
Stochastic Layered Alpha Blending

Chris Wyman∗

NVIDIA

Figure 1: Our stochastic layered alpha blending lies in the continuum of order-independent transparency techniques between stochastic
transparency and k-buffering. Here we show a partially transparent model with around 20 depth layers. The insets compare (top) stochastic
transparency, (middle) stochastic layered alpha blending, and (bottom) k-buffering with various number of samples. For stochastic layered
alpha blending, we use continuous alpha with a number of virtual coverage bits (b in Equation 1) equal to twice the number of layers.

Abstract

Researchers have long sought efficient techniques for order-
independent transparency (OIT) in a rasterization pipeline, to avoid
sorting geometry prior to render. Techniques like A-buffers,
k-buffers, stochastic transparency, hybrid transparency, adaptive
transparency, and multi-layer alpha blending all approach the prob-
lem slightly differently with different tradeoffs.

These OIT algorithms have many similarities, and our investiga-
tions allowed us to construct a continuum on which they lie. During
this categorization, we identified various new algorithms includ-
ing stochastic layered alpha blending (SLAB), which combines
stochastic transparency’s consistent and (optionally) unbiased con-
vergence with the smaller memory footprint of k-buffers. Our ap-
proach can be seen as a stratified sampling technique for stochastic
transparency, generating quality better than 32× samples per pixel
for roughly the cost and memory of 8× stochastic samples. As with
stochastic transparency, we can exchange noise for added bias; our
algorithm provides an explicit parameter to trade noise for bias. At
one end, this parameter gives results identical to stochastic trans-
parency. On the other end, the results are identical to k-buffering.

Keywords: stochastic, order-independent transparency, alpha
Concepts: •Computing methodologies→ Visibility;

∗e-mail:chris.wyman@acm.org
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). c© 2016 Copyright held by the owner/author(s).
SIGGRAPH 2016 Talks, July 24-28, 2016, Anaheim, CA
ISBN: 978-1-4503-4282-7/16/07
DOI: http://dx.doi.org/10.1145/2897839.2927423

1 Introduction

The classical A-buffer algorithm [Carpenter 1984] first stores a list
of fragments affecting each pixel then accumulates their contribu-
tions during a resolve pass. To reduce memory consumption this list
can be truncated (k-buffers [Bavoil et al. 2007]) or list elements can
be merged due to space constraints. Adaptive transparency [Salvi
et al. 2011], hybrid transparency [Maule et al. 2013], and multi-
layer alpha blending [Salvi and Vaidyanathan 2014] provide a num-
ber of metrics for merging. Stochastic transparency [Enderton et al.
2010] implicitly builds per-pixel lists stochastically.

Unfortunately, these algorithms all have problems. A-buffers are
expensive. Stochastic transparency converges slowly and relies on
MSAA, limiting fast versions to 8 samples per pixel. K-buffers dis-
card geometry. And when merging layers adaptively in a streaming,
single pass process, the results can vary with geometry order (tech-
nically losing order independence).

2 Stochastic Layered Alpha Blending

We introduce stochastic layered alpha blending (SLAB), which
stochastically inserts layers into a per-pixel list of fragments. This
is different than k-buffers or prior multi-layer blending techniques
which only discard layers when they run out of space. Like stochas-
tic transparency, we might discard fragments that other layered
blending techniques would keep, but we do this in an unbiased
way. In fact, our probability of discarding fragments is identical to
stochastic transparency’s, though we compute our probability ex-
plicitly rather than implicitly via z-buffering.

Our motivation was straightforward: while stochastic transparency
has never been described as using per-pixel lists of fragments, we
observed it builds such lists implicitly. Figure 2 shows a simple
16× MSAA pixel covered by 3 transparent fragments in turn. By
definition no more than 16 surfaces can be stored per pixel, so like

http://dx.doi.org/10.1145/2897839.2927423

Figure 2: Stochastic transparency with three fragments, α = 0.5.
(Left) When the red fragment is rasterized, it stochastically outputs
its z into half the MSAA samples. (Center) The blue fragment also
stochastically writes to half the MSAA samples, but some are oc-
cluded by the closer red fragment. (Right) The green fragment also
writes to half the MSAA sample, but because it is in front of the
other two fragments, it displaces blue and red fragments.

k-buffering it implicitly limits the number of fragments contribut-
ing to each pixel. However due to a coupling between depth and
coverage, stochastic transparency redundantly stores information.
In our example, since the green pixel is 50% transparent our final z-
buffer stores its depth 8 times. If the red, green, and blue fragments
came from our closest three surfaces, instead of being able to store
16 layers in this pixel we would be limited to 4 layers. In that case,
why use 16 sample per pixel stochastic transparency rather than a 4
layer k-buffer?

