard shadow volume fill-rate
constraints.

We use a voxel representation of the original geometry as input
to a parallel scan, with the scan counting the geometry-filled voxels
between each sample and the directional light. Because we only
need binary visibility, our parallel scan uses an or (instead of an
add) operator. This is similar to creating a 1D summed area ta-
ble [Hensley et al. 2005] for each row of voxels.

3 Epipolar Voxelization

The key problem is that scans occur along voxel grid axes, limiting
applicability in Cartesian space to axis-aligned directional lights.
However, if we move our voxel representation to epipolar space,
then by definition one axis of the grid is aligned with the light direc-



An epipolar plane

Light View

(Shadow Map)

Eye View

(Rendered Image)

Samples illuminated

Samples shadowed

Voxelized object

Figure 3: (Left) Every ray through a pixel in image space corre-
sponds to a line in light space (a dotted gray line), and every pixel
in light space corresponds to a line in image space. View rays along
these dotted lines fall on an epipolar plane, which contains the eye
and the light. (Right) For each epipolar plane, we can voxelize
into perspective grid where the axis in one direction is defined by
rays emanating from the light. We then use the parallel scan from
Section 2 to efficiently compute light visibility.

Figure 4: (Left) Shadow volume voxelized in Cartesian space, (cen-
ter) a similar shadow volume voxelized in epipolar space, (left) the
volumetric shadows corresponding to the epipolar shadow volume.

tion (see Figure 3), allowing a parallel scan to efficiently compute
our voxelized shadow volume (see Figure 4).

Currently, we use a vertex shader to transform into epipolar
space (as described below) and use the GPU’s fixed function ras-
terizer to voxelize the geometry. Because this non-linear transform
occurs per-vertex rather than per-fragment it can introduce distor-
tion artifacts, though we did not encounter noticeable errors.

We transform each vertex from Cartesian coordinates to epipolar
space, where the x-coordinate defines the epipolar plane and the
y- and z-coordinates define the location on that plane. Epipolar
planes correspond to image-space lines radiating from the light, so
possible x values include [0..360) depending on eye-space vertex
location relative to the light.

Within each epipolar plane, our y-coordinate corresponds to dis-
tance from the light. Because distance to the light changes along
a viewing ray, our vertex y-coordinate uses the minimal distance
between the light and the ray passing through the eye and the ver-
tex. Valid y-values include [0..∞], though the distance between the
light and the view frustum boundaries provides our upper bound.
An (x,y) pair defines a view ray in epipolar space.

Along each viewing ray, the z-coordinate specifies how far along
the view ray a vertex is located. Looking at Figure 3, right, each tri-
angular region between gray dotted lines corresponds to a different
z value. In order to keep z-values from adjacent pixels consistent,
this implies the z-value is actually an angle. We compute z as the
dot product between v̂EL, the vector between the eye and light, and
v̂V L, the vector between the current vertex and the light. This cov-
ers the range [−1..1].

4 Results

We tested our prototype on an GeForce GTX 480 running at a res-
olution of 10242. The key hardware requirement is integer buffers,
allowing bit manipulations for computing per-ray voxel bitstreams.
One integer buffer gives a z-resolution of 128 samples, though our

Figure 5: Two different scenes rendered using voxelized epipolar
shadow volumes. The top scene has 51,000 triangles whereas the
bottom has 780,000. (Left) Simple Phong rendering, (center) vox-
elized shadow volumes, and (right) a subset of the corresponding
epipolar voxel grid.

results in Figure 5 used two buffers for a 10242
× 256 grid. Geom-

etry with extra fine detail may require additional resolution.
In our tests on geometry of various complexity, voxelization

takes 0.5-2.5 ms, the parallel scan to compute the voxelized shadow
volume takes a constant 0.65 ms per layer (i.e., using two integer
buffers for a z-depth of 256 requires 1.3 ms), and illumination com-
putations for the participating media take another 1.0 ms.

Our results demonstrate performance up to 300 fps, and even
complex scenes with over a million polygons still remain above
100 fps. We believe this demonstrates volumetric shadowing can
be added to virtually all interactive applications, and with additional
work adaptive computations could improve performance further.

References

BILLETER, M., SINTORN, E., AND ASSARSSON, U. 2010. Real
time volumetric shadows using polygonal light volumes. In
Proc. High Performance Graphics, 39–45.

EISEMANN, E., AND DÉCORET, X. 2006. Fast scene voxelization
and applications. In Proc. Symp. Interactive 3D Graphics and
Games, 71–78.

HENSLEY, J., SCHEUERMANN, T., COOMBE, G., SINGH, M.,
AND LASTRA, A. 2005. Fast summed area table generation and
its applications. Computer Graphics Forum 24, 3, 547–555.

IMAGIRE, T., JOHAN, H., TAMURA, N., AND NISHITA, T. 2007.
Anti-aliased and real-time rendering of scenes with light scatter-
ing effects. Visual Computer 23, 9, 935–944.

NISHITA, T., MIYAWAKI, Y., AND NAKAMAE, E. 1987. A shad-
ing model for atmospheric scattering considering luminous dis-
tribution of light sources. In Proc. SIGGRAPH, 303–310.

SUN, B., RAMAMOORTHI, R., NARASIMHAN, S., AND NAYAR,
S. 2005. A practical analytic single scattering model for real
time rendering. ACM Trans. Graph. 24, 3, 1040–1049.