Stochastic layered alpha blending decouples depth and coverage to
avoid redundantly storing the depth of our layers. Each layer stores
a depth and coverage mask, as shown in Figure 3. Since coverage
samples no longer need to be explicitly tied to MSAA samples,
layers can instead store depth and a continuous alpha, though this
adds complexity to probability computations.

2.1 Algorithm

Consider a new incoming fragment F , a maximum of n layers per
pixel, and an existing set of layers Li for i ∈ [1..m] (ordered by
depth for illustration, i.e, Lm is furthest away).

If F ’s depth Z(F) is greater than Z(Lm) and m = n, discard F .
Otherwise, we find Lj such than Z(Lj) < Z(F) < Z(Lj+1).
We then accumulate the coverage Cacc for layers 1 to j. If using a
discrete coverage, this is the binary-or of Ci for i ∈ [1..j]. With a
continuous alphas, Cacc = 1−

∏j
i=1(1−αi). We probabilistically

insert F between layers j and j + 1 by picking a uniform random
number ξ ∈ [0..1] and inserting when ξ < Pb(Cacc, CF). Pb is the
combinatoric probability that a b-bit coverage mask CF , represent-
ing fragment F , will be visible given a b-bit occlusion mask Cacc.
If using continuous alphas, both Cacc and CF are discretized to in-
tegers in [0..b]. (x)y is the falling factorial, x(x−1)...(x−y+1).

Pb(s, t) =

{
1− (s)t

(b)t
= 1− s!(b−t)!

b!(s−t)!
: t ≤ s

1 : t > s
(1)

Equation 1 gives the probability for b stratified samples. A slightly
different equation (1− (b−t

b
)(b−s)) gives the probability for b non-

stratified samples. If, after insertion of F into our list, we have
more than n layers, discard the furthest (i.e., Lm).

An interesting property is as we increase the number of coverage
bits, i.e., b → ∞, Pb(s, t) → 1. So, with an infinite number of
coverage bits per layer, stochastic layered alpha blending becomes
k-buffering. Given n layers, b ranging from [n..∞] transitions be-
tween stochastic transparency and k-buffering.

Figure 3: Conceptually, stochastic layered alpha blending decou-
ples storage of depth and stochastic subpixel coverage. Here, we
use the same fragments and random subpixel sample from Figure 2.
(Left to right) First red, then blue, then green are rasterized into
our stochastic layered structure. Each fragment is stored in a layer
containing the fragment depth and subpixel coverage. If we were
limited to 2 layers per pixel, when the green fragment appeared the
blue fragment would be discarded from our list.

As in stochastic transparency, the insertion pass can directly gen-
erate final color, or a second geometry pass can normalize the
color and account for discarded surfaces in a biased manner. For
easy comparison, our results for both techniques use Enderton et
al.’s [2010] depth and alpha normalizations.

3 Results

We implemented a proof-of-concept of stochastic layered alpha
blending in OpenGL, using the NV fragment shader interlock ex-
tension to ensure insertion atomicity. Figure 1 shows an example,
with insets comparing various settings for stochastic transparency,
stochastic layered alpha blending, and k-buffers.

Optimizing our implementation is future work, but prototype per-
formance is as follows (in Figure 1, 1920×1080, NVIDIA GeForce
Titan X). With 4 (and 8) samples or layers: stochastic transparency
2.1 ms (2.5 ms), stochastic layered alpha blend 3.1 ms (4.3 ms),
multi-layer alpha blend 5.5 ms (8.0 ms). For identical layer counts,
our stochastic layered alpha blend is currently slower than stochas-
tic transparency, due to fragment shader synchronization, but gives
significantly less noise. Our k-buffer and stochastic layered alpha
blending use the same code path (with different probability func-
tions), so they have identical performance.

References

BAVOIL, L., CALLAHAN, S., LEFOHN, A., COMBA, J., AND
SILVA, C. 2007. Multi-fragment effects on the gpu using the
k-buffer. In Proceedings of the Symposium on Interactive 3D
Graphics and Games, 97–104.

CARPENTER, L. 1984. The a-buffer, an antialiased hidden surface
method. In Proceedings of SIGGRAPH, 103–108.

ENDERTON, E., SINTORN, E., SHIRLEY, P., AND LUEBKE, D.
2010. Stochastic transparency. In Proceedings of the Symposium
on Interactive 3D Graphics and Games, 157–164.

MAULE, M., COMBA, J. A., TORCHELSEN, R., AND BASTOS, R.
2013. Hybrid transparency. In Proceedings of the Symposium on
Interactive 3D Graphics and Games, 103–118.

SALVI, M., AND VAIDYANATHAN, K. 2014. Multi-layer alpha
blending. In Proceedings of the Symposium on Interactive 3D
Graphics and Games, 151–158.

SALVI, M., MONTGOMERY, J., AND LEFOHN, A. 2011. Adaptive
transparency. In Proceedings of High Performance Graphics,
119–126.

